
l

Information Processing Letters 97 (2006) 83–87

www.elsevier.com/locate/ip

Runtime feasibility check for non-preemptive real-time
periodic tasks✩

Sangwon Kim∗, Joonwon Lee, Jinsoo Kim

Division of Computer Science, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea

Received 18 July 2005; received in revised form 5 October 2005; accepted 13 October 2005

Available online 28 November 2005

Communicated by A.A. Bertossi

Keywords: Real-time systems; Non-preemptive scheduling
ys-
of
es-

and
n of
],
also
ects

os
ed-
la-

no
s to

lter-
than

ion
ol-
(In-

90-

er
sa
sk

ssary
of

d in a
that
me
ran-
ner

rst).
is
that
ut

task
en-

s a
ime
the
the
e

rgy
eal-
1. Introduction

The most important requirement for real-time s
tems is the capability to support the timely execution
applications. Real-time scheduling over a single proc
sor has been widely studied in the last thirty years,
it has been proven that the non-preemptive versio
Earliest Deadline First (EDF) algorithm is optimal [1
in the sense that if a set of tasks is schedulable, it is
schedulable using EDF. EDF scheduler always sel
and executes a task having the earliest deadline. M
non-preemptive real-time systems favor the EDF sch
uler for its easy feasibility check and optimal schedu
bility.

In EDF scheduling, however, scheduler leaves
chance for other feasible alternative task sequence
be selected. Fig. 1 shows an example in which an a
native task execution sequence is more preferable

✩ This research was supported by the MIC (Ministry of Informat
and Communication), Korea, under the ITRC (Information Techn
ogy Research Center) support program supervised by the IITA
stitute of Information Technology Assessment) (IITA-2005-C10
0502-0031).

* Corresponding author.
E-mail address: kimsw@calab.kaist.ac.kr (S. Kim).
0020-0190/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.10.010
t

that of EDF scheduling. In the example, device pow
mode can transit from ‘active’ to ‘sleep’ and vice ver
in order to save power during idle time. A better ta
sequence can be generated by eliminating unnece
power-mode transitions and increasing the idle time
devices. Such a task sequence can be easily obtaine
non real-time system by scheduling first those tasks
use devices in active mode [6]. However, in a real-ti
system, the timely execution of tasks must be gua
teed before scheduling a task in a non-EDF man
(i.e., scheduling a task not having earliest deadline fi
Therefore, in [7], an off-line scheduling algorithm
presented to generate the optimal task sequence
minimizes energy consumption of I/O devices witho
deadline misses. Nevertheless, finding the optimal
sequence is impractical since the hyper-period of a g
eral task set is too long to be optimized.

Another example in which task sequence make
difference is presented in [3]. Here, the execution t
of tasks can be reduced by scheduling continuously
tasks that share common data set and increasing
cache hit ratio. In [2], it is shown that the saved tim
(dynamic slack) can be used to minimize the ene
consumption of a processor in a non-preemptive r
time system.



84 S. Kim et al. / Information Processing Letters 97 (2006) 83–87
Fig. 1. Non-EDF scheduling for device power saving.
ad-
e a
k se
and

fu-
tas

cks
ask
y a

ngle

ec-
efly.
ck-
the
ary
de

nd

one
r of

in
y on

se

es-

o-

k is
-

-
e

e it
g a
the

dline
-

sk
ity

er
Therefore, based on the given system purpose in
dition to the timely execution of tasks, there can b
preferred task for scheduler to generate a better tas
quence. To support such task preferences at runtime
to prevent future deadline misses, the feasibility of
ture tasks must be guaranteed before scheduling a
in a non-EDF manner.

This paper presents an online algorithm that che
the feasibility of a task set in order to schedule a t
in a non-EDF manner. This algorithm can be used b
real-time system to schedule periodic tasks over a si
processor.

The rest of this paper is organized as follows. S
tion 2 describes the system model and notations bri
In Section 3, we present the runtime feasibility che
ing algorithm and prove that a task scheduled by
algorithm does not make a deadline miss. A prelimin
experiment results follow in Section 4 and we conclu
in Section 5.

2. System model and notations

The scheduling of a task set is said to bevalid if
and only if no task instance misses its deadline. A
a task set is said to befeasible with respect to a given
class of schedulers if and only if there is at least
valid schedule that can be obtained by a schedule
this class.

In this paper, we restrict ourselves to the case
which the system schedules tasks non-preemptivel
a single processor, and consists of a feasible task
of n periodic real-time tasks, denoted asτ = {T1, T2,

. . . , Tn}. A taskTi is a pair (ci , pi ) where
-

k

t

• ci : The computational cost; The amount of proc
sor time required to executeTi , and

• pi : The period; The minimal interval between inv
cations ofTi .

We assume that a relative deadline of each tas
equal to the period of the task.Di is the absolute dead
line of the latest invocation ofTi . If Ti is invoked at time
t , thenDi is t + pi . si(t) is the status of the last invo
cation ofTi at time t . si(t) can be set to one of thre
states: ‘Invoked’, ‘Running’ and ‘Done’.

3. Runtime feasibility check

In this section, we define laxity of a task and us
to check the feasibility of a task set when schedulin
task in a non-EDF manner. For a feasible task set,
feasibility of the task set after schedulingTi in a non-
EDF manner can be guaranteed by checking a dea
miss withinDi , as stated (without proof) in the follow
ing Theorem 1.

Theorem 1. For a feasible periodic task set τ = {T1,

T2, . . . , Tn}, scheduling a task Ti in a non-EDF manner
at some scheduling point in time can make valid sched-
ule of τ if and only if it does not make any deadline miss
before Di .

In the following, we define the laxity of each ta
and then explain how to use it for runtime feasibil
check.

Definition 1. For a periodic task setτ = {T1, T2, . . . ,

Tn}, whereTi = (ci,pi), sorted in nondecreasing ord



S. Kim et al. / Information Processing Letters 97 (2006) 83–87 85

ly

d
ask

ree

n-
e
n in

of
at
-

e
-
ks
one

e

id
ove
ssed
not

im-

ne

l-

r

DF
-

nes
ider
1: On invocation of Ti :
2: Li = Laxityi − (tcurrent− tiinvoke);
3: for j = 1 ton do
4: if sj (tiinvoke) = ‘ Invoked’ andDj � Di then
5: Li = Li − cj ;
6: end if
7: end for
8: On completion of Ti :
9: for j = 1 ton do

10: if sj (tcurrent− ci) = ‘ Invoked’ andDj < Di then
11: Lj = Lj − ci ;
12: end if
13: end for

Algorithm 1. Runtime laxity adjustment.

of the task period,Laxityi of Ti denotes the maximum
value ofL satisfying the following condition:

∀t, p1 � t � pi : t � ci +
n∑

j=1, j �=i

⌊
t

pj

⌋
· cj + L.

(1)

Laxityi can be computed off-line. Considering on
tasks that will be invoked and completed duringpi by
EDF scheduling,Laxityi is surplus time that can be use
by any other tasks without the deadline miss of a t
that has an invocation and a deadline duringpi .

However, there can be tasks that leadLaxityi to be
adjusted at runtime. Tasks can be classified into th
different classes with respect toTi ; tasks invoked prior
to the invocation ofTi and have deadline beforeDi ,
tasks completed after the invocation ofTi and have
deadline afterDi , and other remaining tasks. Two ru
time adjustments ofLaxityi is required regarding th
execution of the first two classes of tasks as show
Algorithm 1. The first runtime adjustment ofLaxityi

is done at the first scheduling time after invocation
Ti as shown in lines 1–7 of Algorithm 1. Note th
tcurrentandtiinvoke denote the point in time at which Algo
rithm 1 is executed andTi is invoked, respectively. Th
second runtime adjustment ofLaxityi is done after com
pletion of a task as shown in lines 8–13. All the tas
that yielded their execution chance to the completed
must have their runtime laxity value readjusted.

Now, before schedulingTi in a non-EDF manner, th
feasibility of the task set after schedulingTi must be
checked using the routine shown in Algorithm 2.

Theorem 2. For a feasible task set τ = {T1, T2, . . . , Tn},
where Ti = (ci,pi), the task set τ after scheduling a
task in a non-EDF manner using Algorithms 1 and 2 is
also feasible.
1: On checking feasibility
(to check validity of schedulingTi ):

2: if Li < 0 then
3: return(fail) {Cannot guarantee feasibility};
4: end if
5: for j = 1 ton do
6: if sj (tcurrent) = ‘ invoked’ andDj < Di and

i �= j andLj < ci then
7: return(fail) {Cannot guarantee feasibility};
8: end if
9: end for

10: return(success) {Can guarantee feasibility};

Algorithm 2. Runtime feasibility check.

Proof. In [1], it is proved that EDF-Scheduling is val
for a feasible task set. Therefore we only need to pr
that the task scheduled in a non-EDF manner that pa
the feasibility check presented by Algorithm 2 does
make any deadline misses for the feasible task set.

Let us define and use the following notations for s
ple proof.

• tmiss: the earliest point in time at which a deadli
is missed.

• Tm: the task that made the deadline miss attmiss.
• Ti : the last task that is scheduled beforetmiss with

deadline aftertmiss, in a non-EDF manner using A
gorithms 1 and 2.

• tsched: the point in time at whichTi was scheduled
immediately prior totmiss.

• tkinvoke: the point in time at which a taskTk was in-
voked immediately prior totmiss.

• tk-sched: the first scheduling point in time afte
tkinvoke.

And let us define the following sets of tasks fromτ .

• Gk
1 = the set of tasks invoked beforetkinvoke with

a deadline beforetmiss and executed aftertkinvoke,• Gk
2 = the set of tasks invoked beforetkinvoke with

a deadline aftertmiss and executed in[tkinvoke, tmiss],
• Gk

3 = the set of tasks invoked aftertkinvoke with
a deadline aftertmiss and executed beforetmiss.

By Theorem 1, the tasks scheduled in a non-E
manner after the execution ofTi do not make the dead
line miss attmiss because they must have their deadli
beforetmiss. Therefore, there are two cases to cons
from the relation betweenTminvoke andTiinvoke.

• Case 1: Tm was invoked beforetsched(tminvoke < tsched).
The processor demand in[tminvoke, tmiss], dtminvoke,tmiss,

is bounded by



86 S. Kim et al. / Information Processing Letters 97 (2006) 83–87

at
e

re

k

iss

n-

ing.

n
d

lso
f a

fig-
task
We

om-
eric
el-
To
task

ach
that
ame
the
se-

ance

nor-
AP
ithm.
ling
s is
t in
h a
dtminvoke,tmiss � cm + (tmsched− tminvoke)

+
n∑

j=1, j �=m

⌊
tmiss− tminvoke

pj

⌋
· cj

+
∑

Tk∈Gm
1

ck +
∑

Tl∈Gm
2

cl +
∑

Tu∈Gm
3

cu. (2)

Lm, the runtime laxity value ofTm, is adjusted for
the execution time of the task that was in execution
tminvoke by line 2 of Algorithm 1. It is readjusted for th
execution time of the tasks inGm

1 by lines 3–7. After
execution of the tasks inGm

2 or Gm
3 , it is adjusted again

by lines 9–13 of Algorithm 1.
And sinceTi is the last task that is scheduled befo

tmiss with deadline aftertmiss, the last adjustment ofLm

was done attsched. As Ti passed the feasibility chec
in Algorithm 2 with ci less thanLm, Lm � 0, at tmiss.
Hence, attmiss,

Lm = Laxitym − (tmsched− tminvoke)

−
∑

Tk∈Gm
1

ck −
∑

Tl∈Gm
2

cl −
∑

Tu∈Gm
3

cu � 0. (3)

From (2) and (3), and since we have a deadline m
at tmiss, we can write the following inequality

tmiss− tminvoke < dtminvoke,tmiss

� cm +
n∑

j=1,j �=m

⌊
tmiss− tminvoke

pj

⌋
· cj

+ Laxitym.

This is a contradiction to (1) and the feasibility co
dition of a non-preemptive task set [1].

• Case 2: Tm was invoked aftertsched(tsched� tminvoke).
There could be no idle time in [tiinvoke, tsched] because

the presented scheduling algorithm is work conserv
Therefore, the processor demand in[tiinvoke, tmiss] mak-
ing deadline miss attmiss can be presented as below
tmiss− tiinvoke < dtiinvoke,tmiss

� ci + (tisched− tiinvoke)

+
n∑

j=1,j �=i

⌊
tmiss− tiinvoke

pj

⌋
· cj

+
∑

Tk∈Gi
1

ck +
∑

Tl∈Gi
2

cl +
∑

Tu∈Gi
3

cu. (4)

Li , the runtime laxity value ofTi , cannot be less tha
0 at tmiss, becauseTi passed line 2 of Algorithm 2 an
Ti was the last task scheduled beforetmiss with deadline
aftertmiss. Since (4) has the same form as (2), this is a
a contradiction to (1) and the feasibility condition o
non-preemptive task set [1].�
4. Preliminary experiments

We conducted some preliminary experiments to
ure out the level at which a scheduler can support
preference at runtime using the proposed algorithm.
evaluated the algorithm on two real-life task sets, a c
puter numerical control (CNC) task set [4] and a gen
aviation platform (GAP) task set [5], assuming the r
ative deadline of each task is identical to its period.
generate a runtime task preference, we made some
groups (of 2, 3, 5 and 10) out of task set so that e
task belongs to only one group. And we assumed
the system prefers to schedule a task that is in the s
group with previously completed one. We counted
number of change of task group in scheduled task
quence and used the counter value as a perform
metric of supporting a runtime task preference.

Fig. 2 shows the number of task group changes,
malized to that of EDF scheduling, when CNC and G
task sets are scheduled using the proposed algor
The level of supporting task preference in schedu
increases with small numbers of task groups. Thi
because the possibility for a preferred task to exis
invoked task list, at scheduling time, increases wit
Fig. 2. Normalized number of task group changes at different number of task groups.



S. Kim et al. / Information Processing Letters 97 (2006) 83–87 87

ting
as-
for
fer-

for
f a
an-

ling
ex-

thm
un-
un-
cent

e

ling
ems

ling
fer-

s
rnat.

al
CNC
96,

ics
ems

g
rd-

mal,
ms,
small number of task groups. Though the suppor
level differs with system environments, it can be e
ily seen that the proposed algorithm can be useful
real-time schedulers to support a runtime task pre
ence.

5. Conclusion

In this paper we have proposed an algorithm
a scheduler to check, at runtime, the feasibility o
task set before scheduling a task in a non-EDF m
ner. And we have proved that a non-EDF schedu
using the proposed algorithm guarantees the timely
ecution of a feasible task set. The proposed algori
can be useful for real-time systems to support a r
time task preference. It is also valid for systems r
ning a sporadic task set and directly applicable to re
works for energy saving in non-preemptive real-tim
systems.
References

[1] K. Jeffay, D.F. Stanat, C.U. Martel, On non-preemptive schedu
of periodic and sporadic tasks, in: Proc. of the Real-Time Syst
Symposium, 1991, pp. 129–139.

[2] R. Jejurikar, R. Gupta, Energy aware non-preemptive schedu
for hard real-time systems, in: Proc. of 17th of Euromicro Con
ence on Real-Time Systems, 2005, pp. 21–30.

[3] I. Kadayif, M. Kandemir, I. Kolcu, G. Chen, Locality consciou
process scheduling in embedded systems, in: Proc. 10th Inte
Symp. on Hardware/Software Codesign, 2002, pp. 193–198.

[4] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, H. Shin, Visu
assessment of a real-time system design: case study on a
controller, in: Proc. of the Real-Time Systems Symposium, 19
pp. 300–310.

[5] D.C. Locke, D. Vogel, T. Mesler, Building a predictable avion
platform in Ada: a case study, in: Proc. of the Real-Time Syst
Symposium, 1991, pp. 181–189.

[6] Y.-H. Lu, L. Benini, G. De Micheli, Low-power task schedulin
for multiple devices, in: Proc. of International Workshop on Ha
ware/Software Codesign, 2000, pp. 39–43.

[7] V. Swaminathan, K. Chakrabarty, Pruning-based, energy-opti
deterministic I/O device scheduling for hard real-time syste
ACM Trans. Embedded Comput. Syst. 4 (1) (2005) 141–167.


