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Abstract—As the burst buffer is being widely deployed in the
HPC (High-Performance Computing) systems, the distributed
file system layer is taking the role of campaign storage where
scalability and cost-effectiveness are of paramount importance.
However, the centralized metadata management in the distributed
file system layer poses a scalability challenge. The object storage
system has emerged as an alternative thanks to its simplified
interface and scale-out architecture. Despite this, the HPC
communities are used to working with the POSIX interface to
organize their files into a global directory hierarchy and control
access through access control lists.

In this paper, we present ArkFS, a near-POSIX compliant
and scalable distributed file system implemented on top of the
object storage system. ArkFS achieves high scalability without
any centralized metadata servers. Instead, ArkFS lets each
client manage a portion of the file system metadata on a per-
directory basis. ArkFS supports any distributed object storage
system such as Ceph RADOS or S3-compatible system with an
appropriate API translation module. Our experimental results
indicate that ArkFS shows significant performance improvement
under metadata-intensive workloads while showing near-linear
scalability. We also demonstrate that ArkFS is suitable for
handling the bursty I/O traffic coming from the burst buffer
layer to archive cold data.

Index Terms—High-performance computing, Distributed file
system, Object storage

I. INTRODUCTION

Traditionally, various distributed file systems have been

developed to offer high bandwidth/IOPS and large capacity for

the High-Performance Computing (HPC) environment. How-

ever, the burst buffer equipped with fast storage devices such as

Solid-State Drives (SSDs), is quickly replacing distributed file

systems due to its higher performance. As the burst buffer is

being widely deployed in the HPC systems, the distributed file

system layer is shifting its role as capacity tier or campaign
storage [19] where scalability and cost-effectiveness are of
paramount importance.

In general, the traditional distributed file systems are based

on the architecture in which several storage nodes are grouped

together to form a storage cluster and a single centralized

metadata server manages file system metadata. This central-

ized metadata server architecture can guarantee file system

consistency easily, but it severely hampers scalability. There-

fore, recent distributed file systems aggregate metadata servers

to construct a metadata server cluster, and distribute global

namespace hierarchy across a set of metadata servers either

statically or dynamically to achieve highly scalable metadata

management performance [21], [35], [38]. However, these dis-

tributed file systems with dedicated metadata servers are still

not scalable, complex, and also require constant maintenance.

This scalability issue is becoming more and more challenging

as the metadata throughput is critical for large-scale HPC

environment.

For storing exascale data and its associated metadata in

a scalable and efficient manner, distributed object storage

systems such as Amazon S3 [3] and Ceph Object Storage [17],

[38] have emerged as an alternative to distributed file systems.

Distributed object storage systems store data in a key-value

form and guarantee high durability and reliability by means of

replication and erasure coding mechanisms. In addition, unlike

the hierarchical namespace of a file system, the flat namespace

used in the object storage allows users to easily scale out the

overall performance and capacity. Such high reliability, cost-

effectiveness, and scalability open up a new opportunity where

scalable object storage systems can be utilized for the HPC

storage system.

Object storage systems use REST (Representational State

Transfer)-based operations such as GET, PUT, and DELETE.
These simple operations work great for applications that are

newly written to use this interface for a specific object storage

system. However, legacy applications cannot be run directly on

the object storage because they are written using the POSIX

interface. More specifically, many HPC applications rely on

the global directory hierarchy where the accesses to files and

directories are controlled via access control lists [26]. For this

reason, the HPC community still prefers distributed file sys-

tems that support the POSIX interface or its extensions [34],

[39].

In this paper, we introduce ArkFS, a near-POSIX, scalable

distributed file system implemented on top of the object

storage system with client-side metadata service. ArkFS is

designed for an environment where data needs to be quickly

transferred to and from the burst buffer layer for archiving

purposes by a small number of administrator processes in

the background, rather than an environment that is regularly

accessed by general users. Considering this controlled envi-

ronment, we propose an architecture that can quickly serve

metadata and data operations between the burst buffer and the
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underlying object storage system through the POSIX interface.

To better support the aforementioned archiving role under the

controlled environment, ArkFS has the following three design

goals:

• Support for various object storage backends. ArkFS
provides a file system interface on top of any distributed

object storage system by simply registering their REST

APIs. ArkFS represents both file system metadata and

data as objects and performs translation between POSIX

APIs and REST APIs.

• High scalability with client-driven metadata service.
ArkFS supports parallel metadata operations on a per-

directory basis with a client-driven metadata service. In

ArkFS, clients actively participate in file system metadata

management for individual directories without the cen-

tralized metadata server. This enables ArkFS to achieve

highly scalable metadata performance.

• Near-POSIX compatibility. ArkFS covers most of the
standards specified by POSIX. These include POSIX file

system APIs, a global directory hierarchy with access

control lists and POSIX consistency semantics on a

shared environment.

To demonstrate the usefulness of ArkFS under the heavy

I/O traffic coming from the burst buffer, we perform several

experiments and compare their results with those obtained

from other file systems. Our evaluations show that ArkFS is

superior to MarFS and it can achieve up to 24.86x higher

throughput than CephFS under metadata-intensive workloads.

Also, ArkFS achieves better scalability in metadata manage-

ment than other file systems. Moreover, ArkFS outperforms

S3-based file systems in terms of the READ/WRITE bandwidth
during large file I/Os and demonstrates competitive perfor-

mance compared to CephFS. Using the realistic scenario with

the tar tool, we also show that ArkFS can effectively support
the archiving role under the controlled environment.

The rest of the paper is organized as follows. We present our

motivation in Section II. Section III discusses the design and

the fault tolerance of ArkFS, respectively. Section IV shows

the experimental results and Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

A. Distributed File System Architectures

Distributed file system (DFS) provides a hierarchical names-

pace of files and directories upon physical machines that are

loosely-coupled by a network. Most of the commonly used

DFSs are composed of a set of storage nodes for storing

data and a dedicated server for metadata management [22],

[24], [35]. However, the DFS architecture with a centralized

metadata server leads to a scalability problem because all of

the clients’ requests are directed to this single component.

Also, a single metadata server degrades the availability of

the file system because it becomes a SPOF (Single Point of

Failure). Thus, state-of-the-art DFSs usually deploy multiple

metadata servers and construct a metadata server cluster with

its own metadata load balancing policy [29], [35], [38].

To address metadata-intensive workloads, recent research

have suggested middleware solutions that exploit client re-

sources to manage metadata, in a layer between clients and

distributed file systems [28], [30], [40], [41]. They allow

each application to manage a subset of file system metadata

in a private namespace during its execution. As there is

no need to access metadata servers frequently to perform

metadata operations, this approach exhibits higher throughput

in metadata-intensive or checkpointing workloads.

B. File Systems over Object Storage

Given that the burst buffer layer is responsible for providing

fast I/O in HPC systems, scalability and cost-effectiveness

become main concerns of the distributed file system layer.

For this reason, object storage, known for its high scalability

and reliability, emerges as a viable alternative to DFS as

campaign storage. Distributed object storage, such as Ceph

RADOS [38], Amazon S3 [3], OpenStack Swift [17], and Intel

DAOS [25], are convenient to use with their pre-defined REST

APIs. However, the HPC community often prefers to use the

POSIX file system interface because it provides many useful

features such as directory hierarchy, access control, symbolic

links, etc.

Ceph provides the file system interface through CephFS

that works on top of a reliable object storage layer called

RADOS [38]. There are also Amazon S3-based file systems

such as S3FS [13] and goofys [6]. These file systems work

on top of object storage and convert POSIX APIs from legacy

applications into object storage’s REST APIs. Therefore, ex-

isting applications can utilize the benefits of object storage

without any application-level change.

C. Motivation

Despite the numerous file systems proposed to leverage

the advantages of object storage, they are not well-suited

for the controlled environment where large volumes of data

are moved to and from the burst buffer layer by daemons or

administrators. We have identified the two most challenging

issues when the HPC community wants to use the object

storage for their cold storage tier or campaign storage.

Challenge 1) Supporting the POSIX-compliant Interface

POSIX defines the Application Programming Interfaces

(APIs) such as open(), read(), write(), etc., and their
consistency semantics for the compatibility across different

file systems [9]. POSIX consistency semantics specifies what

is and is not guaranteed to happen when a specific API call is

made. It contains a level of consistency for shared variables

and atomicity of file system operations.

The HPC community heavily depends on the support of

POSIX API. HPC users are accustomed to the hierarchy

of directories and files where they can organize their data

according to projects and dates, and control the accesses using

per-directory or per-file access control lists (ACLs). Also,
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many legacy scripts and archiving/backup software work on

the POSIX APIs.

However, supporting the full POSIX APIs over the object

storage is never easy, because the object storage merely

supports much simplified REST APIs such as GET, PUT,
DELETE, etc. This is why well-known cloud object storage
file systems such as S3FS [13], goofys [6], SVFS [15] and

SwiftFS [14] provide only a limited form of POSIX APIs on

top of the public object storage system. For example, S3FS

is just a FUSE [33]-based wrapper layer over the Amazon S3

cloud storage that allows to access objects using the POSIX

APIs. In S3FS, each S3 bucket can be mounted as a local

file system. As each object is mapped to a file in S3FS,

random writes or appends to files result in rewriting of the

entire object. Because the object’s key is treated as a full

pathname, renaming of a directory leads to a situation where

all the files under the directory are rewritten. In addition,

permission check is not done rigorously and no coordination is

performed between multiple clients mounting the same bucket.

As another example, Intel DAOS [25] also provides a file

system interface upon their object storage pool similar to

S3FS. DAOS file system allows the DAOS storage engine to

be accessed as a hierarchical POSIX namespace, but it does

not support POSIX ACLs and related system calls that can

change the ownership of a file.

On the other hand, recent studies proposed the middleware
file systems which provide a file system interface between

applications and a traditional DFS while preserving the latest

metadata in the applications’ namespaces. For instance, In-

dexFS [30] and BatchFS [40] let applications work in their

private namespaces, and then publish modifications later as a

batch job. However, they require their own dedicated metadata

servers to merge batched updates and they can ensure only a

relaxed consistency because one application cannot recognize

the latest modifications in the other application’s namespace

until they are committed.

As an extension of the above file systems, DeltaFS [41]

is proposed to eliminate the dedicated metadata server and

allow applications to operate on a private namespace without

any synchronization. However, DeltaFS does not provide a

global namespace to the applications, so it can be used under

limited workloads only. In contrast, Pacon [28] reemphasizes

the importance of the global namespace for data sharing and

file system manageability. However, it still does not fully

guarantee the POSIX consistency semantics. Another rele-

vant work is the object-centric metadata management system

known as SoMeta [32], which operates between applications

and object storage and presents similar design challenges

as our work. Nevertheless, SoMeta does not comply with

the POSIX interface as it organizes metadata using a flat

namespace structure.

To summarize, all the middleware file systems fail to

provide the global namespace with the full support for

POSIX consistency semantics. Also, since these file systems

are implemented in the form of a user-level library, the users

have to rewrite their applications using the specific APIs

Fig. 1: Scalability problem of a dedicated metadata server.
Massive file creations are performed while varying the number

of clients up to 512. The dotted line indicates the ideal, linearly

scalable performance.

provided by each file system. One of the design goals of

ArkFS is to support a near-POSIX1 compatibility (including

both APIs and the consistency semantic) on top of the object

storage system. To achieve that, we came to the conclusion

that we need to keep not only the file data but also the file

metadata, including inodes and directory entries, in the form

of objects. These metadata should be represented as key-value

data as well and stored in the object storage similar to the

ordinary file data. This is where the next challenge comes in.

If we have to manage all the metadata atomically, we may

also need centralized metadata server(s) as in the traditional

DFSs.

Challenge 2) Scalability of Metadata Management

In the traditional DFSs, when a client tries to access the

metadata of a specific file, it issues a metadata operation to the

metadata server (MDS) and the MDS performs the operation

atomically on behalf of the client. As we mentioned before,

this centralized MDS architecture has a critical drawback in

terms of scalability and availability. To achieve scalable meta-

data performance, several DFSs have proposed the partitioning

of the file system hierarchy among a group of MDSs [36], [38].

Despite such attempts, the users are still having trouble with

reaching the ideal performance due to round-trip overheads,

lock contentions in the MDSs, and so on.

To estimate the performance of a single MDS in the con-

trolled environment, we have performed a metadata-intensive

benchmark on CephFS where each client repeatedly creates

empty files in its own directory (the detailed experimental

setup is described in Section IV). Figure 1 shows that the

aggregated throughput does not scale well when the number

of clients varies from 1 to 512. In particular, we notice that

the scalability of a dedicated metadata server is far from linear

scalability and the throughput collapses as the number of

clients is increased beyond 4.

1ArkFS does not support the atomicity of I/O operation that cross object
boundaries. For example, if there are concurrent writes across two objects, the
writes may be applied to each object in a different order. We note that this is
also the case for CephFS. Nevertheless, as our target workload is the archiving
workload which involves very few writes to the same file, we believe this will
not be a significant problem.
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ArkFS aims at solving this metadata scalability problem

using the characteristics of the target environment where a

large amount of data is moved between the burst buffer

layer and ArkFS. Because ArkFS acts as a cold storage tier,

data movement between the burst buffer layer and ArkFS is

usually initiated by administrators or background daemons.

In this case, we can schedule the data movement in a way

that minimizes metadata conflicts. More specifically, ArkFS

delegates the metadata management of a directory to the

client that is accessing the directory without deploying a

dedicated metadata server. Hence, the performance of ArkFS

is maximized when the data movement jobs work on non-

overlapping directories. In the same scenario shown in Fig-

ure 1, each client will create files locally and the generated

metadata is flushed to the underlying object storage system

directly without any communication with other clients during

file system operations.

III. ARKFS ARCHITECTURE

Fig. 2: The internal design of ArkFS.

A. Overall Architecture of ArkFS

We propose ArkFS which offers a near-POSIX interface

with a client-driven metadata service on top of the object

storage. ArkFS is designed to perform archiving jobs well in

the controlled environment. To address the scalability problem

in metadata handling which many existing DFSs suffer from,

ArkFS takes advantage of the fact that most of the archiving

jobs in the controlled environment are executed independently

on different directories. Hence, ArkFS actively involves each

client in the metadata management and holds them responsible

for updating the metadata of the directory they are currently

working on. However, even if we assume the controlled

environment, it is quite possible for clients to work in the

same directory in which we need coordination among them.

Thus, ArkFS uses a lease mechanism [23] to delegate a right

for managing and modifying specific metadata during the pre-

defined period under the control of the lease manager.
Figure 2 shows the internal architecture of ArkFS and its

interactions with the lease manager and other clients. Let

us suppose an application (e.g., an administrator process in

the background) calls a CREATE operation. First, the ArkFS
client tries to acquire a lease of the parent directory which

contains the target file from the lease manager. When the

client succeeds in acquiring the lease, it constructs a data

structure called a metadata table. This metadata table is built
on a per-directory basis and it contains metadata related to

that particular directory. The metadata table allows the client

to perform metadata operations in the local memory without

any communication with remote components. Then, the client

commits modifications including a newly created inode and a

directory entry (dentry, for short) in the per-directory journal,
which is in charge of storing all metadata modifications made

in the corresponding directory. Finally, all POSIX block I/Os

passed from applications or ArkFS internal components are

translated to the REST object I/Os through our POSIX-REST

Translator (PRT) module. We explain each ArkFS component
in more detail in the following subsections.

B. Lease Management

ArkFS adopts a directory-based lease mechanism to manage

rights to modify the file system metadata. ArkFS deploys

a lease manager in the cluster and it issues a lease with a

period of 5 seconds by default to a client before the client

constructs the per-directory metadata table. If an application on

a client attempts to access a directory, the client makes a lease

request which contains network information of the client itself

including IP address, port number, and the inode number of the

requested directory. If nobody has the lease, the lease manager

records the <ip addr, port> pair with the inode number
to redirect further accesses from other clients who want to get

a lease for the directory.

The lease mechanism works in a first-come, first-served

manner; if there are multiple lease requests, the lease is issued

to the first requester. We call the client who succeeds in

acquiring the lease a directory leader of that directory. Only
the directory leader is allowed to modify metadata related

to the corresponding directory and to manage I/Os for child

files’ data in the directory during the lease period. Note that

each client may become the leader of multiple directories. In

our target environment, working directories of multiple clients

rarely overlap. However, we still need to coordinate accesses

when multiple clients attempt to obtain a lease for the same

directory. In this case, the rest of the clients who failed to get

a lease should send their requests to the directory leader so

that the directory leader can perform the requested operations

on behalf of the other clients.

Figure 3(a) shows an example file system hierarchy where

the dotted lines indicate the lease boundaries. Figure 3(b)

illustrates the lease management process when the client C2
tries to get a lease which is already held by another client

C1. Let us assume the client C1 already has the leases for the
directories / (root directory) and /home. Now consider the
situation where the client C2 wants to create a text file named
baz.txt in /home; 1© First, C2 sends a lease request for
/ to the lease manager. 2© As / is being managed by C1, the
manager rejects the request and passes the IP address of C1
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Fig. 3: An example of Client-driven Metadata Service (a) the file system hierarchy where the number in parenthesis indicates
the inode number. (b) an example scenario when C2 tries to obtain a lease currently held by C1. (c) a set of C1’s metatables;
the first two are local metatables and the last points to a remote metatable in C2.

to C2 instead. 3© Now C2 sends a lookup request for / to C1.
4© C1 returns the result of the lookup request to C2 and C2
repeat it to access /home. 5© Finally, C2 sends a CREATE
operation to C1 and C1 performs the operation on behalf of
C2.
Whenever a lease is acquired, the leader has to load the

metadata from object storage to construct the per-directory

metadata table. Even if the client was the leader of the

directory previously, it has to reload the metadata because

the metadata in memory might be out-of-date. However, if

the lease is re-acquired by the same leader as soon as it is

expired, the leader need not reload the metadata as the previous

metadata table is guaranteed to be up-to-date. To optimize such

cases, the lease manager keeps information of the previous

leader for each directory and supports a lease extension. If a

leader succeeds in extending a lease by acquiring it again, the

leader can continue to work over the corresponding directory.

As in our target scenario, less directory sharing removes a

burden of the metadata flush because there would be few lease

conflicts and all the metadata updates may already be reflected

when the lease owner changes.

In the current implementation, ArkFS uses a single lease

manager to control leases among clients. Acquiring/extending

a lease is a very lightweight operation and we did not notice

any performance degradation due to the use of a single lease

manager during our experiments. Even when clients compete

for access to shared directories, the role of the lease manager

remains relatively unchanged, with the exception of needing

to provide the IP of the leader to non-leader clients. However,

a single lease manager may become a performance bottleneck

in certain situations and it would be beneficial to implement

distributed coordination using a cluster of lease managers. We

leave this as future work.

C. Per-directory Metadata Table

ArkFS does not deploy a centralized metadata server, but

clients voluntarily perform metadata management. This client-

driven metadata service is made possible due to the per-

directory metadata table (metatable, for short). When a client
accesses a directory, the client tries to get a lease of that

directory. If the client succeeds in getting the lease, it now

has the right to build the metatable. First, the client reads the

inode of the directory and checks whether the client has a right

to access the directory. If not, the client releases the lease and

returns a permission error. If the access permission is granted,

the client loads several metadata from object storage (such as

dentries and inodes of the child files, etc.) and constructs the

metatable. After pulling all the metadata from object storage,

the client becomes a directory leader of the particular directory

who should ensure the integrity of the metadata during the

lease period. Each client might be a leader of multiple working

directories and the associated metadata are placed in local

memory in the form of metatables. Consequently, all the

metadata operations including the path-name resolution and

permission checking can be done locally because it does not

need to access the metadata server as is done in other DFSs.
Figure 3 demonstrates how ArkFS’s client-driven metadata

service is performed by two clients C1 and C2. C1 has already
succeeded in acquiring leases of the root directory and /home.
The corresponding metatables are depicted in Figure 3(c). We

can see that there are two metatables for the directories /
and /home, and each metatable has the complete information
consisting of the directory inode, dentries, and the inodes of its

child files. If C1 wants to perform some metadata operations
for the file /home/foo.txt, C1 can perform them as local
operations without issuing any remote requests. However, it is

possible that a single client may not be the leader of all the

working directories because some other clients may already

have acquired leases for certain directories. Since the leader of

one directory is responsible for all of the metadata operations

on that directory, clients who are not a leader should send

requests to the leader to perform any file system operation, as

mentioned in III-B.
In Figure 3(c), we can see that the metatable entry whose
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key (20) is the inode number of /home/doc contains the
network information of C2. We call it a remote metatable
and it is used as a pointer to the remote leader. If C1 tries
to perform metadata operations on /home/doc/bar.txt,
C1 should send requests to C2, the leader of the directory
/home/doc, through the RPCs (Remote Procedure Calls)
with the information in the remote table. If C1 does not have a
permission to access /home/doc/bar.txt, C2 will return
a permission error, otherwise C2 will perform the requested
operation on behalf of C1. As a result, this client-driven
metadata service may partition and distribute the file system

hierarchy according to each client’s working directory set

and ArkFS delegates the responsibility of ensuring POSIX

consistency semantics to those clients.

In our target environment where clients rarely share their

working directories, the client-driven metadata service will

achieve high performance while guaranteeing strong metadata

consistency since most of the operations can be performed

locally with a metatable. However, there is an issue that may

harm the scalability of ArkFS even when only a few clients

exist. During OPEN, ArkFS should check the permission of
each directory along the path from the root to the target

directory in order to meet the POSIX consistency and access

control model. In this case, it could be a great burden for

the client who is the leader of the root directory because it

would receive massive permission checking requests for the

root directory. Not only the leader of the root directory, but

the leaders of all the directories near the root have the same

problem.

To alleviate this near-root hotspot problem, ArkFS offers
a special permission caching mode which relaxes the POSIX

consistency semantics of access control lists. This mode can

be selected at the user’s discretion. In the permission caching

mode, when a client first accesses the remote directory, the

permission information of that directory is cached until its

lease expires. Hence, the lease expiration becomes a synchro-

nization point and the modification of the directory permission

during the lease period would be eventually visible to other

clients after that point. With the permission caching, clients

can handle the path-name resolution by themselves and the

leaders of near-root directories can concentrate on their jobs.

D. Data Object Caching

ArkFS has its own user-level data object cache that basically

serves the same functionality as the page cache in the kernel.

The number of cache entries and the size of each entry are

configurable parameters. By default, the cache entry size is

set to 2MB. This large cache entry size might cause internal

fragmentation that is critical to cache performance, but it

would not be a problem considering that our target scenario

is data archiving whose I/O patterns are mostly sequential.

Internally, the radix tree is used to index cached data objects.

Due to the large cache entry size, it is very likely to have

a shallow depth allowing for faster lookups. ArkFS’s object

cache works in a write-back manner and also adopts a read-

ahead mechanism to improve the performance of sequential

read workload. Each file has a read-ahead window and the

file data belonging to the window is asynchronously read in

advance. If the data for the file is repeatedly read in sequence,

the window size will be increased up to the predefined

maximum read-ahead size (8MB by default that is the same as

in CephFS). To optimize READ operations, the window size
is set to the maximum size immediately if READ starts from
the very beginning of the file, expecting that the file will be

read sequentially.

Although file sharing is not common under the controlled

environment, ArkFS should avoid reading stale data from the

client’s data object cache. For this, ArkFS uses a read and write

lease mechanism [16] that allows multiple shared read or an

exclusive write of cache entries for a limited period. Unlike the

lease of metatable, read/write leases are issued by the leader

of the parent directory. In other words, each leader has a duty

of child files’ read/write lease management. Initially, all the

clients are issued read leases for the target file from the leader

of the parent directory when OPEN or CREATE is called.
Because READ can be performed concurrently by multiple
clients, each client can cache data objects with the read lease

even though they are not the leader. When WRITE operation
is called for the first time, however, the read lease may be

upgraded to the write lease if there are no other clients who

have read/write leases at that time, and the client can perform

WRITE upon data object cache. If there are other clients who
have read leases, the leader broadcasts cache flushing requests

to prevent stale cache entries on other clients’ object cache

and lets the clients perform I/O operations directly on object

storage. This read/write lease mechanism works effectively

in the situation where file sharing is less common and it is

suitable for the archiving scenario.

E. Crash Consistency with Per-directory Journaling

Because all the clients engage in metadata management and

they are vulnerable to sudden failure, crash consistency is one

of our important considerations to guarantee a consistent file

system state. To provide a crash consistency, ArkFS leverages

the journaling approach that is being used in many file systems

and DBMSes. Generally, most journaling file systems keep

a single journal area. However, previous research indicates

that the single journal area could be a performance bottleneck

due to serialized journal writings. To avoid such a bottleneck,

ArkFS has one journal for each directory instead of one global

journal area. We call it per-directory journaling.
The per-directory journal is created when a leader is build-

ing the metatable and all journal entries of the directory and

its child files are committed to the per-directory journal. For

example, if the modification time of a child file is renewed,

the updated file inode will be written in the journal of the

parent directory. Due to the per-directory journal, journaling

operations can be run in parallel if the jobs are executed

on different directories. In order to improve the journaling

performance further, ArkFS supports compound transactions

with multiple commit and checkpoint threads, buffering jour-

nal entries in an in-memory transaction for 1 second. When the
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file system metadata is modified, ArkFS inserts the changes

into the running transaction for the directory. Commit threads

periodically turn the running transactions into committing

transactions and write them to the journals. Once those trans-

actions are journaled, the corresponding checkpoint threads

are woken up and checkpoint the transactions to the original

objects. Finally, the checkpoint threads invalidate the formerly-

written transactions in the journal. Per-directory journals in

one client are statically mapped to the corresponding commit

and checkpoint threads depending on the directory inode

numbers.

The obvious advantage of the per-directory journaling is

that multiple journals allow parallel commits and therefore

ArkFS can cope with bursty archiving workloads. However,

operations that involve two directories should commit a journal

entry in two different journals atomically. For example, during

a RENAME operation where the source and destination paths
are different, journal entries will be committed to the journals

of both the source and destination directories. ArkFS adopts

two-phase commit protocol [18] to address atomic commit

across journals.

Only the leader of a directory can access its journal, so it

is crucial that the journal should be treated carefully when the

leader is changed. The leader of a directory should do its best

to synchronize all the updates in memory before the lease is

expired. If there is not enough time to do so, the leader tries

to extend the lease. If the leader fails to extend the lease and

the lease is eventually expired, the lease manager coordinates

synchronizing the updates between the previous leader and

the new leader. After that, the new leader checks whether the

journal has any valid transactions. If there are valid entries

remaining in the journal, it means there was a crash or a power

loss and the new leader should do a recovery to keep the file

system consistent. We examine two possible failure scenarios

and their recovery processes in ArkFS.

1) Client Failure: If the new leader of a directory finds
valid transactions in the per-directory journal, it means the

predecessor has crashed. In this case, the new leader should re-

cover the directory and its child files by scanning transactions

in the journal and bringing them up-to-date. During recovery,

the lease manager prevents other clients from acquiring the

lease of the crashed directory and makes them wait for

recovery to complete. Also, the manager waits at least the

lease period which is pre-defined by the system to ensure that

read/write leases issued by previous leader expires. At the end

of the recovery, the manager renews the lease on the leader

who performed the recovery. During this recovery process, the

other clients who are not related to the crashed directory can

still perform their jobs without any need to stop and restart.

2) Lease Manager Failure: If the lease manager has
crashed, the system can be restored simply by restarting the

lease manager. Once restarted, the lease manager waits for

a pre-defined lease period to avoid the situation where two

clients have the leases for the same directory simultaneously.

During the manager shutdown, any client who has the lease

can continue its work for its own directory until the lease is

expired. However, the client must wait for the lease manager

to be launched again to acquire a new lease of the directory

which has not been accessed recently.

F. PRT Modules

The PRT (POSIX-REST Translator) module is the layer

that is responsible for the translation from POSIX block

I/O operations issued by applications or ArkFS components

to REST object operations. ArkFS can support any kind of

object storage backend by registering the corresponding REST

APIs in the PRT module. The PRT module also defines

specifications for how file system-related information is stored

in the key-value pair. ArkFS uses 128-bit UUID (Universally

Unique Identifier) for its inode number and constructs the key

of each object by concatenating pre-defined prefix and the

inode number. A pre-defined prefix for metadata would be

one of i(INODE), e(DENTRY) or j(JOURNAL). The PRT
module divides the file data into multiple objects if the file

size exceeds the maximum object size defined by the object

storage. To store file data as an object, its key is constructed

by combining the prefix d(DATA) and the index value of the
data.

IV. EVALUATION

A. Experimental Setup

TABLE I

System configurations of public cloud cluster node

Instance c5a.8xlarge c5n.9xlarge

vCPU 32 36

Memory DDR4 64GB DDR4 96GB

Network 10Gbits 50Gbits

Disk AWS EBS 32GB AWS EBS 128GB x 4

Operating System Ubuntu 20.04.3 LTS

Kernel Version 5.15.0-1020-aws

To demonstrate the performance and capabilities of ArkFS

for the HPC storage system in the controlled environment,

we build a cluster with AWS EC2 instances [2]. We use

c5n.9xlarge for storage nodes. For client nodes, we use
c5a.8xlarge nodes for scalability test and c5n.9xlarge
nodes for the other experiments. The cluster consists of 16

storage nodes and the number of client nodes varies from 1 to

64. Table I shows the detailed configurations of AWS instances

we use.

We choose four file systems to compare with ArkFS:

CephFS [38], MarFS [26], S3FS [13] and goofys [6]. We

construct Ceph RADOS storage v16.2.10 on 64 OSDs and de-

ploy CephFS with two different mount options: FUSE mount

(CephFS-F) and kernel mount (CephFS-K). The number of

active MDSs has been varied depending on the experiment, but

unless otherwise explicitly stated, we use 1 MDS for CephFS.

We also deploy MarFS v1.12 on the same AWS cluster as

Ceph RADOS, which is composed of two dedicated metadata

nodes based on IBM SpectrumScale [8] v5.1.5 and 14 data
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nodes with ZFS [37] v2.1.4. According to the existing stud-

ies [19], [20], it is recommended to use the pftool which is a
parallel metadata/data operation utility using MPI and MPI-IO.

However, the parallel copy or parallel list functions provided

by the pftool were not directly compatible with the benchmark
tools that we use and its open-source version [10] did not

work in our environment, so we use interactive interface [20]
that uses the FUSE mount of MarFS to measure its metadata

operation performance. Two S3-based file systems, namely

S3FS (v1.91) and goofys (v0.24.0), are used to compare the

file I/O performance on top of the S3 object storage2.

We use the FUSE framework [33] v3.9.0 to implement

ArkFS and the gRPC framework [7] v1.46.3 for the network

communication among clients. For all experiments, ArkFS

is deployed on the same object storage as its competitors.

For example, ArkFS is deployed on RADOS and S3 for the

comparisons with CephFS and S3FS, respectively. The lease

manager is deployed on one of the client nodes.

B. Micro-benchmarks

We conduct several micro-benchmarks to evaluate the over-

all performance of ArkFS. First, we use the mdtest bench-
mark [11] to measure the throughput of metadata operations.

We perform the mdtest using two configurations defined by
IO500 [27]: mdtest-easy and mdtest-hard.

mdtest-easy runs in three phases (CREATE, STAT, and
DELETE) and measures the performance of metadata opera-
tions with empty files. Therefore, mdtest-easy excludes
the effect of data I/O operations. In mdtest-easy, files are
generated only in the leaf node of the directory tree hierarchy,

and each process operates in its own leaf directory.

Unlike mdtest-easy, mdtest-hard operates in four
phases (WRITE, STAT, READ, and DELETE) which in-
clude small-sized data I/O operations. We use 3901-byte-

sized files for mdtest-hard that is the default value in
IO500. In addition to the creation of files in leaf directories,

the mdtest-hard benchmark also involves the distribution
of files across multiple directories. Furthermore, the client

processes of mdtest-hard conduct file operations on an
arbitrary directory, simulating the usage in a shared directory

environment.

Both mdtest-easy and mdtest-hard are performed
with 1 million files using 16 processes. We call fsync()
after each phase, causing all modifications to be flushed to

the underlying storage.

mdtest-easy. Figure 4 shows the throughput results for
three phases of mdtest-easy. Throughout all the phases,
ArkFS shows a significant performance improvement over

other file systems. The user-kernel context switching overhead

caused by FUSE and the network round-trip overhead between

2We did not compare ArkFS against DAOS [25] because DAOS is designed
and optimized for massively distributed systems with non-volatile memories.
Since the environment we are targeting in this paper is the cold storage tier
equipped with cheap and large-capacity storage devices such as hard disks,
the direct comparison between ArkFS and DAOS seems inappropriate.

Fig. 4: Throughput of mdtest-easy. Throughput of metadata
operations with empty files.

Fig. 5: Throughput of mdtest-hard. Throughput of metadata
operations with small-sized files.

clients and metadata servers prevent MarFS and CephFS-F

from achieving high throughput. CephFS-K does not have the

FUSE overhead because it is an in-kernel file system, so its

performance is better than that of MarFS or CephFS-F. Be-

sides, CephFS-K (16 MDSs) demonstrates at most 2.41x better

performance than CephFS-K (1 MDS). However, CephFS-K

still shows worse performance compared to ArkFS due to its

overhead of accessing metadata servers to process metadata

operations over the network.

On the contrary, ArkFS can handle metadata operations

in the local memory with the per-directory metatable and

metadata modifications are gathered in compound transactions

until they are committed. As a result, ArkFS shows much

higher throughput in the mdtest-easy benchmark.

mdtest-hard. Figure 5 compares the throughput of ArkFS
with CephFS-F, CephFS-K with two MDS setups and MarFS

in each phase of mdtest-hard.
In the WRITE phase, ArkFS achieves higher performance

than its competitors. Unlike the CREATE phase of mdtest-
easy, the WRITE phase of mdtest-hard involves 3901-
byte write operations following file creation, and is conducted

in a shared environment as each process of mdtest-hard
accesses an arbitrary directory. As a result, the performance

difference observed in this phase is somewhat reduced com-

pared to the mdtest-easy. Nevertheless, ArkFS shows
higher performance because the directory leaders, who have

the metadata they need in the per-directory metadata table, are

able to perform metadata operations locally without reaching

out to the remote metadata server and small file writes are

efficiently processed with the aid of the data object cache.

For the STAT phase, we can observe that the performance
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Fig. 6: Large File I/O Bandwidth. Comparison of the
WRITE/READ bandwidth of various file systems deployed on
RADOS (a) and S3 object storage (b).

gap between ArkFS and CephFS-K is smaller compared to

other phases. This is due to the FUSE’s inherent limitation; for

the LOOKUP operation, FUSE holds an exclusive kernel lock

until the operation is completed by the user-space FUSE dae-

mon. In ArkFS, this prevents clients from accessing metadata

concurrently even though they can be handled simultaneously.

Since the STAT phase of mdtest-hard incurs more lock
contentions than that of mdtest-easy, the performance
improvement of ArkFS decreases compared to CephFS-K.

In spite of that, ArkFS still shows better performance than

others because ArkFS eliminates the network overhead when

processing metadata operations.

In the READ phase, ArkFS shows at most 4.65x higher
performance than other file systems. Note that MarFS returns

errors when we perform this phase in our environment.

Unlike DELETE phase of mdtest-easy which requires
only metadata removals, mdtest-hard needs to delete the
data generated during the WRITE phase. Despite this addi-
tional operations, ArkFS still shows better performance than

others. Overall, ArkFS significantly outperforms both CephFS

implementations and MarFS.

Unexpectedly, the results of mdtest-hard between

CephFS-K (1 MDS) and CephFS-K (16 MDSs) demonstrate

minimal performance differences, with the DELETE phase
even showing a substantial performance decline. We surmise

the overhead might come from the forwarded requests

which incur additional network round trip among multiple

MDSs and metadata migration caused by dynamic subtree

partitioning [38] between MDSs. These overheads in the MDS

cluster environment were addressed in recent studies [31],

[36]. There are some configurable parameters and features

(such as static directory pinning and Mantle [31] prototype)

in Ceph that could potentially mitigate these overheads.

However, optimizing the performance of the MDS cluster

is highly dependent on the deployment environment and

workloads, and it is beyond the scope of this paper.

fio. To demonstrate that ArkFS still shows good I/O perfor-
mance for large file I/O, we perform the fio benchmark [4].
We run fio with 32 processes and each process writes
and then reads a 32GB file using 128KB request size (total

1TB). At the end of the file writing, each fio process calls

Fig. 7: Scalability Test. Massive file creations are performed
while varying the number of clients. X-axis is the number of

clients and Y-axis is the normalized throughput in log scale.

fsync() to ensure that all dirty data is written to the object
storage and drops the cache entries of written files.

First, we compare the bandwidth of ArkFS with those of

CephFS-F and CephFS-K on top of the RADOS object storage

in Figure 6(a). We can see that three file systems demonstrate

similar WRITE bandwidth. CephFS utilizes the kernel page
cache in a write-back manner for dirty data and ArkFS also

uses its data cache in the same way, so the result shows little

differences in the WRITE performance.
In the case of READ, CephFS-K and ArkFS show almost the

same performance because ArkFS also performs up to 8MB

of read-ahead similar to CephFS, which is very effective for

sequential reads. However, CephFS-F uses 128KB as a default

max read-ahead size, so it shows lower READ bandwidth
compared to other file systems.

We now compare ArkFS with S3FS and goofys running on

top of AWS S3 in Figure 6(b). For brevity, we use ArkFS to

refer to ArkFS-ra8MB that has the default read-ahead size of

8MB. For the WRITE performance, ArkFS shows 5.95x higher
performance than S3FS. Because S3FS uses a disk as a data

cache, data modifications are temporarily aggregated on disk

and these files are written back to S3 when fsync() is called.
Thus, this slow disk cache causes a substantial performance

gap between ArkFS and S3FS. For such a reason, ArkFS

also demonstrates 3.59x higher READ performance than S3FS.
However, goofys shows much greater READ bandwidth than
ArkFS. This is because goofys is extremely optimized for

sequential reads; the max read-ahead size is set to 400MB

in goofys which is 50x larger than the 8MB size in ArkFS.

Thus, we repeat the same experiment by increasing the max

read-ahead size of ArkFS to 400MB and add its result under

the name of ArkFS-ra400MB in Figure 6(b). We can confirm

that ArkFS-ra400MB shows the READ bandwidth similar to
goofys.

The results demonstrate that ArkFS is capable of efficiently

handling large file migration from/to the burst buffer layer by

background administrator daemons, which is the intended use

case of our system.

C. Scalability Test

To assess the scalability of ArkFS when performing meta-

data operations, we measure the throughput of file creation
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TABLE II

Execution times of two archiving scenarios on each file system

CephFS-F CephFS-K ArkFS Speed-up

Archiving (sec) 2016.86 450.279 297.635 6.78x / 1.51x

Unarchiving (sec) 1791.239 837.353 475.93 3.76x / 1.76x

with the mdtest-easy benchmark while varying the number
of clients up to 512. When the number of clients exceeded the

the number of client nodes, the experiment has been conducted

by running two or more client processes equally on each node.

Note that each client process works on its own directory.

Figure 7 depicts the normalized throughput of ArkFS

(without and with permission caching mode) and CephFS-

K configured with 1 or 16 MDSs. In the case of CephFS-K

with 1 MDS, a massive amount of file creation requests are

directed to the single metadata server, which severely limits

the overall scalability. Interestingly, we observe only a limited

improvement when we increase the number of MDSs to 16

in CephFS-K. The CephFS-K (16 MDSs) just shows at most

3.24x improvement compared to the CephFS-K (1 MDS) for

more than 64 clients. As we mentioned in the previous section,

when used with multiple MDSs, CephFS attempts to dynam-

ically distribute request loads based on the popularity of the

metadata [38], but this results in additional communications

among servers and periodic transfers of metadata.

To examine the scalability of ArkFS. we test two types of

ArkFS: one without the permission cache mode (ArkFS-no-

pcache) and the other with the permission cache mode (ArkFS-

pcache). First, we can see that ArkFS-no-pcache demonstrates

a drastic performance degradation when the number of clients

is increased to 2. What makes the performance worse is the

way the FUSE driver checks the existence of a directory [33].

When an application process issues a metadata operation, the

FUSE driver sends multiple LOOKUP operations to the user-

level FUSE daemon along the target file’s pathname. For ex-

ample, if an application calls CREATE(/home/foo.txt),
it incurs three LOOKUP requests, (for /, home, and foo.txt)
and a single CREATE request to ArkFS, and ArkFS performs
path traversal on each request. These additional requests

cause many network communications to check the permission

information which would slow down the leaders of near-root

directories. This kind of FUSE behavior and near-root hotspot
problem harm the scalability of ArkFS, so ArkFS-no-pcache

shows a severe performance drop and less scalability as the

number of clients is increased.

As mentioned in section III-C, we adopt the permission

caching mode to alleviate this problem and we evaluate how

much it affects the scalability of ArkFS. In Figure 7, ArkFS-

pcache presents near-linear throughput scalability while the

number of clients is increased up to 512. The permission

caching mode of ArkFS helps reduce the burden of excessive

permission checking requests in the near-root directory leaders

by allowing each client to cache the permission information

of the parent directories during its lease period. In addition,

the per-directory metadata table and the per-directory journal

make the ArkFS client perform file creation and its journal

commit without any disruptions from other clients.

D. Archiving Workload

To demonstrate the usefulness of ArkFS for archiving

workloads, we construct two synthetic scenarios using tar [5]
which simulate the data migration between the burst buffer

and campaign storage. These scenarios were then executed on

both CephFS and ArkFS. The scenarios that we assume are

as follows:
1) Archiving: When the dataset has not been accessed for

a specified period of time, it is kept in the form of a tar file and

moved to campaign storage by the administrator daemon or

data lifecycle management tools which run in the background.

Next, the dataset is extracted from the tar file and categorized

by its date or its data type, etc.
2) Unarchiving: From the archived dataset in the campaign

storage, users retrieve the data that will be used soon in the

form of a tar file and move it back to the burst buffer.

We use the MS-COCO [12] image dataset which is com-

monly used for object detection and store it in the AWS Elastic

Block Store (EBS) [1] with a sequential bandwidth of 1GB/s.

The MS-COCO dataset has 41K images with sizes ranging

from tens to hundreds of KB and an aggregated size of 7GB.
We conduct the workload using 32 concurrent processes and

each process handles a single MS-COCO dataset (224GB in
total).

Table II illustrates the elapsed time of each scenario and

demonstrates how far ArkFS surpasses the performance of the

two mounted types of CephFS. In the table, Speed-up indicates
the performance improvement of ArkFS over CephFS-F and

CephFS-K. We can see that ArkFS presents 6.78x and 3.76x

faster execution time than CephFS-F in both workloads. In

addition, ArkFS demonstrates 1.51x and 1.76x faster exe-

cution time than CephFS-K. However, the result compared

to CephFS-K shows lower improvement than that of other

benchmarks. This is due to the limited bandwidth of AWS

EBS where the dataset READ/WRITE time from the external
storage takes up a nontrivial portion of the total elapsed time.

We expect that if we were to use higher-performance external

storage, the performance improvement of ArkFS would be

even more noticeable.

Nevertheless, the results indicate that ArkFS is capable of

effectively handling archiving workloads within the controlled

environment. While CephFS suffers from network round-trip

overheads, ArkFS can perform metadata operations locally
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because each client is likely to be a leader of the parent

directory of the image files. Furthermore, the per-directory

metadata management scheme in ArkFS aligns well with the

functionality of tar since this tool collects or extracts files
from/to a single directory at a time.

V. CONCLUSION

We present ArkFS which offers a near-POSIX compatibility

with a client-driven metadata service on top of the object

storage. ArkFS manages metadata on a per-directory basis

which allows clients to serve operations in parallel in the

controlled environment. ArkFS also guarantees the POSIX

consistency semantics among multiple clients by leveraging a

lease mechanism. Moreover, ArkFS can provide rich POSIX

features on any kind of distributed object storage with the

assistance of the PRT module that translates incoming POSIX

operations to REST operations. Our evaluation shows that

ArkFS can provide high performance metadata operations with

near-linear scalability and can effectively support the archiving

role under the controlled HPC environment.
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