Available online at www.sciencedirect.com

st.':lENCE@DIRE(.':TEo Informqtlon
Processing
e Letters
ELSEVIER Information Processing Letters 97 (2006) 83-87

www.elsevier.com/locate/ipl

Runtime feasibility check for non-preemptive real-time
periodic tasks

Sangwon Kint, Joonwon Lee, Jinsoo Kim

Division of Computer Science, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technol ogy,
373-1 Guseong-dong, Yuseong-gu, Dagjeon 305-701, Republic of Korea

Received 18 July 2005; received in revised form 5 October 2005; accepted 13 October 2005
Available online 28 November 2005

Communicated by A.A. Bertossi

Keywords: Real-time systems; Non-preemptive scheduling

1. Introduction that of EDF scheduling. In the example, device power
mode can transit from ‘active’ to ‘sleep’ and vice versa
The most important requirement for real-time sys- in order to save power during idle time. A better task
tems is the capability to support the timely execution of sequence can be generated by eliminating unnecessary
applications. Real-time scheduling over a single proces- power-mode transitions and increasing the idle time of
sor has been widely studied in the last thirty years, and devices. Such a task sequence can be easily obtained in a
it has been proven that the non-preemptive version of non real-time system by scheduling first those tasks that
Earliest Deadline First (EDF) algorithm is optimal [1], use devices in active mode [6]. However, in a real-time
in the sense that if a set of tasks is schedulable, it is alsosystem, the timely execution of tasks must be guaran-
schedulable using EDF. EDF scheduler always selectsteed before scheduling a task in a non-EDF manner
and executes a task having the earliest deadline. Most(j.e., scheduling a task not having earliest deadline first).
non-preemptive real-time systems favor the EDF sched- Therefore, in [7], an off-line scheduling algorithm is
uler for its easy feasibility check and optimal schedula- presented to generate the optimal task sequence that
bility. minimizes energy consumption of 1/0 devices without
In EDF scheduling, however, scheduler leaves no geadline misses. Nevertheless, finding the optimal task
chance for other feasible alternative task sequences tosequence is impractical since the hyper-period of a gen-
be selected. Fig. 1 shows an example in which an alter- g4 task set is too long to be optimized.
native task execution sequence is more preferable than another example in which task sequence makes a

difference is presented in [3]. Here, the execution time
U This research was supported by the MIC (Ministry of Information Of tasks can be reduced by scheduling continuously the
and Communication), Korea, under the ITRC (Information Technol- tasks that share common data set and increasing the
ogy Research Center) support program supervised by the IITA (In- ~5che hit ratio. In [2], it is shown that the saved time
stitute of Information Technology Assessment) (IITA-2005-C1090- . L

(dynamic slack) can be used to minimize the energy

0502-0031). ; . _
* Corresponding author. consumption of a processor in a non-preemptive real-
E-mail address. kimsw@calab.kaist.ac.kr (S. Kim). time system.

0020-0190/$ — see front mattér 2005 Elsevier B.V. All rights reserved.
doi:10.1016/}.ipl.2005.10.010

84 S Kimet al. / Information Processing Letters 97 (2006) 83-87

Task Exec. Time| Period Device usage ? Deadline of each task
A 1 6 Device 1
B 2 7 Device 2 4 Sleep mode transition of device
8 2 3 BZ::EZ; /" Active mode transition of device
TaskA || T] T—\ .] T !_T 1,
Task B T T - T -
Task C T - T -
Task D — ¢ . — t— .
5 10 15 time time
;(_Power saving_’g
Device 1 T ST DN o L \d period % _
Device 2 T N N T, _
F_N v l——Active period—>» g
wer mode
transition time
(a) EDF schedule (b) Device-conscious non-EDF schedule

Fig. 1. Non-EDF scheduling for device power saving.

Therefore, based on the given system purpose in ad- e ¢;: The computational cost; The amount of proces-
dition to the timely execution of tasks, there can be a sor time required to execu®, and
preferred task for scheduler to generate a better task se- e p;: The period; The minimal interval between invo-
guence. To support such task preferences at runtime and cations of7;.
to prevent future deadline misses, the feasibility of fu-
ture tasks must be guaranteed before scheduling a task We assume that a relative deadline of each task is
in a non-EDF manner. equal to the period of the task; is the absolute dead-
This paper presents an online algorithm that checks line of the latest invocation df;. If 7; is invoked at time
the feasibility of a task set in order to schedule a task 7, thenD; is 7 + p;. s;(?) is the status of the last invo-
in a non-EDF manner. This algorithm can be used by a cation of7; at timez. s;(s) can be set to one of three
real-time system to schedule periodic tasks over a single states: ‘Invoked’, ‘Running’ and ‘Done’.
processor.
The rest of this paper is organized as follows. Sec- 3. Runtime feasibility check
tion 2 describes the system model and notations briefly.
In Section 3, we present the runtime feasibility check- In this section, we define laxity of a task and use it
ing algorithm and prove that a task scheduled by the 0 check the feasibility of a task set when scheduling a
algorithm does not make a deadline miss. A preliminary task in a non-EDF manner. For a feasible task set, the

experiment results follow in Section 4 and we conclude feasibility of the task set after schedulifigin a non-
in Section 5. EDF manner can be guaranteed by checking a deadline

miss within D;, as stated (without proof) in the follow-
2. System model and notations ing Theorem 1.
Theorem 1. For a feasible periodic task set t = {71,

The scheduling of a task set is said to \mid if T», ..., T,}, scheduling atask 7; in a non-EDF manner
and only if no task instance misses its deadline. And at some scheduling point in time can make valid sched-

a task set is said to Heasible with respect to a given uleof t if and only if it does not make any deadline miss
class of schedulers if and only if there is at least one before D;.

valid schedule that can be obtained by a scheduler of

this class. In the following, we define the laxity of each task
In this paper, we restrict ourselves to the case in and then explain how to use it for runtime feasibility

which the system schedules tasks non-preemptively oncheck.

a single processor, and consists of a feasible task set

of n periodic real-time tasks, denoted as= {T1, 7>, Definition 1. For a periodic task set = {71, T», ...,

..., T,}. AtaskT; is a pair ¢;, p;) where T,}, whereT; = (¢;, p;), sorted in nondecreasing order

S Kimet al. / Information Processing Letters 97 (2006) 83-87

85

: Oninvocation of 7;:

L; = Laxity; — (fcurrent— fijyoxe)

for j=1ton do
if 5 (tivore) = ' INvoked’ and D < D; then

Li=L;—cj;

end if

end for

: On completion of T;:

: for j=1ton do

if S (fcurrent— ¢j) = ‘Invoked’ and Dj < D; then
Lj=Lj—ci

end if

. end for

©CNTRr®NE

Algorithm 1. Runtime laxity adjustment.

of the task periodlaxity; of 7; denotes the maximum
value ofL satisfying the following condition:

Vi, p1 <t < pid
(1)

Laxity; can be computed off-line. Considering only
tasks that will be invoked and completed duripgby
EDF schedulingl.axity; is surplus time that can be used
by any other tasks without the deadline miss of a task
that has an invocation and a deadline during

However, there can be tasks that Idaakity; to be
adjusted at runtime. Tasks can be classified into three
different classes with respect 1; tasks invoked prior
to the invocation of7; and have deadline beforb;,
tasks completed after the invocation ©f and have
deadline aftetD;, and other remaining tasks. Two run-
time adjustments otaxity; is required regarding the
execution of the first two classes of tasks as shown in
Algorithm 1. The first runtime adjustment dfaxity;
is done at the first scheduling time after invocation of
T; as shown in lines 1-7 of Algorithm 1. Note that
teurrentandt;,, . denote the point in time at which Algo-
rithm 1 is executed and; is invoked, respectively. The
second runtime adjustment béixity; is done after com-
pletion of a task as shown in lines 8-13. All the tasks
that yielded their execution chance to the completed one
must have their runtime laxity value readjusted.

Now, before schedulin@; in a non-EDF manner, the
feasibility of the task set after schedulirfg must be
checked using the routine shown in Algorithm 2.

Theorem 2. For afeasibletaskset t = {T1, T>, ..., T},
where T; = (¢;, p;i), the task set ¢ after scheduling a
task in a non-EDF manner using Algorithms 1 and 2 is
also feasible.

: On checking feasibility
(to check validity of scheduling;):
2 if Lj <Othen
return(fail) {Cannot guarantee feasibility};
end if
for j=1ton do
if 5 j (tcurrend = ‘invoked’ and D; < D; and
i#jandL; <c; then
return(fail) {Cannot guarantee feasibility};
end if
. end for
. return(success) {Can guarantee feasibility};

QR wN

Algorithm 2. Runtime feasibility check.

Proof. In[1], it is proved that EDF-Scheduling is valid
for a feasible task set. Therefore we only need to prove
that the task scheduled in a non-EDF manner that passed
the feasibility check presented by Algorithm 2 does not
make any deadline misses for the feasible task set.
Let us define and use the following notations for sim-

ple proof.

e Imiss the earliest point in time at which a deadline
is missed.
T,,: the task that made the deadline misgmis.
T;: the last task that is scheduled befaggs with
deadline afteryss, in @ non-EDF manner using Al-
gorithms 1 and 2.
tsched the point in time at whicl; was scheduled
immediately prior tQmiss.
imoke- te point in time at which a task; was in-
voked immediately prior t@niss.
tr-sched the first scheduling point in time after

tkinvoke'
And let us define the following sets of tasks fram

e G% = the set of tasks invoked beforg,,,. with
a deadline beforaniss and executed aftef,, o

e G% = the set of tasks invoked beforg,,,,. with
a deadline aftefimissand executed iftx;, e, fmissl,

. G’g = the set of tasks invoked aftey,,,,. With
a deadline afteryiss and executed beforgiss.

By Theorem 1, the tasks scheduled in a non-EDF
manner after the execution @f do not make the dead-
line miss atniss because they must have their deadlines
beforermiss. Therefore, there are two cases to consider
from the relation betweef, andT;

Minvoke
e Case 1: T,, was invoked beforesched(fminyore < sched-
The processor demand i ,oe: missl, @i, o tmiss:
is bounded by

invoke*

86 S Kimet al. / Information Processing Letters 97 (2006) 83-87

Iminyoke: Imiss Som+ (tmsched_ tminvoke) Imiss — Lijnvoke < dliinvokeylmiss
- Tmiss = Iminvoke Scit (tisched_ tiinvoke)
Jj=1, j#m Pj + Z Ltmlss_ Tiinvoke ¢
e~ Dj
fYarYarYa @
T,eG TieGY T.eGY +) at+ Y at Y . (4
L, the runtime laxity value off;,, is adjusted for TeeGy T1€G; TueGy

the execution time of the task that was in execution at L, the runtime laxity value of;, cannot be less than

Iminoke PY lin€ 2 of Algorithm 1;} is readjusted forthe g ¢, becausd; passed line 2 of Algorithm 2 and
execution time of the Fa?nks 67 by lines 3—-7. After 7. \yas the last task scheduled befaggswith deadline
execution of the tasks 67 or G, itis adjusted again afters,;c; Since (4) has the same form as (2), this is also

by lines 5_9—13 of Algorithm 1. _ a contradiction to (1) and the feasibility condition of a
And sinceT; is the last task that is scheduled before non-preemptive task set [1].0

tmiss With deadline aftery;ss, the last adjustment df,,
was done atscheg As T; passed the feasibility check 4. Preliminary experiments
in Algorithm 2 with ¢; less thanL,,, L,, > 0, atfmiss |

Hence, atmiss We conducted some preliminary experiments to fig-

Lip = Laxity,, — (tmaurog— frnoge) ure out the level gt which a scheduler can support task
preference at runtime using the proposed algorithm. We
- Z Ck — Z € — Z cu 2 0. 3 evaluated the algorithm on two real-life task sets, a com-
e TGy T,eGY puter numerical control (CNC) task set [4] and a generic
aviation platform (GAP) task set [5], assuming the rel-
ative deadline of each task is identical to its period. To
generate a runtime task preference, we made some task
groups (of 2, 3, 5 and 10) out of task set so that each
task belongs to only one group. And we assumed that

From (2) and (3), and since we have a deadline miss
at rmiss, We can write the following inequality

Imiss — Iminvoke < @ty o Imiss

<ot 2”: Imiss — tminvoke | . the system prefers to schedule a task that is in the same
= tm . J group with previously completed one. We counted the
=1 j#m Pj)
I=5 number of change of task group in scheduled task se-
+ Laxity,,,. qguence and used the counter value as a performance

metric of supporting a runtime task preference.

Fig. 2 shows the number of task group changes, nor-
malized to that of EDF scheduling, when CNC and GAP
e Case 2: T, was invoked aftersched(fsched<< fimjnyoke) - task sets are scheduled using the proposed algorithm.

There could be noidle time im] ., sched because The level of supporting task preference in scheduling
the presented scheduling algorithm is work conserving. increases with small numbers of task groups. This is
Therefore, the processor demandag, . fmissl mak- because the possibility for a preferred task to exist in
ing deadline miss atjss can be presented as below invoked task list, at scheduling time, increases with a

This is a contradiction to (1) and the feasibility con-
dition of a non-preemptive task set [1].

1
09
08
07
06
05
04
03
02
01

0

2group 3group Bgroup 10group

[ECNC mGAP |

Fig. 2. Normalized number of task group changes at different number of task groups.

S Kimet al. / Information Processing Letters 97 (2006) 83-87 87

small number of task groups. Though the supporting References
level differs with system environments, it can be eas-
||y seen that the proposed a|gorithm can be useful for [1] K. Jeffay, D.F. Stanat, C.U. Martel, On non-preemptive scheduling

4 : _ of periodic and sporadic tasks, in: Proc. of the Real-Time Systems
real-time schedulers to support a runtime task prefer: Symposium, 1991, pp. 129-139.

ence. [2] R. Jejurikar, R. Gupta, Energy aware non-preemptive scheduling
for hard real-time systems, in: Proc. of 17th of Euromicro Confer-
. ence on Real-Time Systems, 2005, pp. 21-30.
5. Conclusion [3] I. Kadayif, M. Kandemir, I. Kolcu, G. Chen, Locality conscious
process scheduling in embedded systems, in: Proc. 10th Internat.
. . Symp. on Hardware/Software Codesign, 2002, pp. 193-198.
In this paper we have proposed an algorithm for [4] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, H. Shin, Visual
a scheduler to check, at runtime, the feasibility of @ = assessment of a real-time system design: case study on a CNC
task set before Scheduﬁng a task in a non-EDF man- controller, in: Proc. of the Real-Time Systems Symposium, 1996,
ner. And we have proved that a non-EDF scheduling __ PP: 300-310. - _ o
. . . [5] D.C. Locke, D. Vogel, T. Mesler, Building a predictable avionics
using the propOSEd algonthm guarantees the tlmely ex- platform in Ada: a case study, in: Proc. of the Real-Time Systems
ecution of a feasible task set. The proposed algorithm symposium, 1991, pp. 181-189.
can be useful for real-time systems to support a run- [6] Y.-H. Lu, L. Benini, G. De Micheli, Low-power task scheduling
time task preference. It is also valid for systems run- for multiple devices, in: Proc. of International Workshop on Hard-

: . . . ware/Software Codesign, 2000, pp. 39-43.
hing a sporadic task set and directly applicable to recent [7] V. Swaminathan, K. Chakrabarty, Pruning-based, energy-optimal,

works for energy saving in non-preemptive real-time deterministic 1/0O device scheduling for hard real-time systems,
systems. ACM Trans. Embedded Comput. Syst. 4 (1) (2005) 141-167.

