
PROC : Process ReOrdering-based Coscheduling on Workstation Clusters

Jung-Lok Yu† Driss Azougagh† Jin-Soo Kim‡ Seung-Ryoul Maeng†

Division of Computer Science, Department of EECS,
Korea Advanced Institute of Science and Technology (KAIST), South Korea

†{jlyu,driss,maeng}@calab.kaist.ac.kr ‡jinsoo@cs.kaist.ac.kr

Abstract

Workstation clusters are emerging as a platform for the
execution of general-purpose workloads. To use clusters as
shared computing servers, scheduling techniques able to ef-
fectively handle workloads with diverse characteristics on
demands, are required. Implicit coscheduling is known to
be an effective technique to improve the performance of par-
allel workloads in time-sharing clusters. However, implicit
coscheduling still does not take into consideration the sys-
tem behavior like load imbalance that affects cluster utiliza-
tion.

In this paper, we propose the use of global information to
enhance the existing implicit coscheduling schemes. We also
introduce a novel coscheduling approach based on process
reordering exploiting global load imbalance information to
coordinate communicating processes. The results obtained
from a detailed simulation study show that our approach
significantly decreases the average job response time (by
up to 21.4%) by reducing the idle time (by up to 55.6%)
and spin time (by up to 31.8%) caused by the load imbal-
ance.

1. Introduction

The advent of fast networks [1, 2, 3] and efficient user-
level communication protocols [4, 5, 9] has made clusters
an attractive alternative to traditional multiprocessor sys-
tems. Due to the incremental scalability, cost-effectiveness
and high-availability, clusters are gaining acceptance not
just in scientific applications that need supercomput-
ing power, but also in domains such as databases, web
servers and multimedia [6, 7].

To use clusters as general-purpose shared computing
servers, scheduling techniques able to effectively handle
workloads with diverse characteristics on demands, are re-
quired [6, 10, 15, 17]. For diverse workloads, time-sharing
approaches are particulary attractive because they provide
good response times for interactive jobs and good through-

put for I/O-intensive jobs. However, time-sharing has the
drawback that communicating processes must be sched-
uled simultaneously to obtain good performance. The lack
of coordination among local schedulers prevents parallel
processes from being simultaneously scheduled on the re-
spective CPUs when they need to synchronize, resulting in
the performance degradation of parallel applications. There-
fore, some form of coordination among individual sched-
ulers must be provided to achieve satisfactory performance
for parallel applications.

The possible alternatives to coordinate individual local
schedulers span from a naive local scheduling to more so-
phisticated approaches like explicit coscheduling (or gang
scheduling) [8, 11] or implicit coscheduling (sometimes
also called communication-driven coscheduling) [13, 12,
18, 26]. In local scheduling, each local scheduler sched-
ules its own processes independently without any effort to
coschedule them. On the other hand, explicit coschedul-
ing [8, 11], uses explicit global knowledge constructed a
priori and simultaneous global context switch to ideally
coschedule parallel processes across all CPUs. However,
it usually requires long time quanta to amortize the high
context switch and synchronization costs, which results in
poor interactions with interactive or I/O jobs. Furthermore,
it keep the CPU idle while a process is doing I/O or wait-
ing for a message within its allotted time quantum. Some
variants of explicit coscheduing recently appeared in the
literature [17, 15] solve some of above problems, but do
not seem enough suitable and reliable to handle general-
purpose workloads in a cluster environment.

Understanding the practical limitations in realizing ex-
plicit coscheduling for cluster systems, a myriad of implicit
coscheduling schemes such as Demand-based Coschedul-
ing (DCS) [13, 14], Spin Block (SB) [12, 18] and Periodic
Boost (PB) [26], have been recently proposed to effectively
schedule parallel jobs. These schemes use the communica-
tion behavior of parallel processes to make scheduling deci-
sions aimed at achieving a satisfactory coscheduling degree.
The implicit information available for implicit coschedul-
ing consists of two inherent communication events: mes-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

sage arrival and response time. When a message arrives, the
implication is that the sending process is currently sched-
uled. Therefore, it will benefit to schedule, or keep sched-
uled the receiving process. Also, a fast response intimates
to the sending node that the receiving process is currently
scheduled. Therefore, the proper action is to keep the sender
scheduled. Conversely, if the response is not received within
a threshold, the sending node can infer that the receiv-
ing process might be not scheduled. Thus, it is not ben-
eficial to keep the sender scheduled. As contrast with ex-
plicit coscheduling, these schemes are easier to implement
on cluster environments, and have better scalability and re-
liability. In this paper, we limited our work on implicit
coscheduling on non-dedicated workstation clusters.

From the above discussion, we raise two impor-
tant questions. First, how much optimum are previ-
ous implicit coscheduling schemes in terms of perfor-
mance? Second, if not, what are the missing factors that
limit the system utilization? We observe that most im-
plicit coscheduling schemes rely only on the locally avail-
able information (message arrival and response time).
We also realize that there is crucial global informa-
tion representing the behavior of the system, which can
be exploited to optimize the system utilization. This pa-
per presents a novel coscheduling approach that exploits
both local and global information to answer above ques-
tions.

We argue that global load imbalance and synchroniza-
tion information are critical to implicit coscheduling in a
cluster. Load imbalance is one of the major factors to in-
terfere with the efficient utilization of clusters. Load im-
balance has three main sources: 1) uneven load (computa-
tion, I/O and communication) distribution to equally pow-
erful computing nodes, 2) heterogeneity in cluster hardware
resources and 3) the presence of the local jobs and back-
ground (or daemon) jobs (multiprogramming) [10]. Since
this load imbalance results in the increment of the idle time
on CPU resources and the waiting time on communicating
processes, it has a marked detrimental effect on cluster uti-
lization. Also, from described above, it is easy to induce
that reducing the synchronization delay among communi-
cating processes has a major impact on implicit coschedul-
ing. Therefore, globalized load imbalance and synchroniza-
tion information can be the key point to implicit coschedul-
ing to improve the performance of cluster. At the best of our
knowledge, no previous study has exhaustively investigated
this issue in the context of implicit coscheduling on a clus-
ter environment. In addition, we believe that the study, pre-
sented in this paper, may reveal new directions for future re-
searches of implicit coscheduling.

In view of this, we present an innovative coschedul-
ing scheme, called Process ReOrdering-based Coschedul-
ing (PROC), based on process reordering which exploits

global runtime information as well as the limited knowl-
edge available locally to coordinate the communicating pro-
cesses across all CPUs. We realize that the combination of
the average CPU time spent by each process and the ex-
pected number of processes ready to be executed before the
current process is rescheduled, represents the global load
imbalance and synchronization information in the system.
The proposed PROC measures these values dynamically at
run-time, and exchanges the information by piggybacking
them with normal messages. Based on the load imbalance
and synchronization information, the local scheduler can
then make better coscheduling decisions by reordering pro-
cesses with pending messages.

Through a detailed simulation study, our experiments re-
veal several significant results. First, blocking-based
schemes like SB and SB+PROC perform significantly bet-
ter than spinning-based schemes like DCS, PB and
PB+PROC, which is similar to the results reported in
[7, 16] but contrary to [6, 26]. Second, the above ob-
servation leads us to the conclusion that choice of the
local scheduler and workloads has a significant im-
pact on the coscheduling schemes. Third, we demonstrate
that the proposed reordering-based approach outper-
forms other schemes over a range of different workloads
in terms of the response time and overall system through-
put without sacrificing fairness. This is because reordering
communicating processes based on the global informa-
tion reduces the idle time and the spinning time. Finally, we
argue that reducing the time message spent in a node be-
fore it is consumed as well as increasing the synchroniza-
tion ratio is important to provide improved performance of
clusters.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the overview of the implicit coscheduling
strategies proposed in the literature and the relevant work.
Section 3 discusses the proposed PROC approach in details.
Section 4 describes the simulation methodology and Sec-
tion 5 discusses the results obtained from our experiments.
Finally, Section 6 concludes the paper.

2. Related Work

As described in [18], implicit coscheduling schemes are
classified by two components: message waiting action taken
by processes waiting for a message and message handling
action performed by the operating system when a message
arrives, and are summarized in Table 1.

LOCAL is the most straightforward coscheduling tech-
nique. A receiving process is just spinning until the message
arrives, and becomes coscheduled with the sender process if
the message arrives while it is spinning. The next straight-
forward one is Immediate Block (IB). In IB, the process

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Table 1: Implicit coscheduling schemes

Message Handling Message Waiting Actions

Actions Spin Block Spin Block Spin Yield

None LOCAL IB SB (and CC) SY

Interrupt & boost DCS IB-DCS SB-DCS SY-DCS

Periodically boost PB IB-PB SB-PB SY-PB

blocks immediately if the message has not arrived yet, and
is waken by the kernel when the message eventually arrives.

Spin Block (SB) [12, 18] is a compromise between LO-
CAL and IB. Here a process spins on a message arrival for a
fixed amount of time, as referred to spin time, before block-
ing itself (called two-phased spin blocking). The underlying
rationale is that a process waiting for a message should re-
ceive it within the spin time if the sender process is also
currently scheduled. Consequently, if the message arrives
within the spin time, the receiver process should hold onto
the CPU to be coscheduled with the sender process. Oth-
erwise, it should block in order not to waste the CPU re-
source. To block itself, the process which does not receive
a message within spin time, makes a system call, and this
information is informed to network interface cards (NIC).
On subsequent message arrival, the NIC raises an interrupt,
which is serviced by the kernel to wake up the process and
give a priority boost to the awaken process. As a variant
of SB, Ararwal et. al proposed Co-ordinated Coschedul-
ing (CC) [16] which performs sender-side optimization to
coschedule parallel jobs. In the CC scheme, a sender spins
for a fixed amount of time to wait for a send complete event.
If a send is not completed within this time, it is implicitly
inferred that the outstanding message queue at the NIC is
long and hence, it is better to block and let another process
use the CPU. However, these schemes still can not elimi-
nate or reduce the idle time caused by load imbalance due
to the lack of global coordination.

Demand-based CoScheduling (DCS) [13, 14] uses an
incoming message as an indication that the sending process
is currently scheduled on the sender node. In DCS, a re-
ceiving process performs busy-waiting. Periodically, NIC
finds out which process is currently running on its host
CPU. On message arrival, the NIC checks whether the mes-
sage destination process is currently executing or not. If
there is a mismatch, an interrupt is raised. The interrupt
service routine (ISR) boosts the priority of the destination
process to coschedule it with the sending process. Periodic
Boost (PB), proposed in [26], is an alternative coscheduling
scheme which addresses the inefficiency arising from ex-
pensive interrupt cost. In PB, the receiving process is busy-
waiting like DCS. However, in this scheme, rather than rais-
ing an interrupt for each incoming message, a periodically
invoked kernel thread examines message queues of each
process, and boosts the priority of a process with pending

N1

N2

N3

msg

msg

spinning spinning spinning spinning

spinning spinning

N1

N2

N3

msg

msg

spinning

spinning spinning
time time

(1) without considering the load imbalance (2) with considering the load imbalance

(a) Spinning-based schemes

N1

N2

N3

msg

msg

spinning

spinning

N1

N2

N3

msg

msg

spinning

spinning idle
time time

(b) Blocking-based schemes

idle

idle

spinning

idle

t t'

(1) without considering the load imbalance (2) with considering the load imbalance

P1 P8 P1 P1 P8 P1P8

P4 P5 P6 P3 P8 P1

P3 P8 P9 P3 P8

P1 P8 P1

P4 P1 P3 P5 P6 P8

P3 P8 P9 P3

P1 P8
P1

P4 P5 P6 P3 P8 P1

P3 P8 P9 P3

P1 P8
P1

P4 P1 P3 P5 P6 P8

P3 P8 P9 P3

Figure 1: Effect of load imbalance in (a) spinning-
based schemes and (b) blocking-based schemes

messages. Whenever the scheduler is invoked in the near
future, it would preempt the current process and schedule
the boosted process. There are several heuristics to decide
on who to boost when the kernel thread is invoked. These
heuristics take the local states of processes with pending
message(s) into consideration in picking a candidate for
a priority boost. Obviously, these spinning-based schemes
(DCS and PB) suffer from the time wasted by processes
while spinning for messages to arrive. This problem can be-
come more harmful when processes are highly imbalanced
in the cluster.

From the above description, we realize that the exploita-
tion of global information (like ready-queue size in remote
nodes) might solve most of those limitations. To exploit
the global information, a new novel coscheduling scheme
to efficiently reduce the idle time and the spinning time,
is required. In this research, we introduce a coscheduling
scheme based on reordering technique as an example to
prove the importance of exploiting global information.

3. Proposed Coscheduling Scheme

Exploiting the global load imbalance and synchroniza-
tion information has a major impact on the performance of
cluster systems. For instance, assume that N1 and N3 are
the nodes with low load, and N2 is heavily loaded (load(N1)
< load(N3) < load(N2)) as shown in Fig. 1. In spinning-
based schemes, N1 and N3 suffer from the spinning time if
N2 schedules the boosted processes without considering the
load status of N1 and N3 (see Fig. 1(a.1)). As depicted in
Fig. 1(a.2), P1 and P3 can be scheduled in advance in N2 if
N2 realize that N1 and N3 have the lower load than other re-
mote nodes. Similarly, in blocking-based schemes, N1 and

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

(a) Process reordering example

(b) Maintenance of global information

Ni

Nj

Nk

time

P1 P1

P2 P2

ENPij1

ENPkj2

... ...
msg1 = <data, TS i, ENPi>

msg
2
 = <data, TS

k
, ENP

k
>

P2 P1

ERTij1 (t)

ERTkj2(t)

......

... ...

t

Who has minimum ERT ?

Ni

Nj

time

P1 P2

ENPij1

... ...
msg

1

P2P1

Maintain new ENP ij1

......

P2 P1... ...

ENPij2

...
msg2

...

update T ij1
ENPij1 and TSij

update T ij2
ENPij2 and TSij

T
ij
(t) - T

ij1
(t)

Figure 2: Process reordering example and mainte-
nance of global information

N3 suffer from the idle time if N2 schedules the awaken
processes regardless of the loads of N1 and N3 (see Fig.
1(b.1)). As shown in Fig. 1(b.2), using load imbalance in-
formation from N1 and N3, N2 can schedule P1 and P3 at
time t and t

′
to reduce the idle time in N1 and N3. There-

fore, by scheduling in advance (or in a time-fashion way)
a process in which some of its corresponding processes in
remote nodes will be scheduled sooner, we are able to de-
crease the spinning time and the idle time, and to achieve
better progress among parallel processes.

As described above, although the load imbalance has a
marked detrimental effect on cluster’s utilization, most im-
plicit coscheduling strategies described in Section 2 take
no account of the load imbalance to coordinate commu-
nicating processes. It is due to the absence of global load
imbalance and synchronization information in the system.
To address the problem, we propose a novel coschedul-
ing approach called PROC (Process ReOrdering-based
Coscheduling). To improve the overall system utilization,
PROC measures the load imbalance information dynami-
cally at run-time, and exchanges the information by pig-
gybacking them with normal messages. Based on the load
imbalance information, the local scheduler can then make
better coscheduling decisions by reordering processes with
pending message(s).

At any time, each node has a current process that uses
a CPU. Each node Ni can compute: (1) the average CPU
time spent by each process (averaged time difference be-
tween consecutive context switches) (TSi), and (2) the ex-
pected number of processes ready to be executed (ENPi)
before the current process is scheduled again. In this pa-
per, ENPi is calculated to the summation of: 1) the num-
ber of processes with ready-to-run state in the highest-level
ready queue on Ni (in spinning-based schemes, the num-

Algorithm 1: Process reordering algorithm
1 Reordering Procedure (node Nj , current time t, CSP) {

2 CSP = null;
3 ERFj = infinite;
4 for each process Pk with pending message(s) in Nj {
5 ERTjk = infinite;
6 for each message m of Pk {
7 i = sender node of message m;
8 // maintain the load imbalance information
9 if (Tijk < Tij) {

10 ENPijk = ENPijk - ((Tij - Tijk) / TSij);
11 Tijk = Tij ;
12 }
13 // determine minimum ERT value in a process
14 ERTijk = (TSij * ENPijk) - (t - Tijk);
15 if (ERTjk > ERTijk) ERTjk = ERTijk;
16 }
17 // determine a process set with minimum ERF value
18 if (ERFj > ERTjk) {
19 ERFj = ERTjk;
20 CSP = { k };
21 }
22 else if (ERFj == ERTjk) CSP = CSP + { k };
23 }
24 }

ber of processes with pending messages on Ni is added to
this value) and 2) the average number of processes to be ad-
ditionally waken up by I/O completion and message arrival
during the time interval (TSi × the number of processes ob-
tained from 1)).

Let us assume that there is a system with N nodes where
each node Ni contains P processes. Each node Ni piggy-
backs TSi and ENPi in every outgoing messages as the
load imbalance information of Ni. When a process Pk in
Nj receives a message from Ni at time t, we define the fol-
lowings:

• TSijk and ENPijk : TSijk ← TSi, ENPijk ←
ENPi

• Tijk : the latest time a process Pk in Nj receives a mes-
sage from Ni (Tijk ← t)

• Tij : the time of the last received message by Nj from
Ni (Tij = maxk(Tijk))

• TSij : the most recent TSi of Ni received by Nj

Each time Nj receives a new message from Ni, NIC up-
dates a data structure (in scheduling layer) related to the
load imbalance information (ENPijk, Tijk, TSij and Tij)
of the remote node Ni based on TSi and ENPi extracted
from the message. As each process with pending message(s)
contains a list of the most recent load imbalance informa-
tion of remote nodes, our reordering algorithm makes a new
order among processes in Nj by sorting local processes
mainly based on the Expected Remaining Time (ERT) to

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

schedule the corresponding processes in remote nodes (see
Fig. 2(a)). Our reordering algorithm is shown in the Algo-
rithm 1.

The ERTijk represents the expected remaining time to
schedule a corresponding process of local process Pk in the
remote node Ni. It is updated by extracting the time spent
in Nj from the total expected remaining time required to
reschedule the corresponding process in Ni, as shown in
line 14 in the algorithm. In line 15, we determine ERTjk

which represents the minimum ERTijk among all remote
nodes. Based on the ERTjk, our reordering algorithm com-
putes the least Expected Reordering Factor (ERF) in Nj

(ERFj) among all processes with pending message(s). The
Candidate Set of the Preferable processes (CSP) in Nj con-
tains all processes with ERTjk equal to the least ERFj

(see from line 18 to 22 in the algorithm). It represents the
set of the most urgent processes which should be sched-
uled first. Note that when the queue has less than two pro-
cesses with pending messages, this reordering procedure is
not invoked. For the simplicity reason, the scheduler ran-
domly selects one candidate process from the set CSP to
be scheduled next. Before computing the CSP, processes
receiving messages from the same remote node, they can
share load imbalance information and maintain their infor-
mation as shown from line 9 to 12 in the algorithm (see also
Fig. 2(b)).

For experimental purpose, SB and PB are selected as
two case studies, since they represent the most successful
and rich strategies among others to be taken in consider-
ation. Our reordering algorithm can be applied in SB, at
each scheduler invocation, by maintaining the ENPs and Ts,
reordering the processes in the highest-level ready queue
based on the value ERTjk at that time, and scheduling one
of the candidates in the set CSP. In contrast to SB, PB need
to apply the reordering algorithm at each PB mechanism (or
a kernel thread) invocation (∼ 1ms). For the convenience,
we call the former case as SB+PROC, and the latter as
PB+PROC.

4. Experimental Methodology

4.1. The Simulator

We used a detailed, process-oriented event-driven simu-
lator, named ClusterSchedSim [21] built on CSIM19 [22]
simulation toolkit, and added our PROC scheme on it. As
depicted in Fig. 3(a), the simulation model of each worksta-
tion comprises a NIC, OS scheduler, and application pro-
cesses. Also, the simulator has a network module which
connects the computing elements together. Since our work
focuses mainly on implicit coscheduling, we use a simple
linear model for the network which is parameterized by
the message size, without considering network contention.

CPU

Scheduler

...

NICRun Queues

proc1 proc2 procN
...

Network

To/From the Network

���

Global
Queue

start

job arrival

(a) Workstation clusters

Load
variation (v)

Local
Computation

I/O

Communication

Processes

(b) Parallel job execution

Figure 3: Simulation model of workstation cluster
and parallel job execution

And, we adopt a global scheduler based on FIFO to sched-
ule arrival jobs to the system (no process migration and no
backfilling).

The NIC module models the interactions among the
scheduler, application processes, and the network. When-
ever a message is received from the network, the NIC deliv-
ers it into an application buffer and raises an interrupt. Sim-
ilarly, the NIC waits for outgoing messages and enqueues
them into the network module. This form of operation is
typical of user-level communication approach [4, 5, 9, 23].
Costs for these operations have been obtained from mi-
crobenchmarks performed on a cluster of Pentium III-800
MHz workstations connected by Myrinet [1]. The scheduler
module emulates Solaris scheduler [24] and is responsible
for manipulating a multi-level feedback queue (60 queues)
on which ready-to-run processes are placed. Each worksta-
tion may run an arbitrary number of user processes, whose
executions are expressed by a simple language that allows
the specification of computations, disk I/O and communica-
tion operations.

There are two modules added on the scheduler, which are
interrupt service routine (ISR) module and periodic boost
module. ISR module is used for SB and SB+PROC which
use blocking as the message waiting action. It is invoked
immediately after the NIC module raises an interrupt. Af-
ter considering interrupt processing costs, it manipulates
the scheduling queue to boost the priority of the process
to be woken. The periodic boost module is used for PB and
PB+PROC, and is invoked periodically (every one millisec-
ond). At each invocation, it examines the message queues of
application processes and manipulates the scheduling queue
to boost the priority of the process with pending messages.

For SB and SB+PROC, we set the spin time for a mes-
sage to be the expected one-way latency. In both SB+PROC
and PB+PROC, costs for downloading (or uploading) the
global information to NIC (or to scheduling layer), calcu-
lating and comparing the ERT values, and changing the po-
sition in the scheduling queue are modeled in the simula-
tor.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Table 2: Workloads characteristics

Job Characteristics

Job Type Comp.(%) I/O(%) Comm.(%)
J1 70 5 25
J2 40 20 40
J3 25 5 70
LU comm. intensity: low
FT comm. intensity: high

Workloads

WL Job types in Workload
WL1 a set of J1
WL2 a set of J2
WL3 a set of J3
WL4 equal mix of J1, J2 and J3
WL5 FT:FT:FT:FT:FT:FT
WL6 LU:J1(NN):J2(AA):J2(AA):FT:FT

Table 3: Simulation parameters and values

Parameters Value(s)

System size 32
MPL(Multi-Programming Level) 5, 10

Communication patterns NN, AA
Message size 4KBytes

One-way latency 143.40 µs
Variance (v) 0.5, 1.5

Context switching cost 200 µs
Interrupt processing cost 30 µs

Check an endpoint 2 µs
Download (or upload) of global info. 1 µs

Change the position in scheduling queue 2 µs

4.2. Workload Characterization

The real workloads of cluster systems can be character-
ized with the dynamic behaviors such as dynamic job ar-
rival, different job size and execution time, and different job
characteristics (computation, communication and I/O ratio),
etc. In order to simulate those realistic workloads, we gener-
ate synthetic workloads derived from Cornell Theory Cen-
ter (CTC) SP2 traces, which are widely used in scheduling
studies [19, 20]. During the workload generation, job arrival
time, execution time, and size information are characterized
to fit a mathematical model called Hyper-Erlang distribu-
tion of common order [27]. The synthetic workloads used
consist of 200 parallel jobs, where each job iterates phases
of local computation, disk I/O, and interprocess communi-
cation. We consider two different communication patterns:
Nearest Neighbor (NN) and All-to-All (AA), which are
commonly used in many parallel and scientific applications.
We assume that both communication patterns use a fixed
message size of 4KB. By fixing the end-to-end one-way la-
tency of a message, the communication cost per iteration in

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

500

1000

1500

2000

2500

3000

3500

4000

(a) Avg. Job Response Time (NN)
WL3WL2WL1

A
v
g

.
J
o

b
 R

e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

 WaitTime ExecutionTime

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

(b) System Usage Breakdown (NN)
WL3WL2WL1

S
y

s
te

m
 U

s
a

g
e

 B
re

a
k

d
o

w
n

 (
%

)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 4: Impact of workload characteristics and
communication patterns (NN, MPL = 5, v = 0.5)

the ideal case is known. Based on this communication cost
and the relative proportion of the other two phases (compu-
tation and I/O), the computation and I/O time per iteration
can be calculated. By multiplying the computation and I/O
time of each iteration of a process that were calculated ear-
lier by a value uniformly selected in (1 + unif (-v/2, v/2))
and by varying the load variance (v), we model the load im-
balance across CPUs (see Fig. 3(b)).

Our workloads are completed by two parallel applica-
tions (LU and FT) that have been directly derived from the
NAS Parallel Benchmarks (NPB) suite [25]. More specifi-
cally, these 2 applications have been obtained by translat-
ing their source codes in NPB into the language accepted
by our simulator, without changing their execution flow,
communication topology and message sizes. The choice of
these 2 applications is based on their different computa-
tion granularity, communication intensity and patterns: LU
is a lower/upper triangular matrix decomposition applica-
tion with low communication intensity and NN commu-
nication pattern, while FT performs a multi-dimensional
Fast Fourier Transform (FFT) with high communication and
AA. The duration of sequential parts of these parallel appli-
cation codes have been determined from measurements per-
formed by running the corresponding NPB applications on
a cluster of Pentium III-800MHz workstations. The charac-
teristics of workloads and the simulation parameters used in
our experiments are summarized in Table 2 and Table 3, re-
spectively.

5. Experimental Results

In this section, we present and discuss the results of our
experiments. We consider the average job response time
and/or completion time as performance metrics. Average
job response time is defined by the time difference between
the job completion and the job arrival averaged over all jobs.
In addition, to better understand the performance results,
we use system usage breakdowns showing the percentage
of time that a CPU spends on average in different com-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) Avg. Job Response Time (AA)
WL3WL2WL1

A
v

g
.

J
o

b
 R

e
s

p
o

n
s

e
 T

im
e

 (
s

e
c

)

 WaitTime ExecutionTime

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

(b) System Usage Breakdown (AA)
WL3WL2WL1

S
y
s
te

m
 U

s
a
g

e
 B

re
a
k
d

o
w

n
 (

%
)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 5: Impact of workload characteristics and
communication patterns (AA, MPL = 5, v = 0.5)

ponents such as compute, idle, spinning, context switches,
and overheads (such as interrupt cost, reordering cost, etc.).
Our experiments start by analyzing the performance of pro-
posed PROC and the impact of various system parameters
(like Multi-Programming Level and load imbalance) using
the synthetic workloads (WL1 ˜ WL4). Then, we complete
this section by analyzing the effect of mixed workloads on
PROC using two realistic applications described in the pre-
vious section.

5.1. Benefit Analysis of Process Reordering-based
Coscheduling

Here, we examine the results concerning the im-
pact of workload characteristics (different proportions of
computation, I/O and communication) and communica-
tion patterns on the performance of different coscheduling
schemes. WL1, WL2, and WL3 represents computation-
intensive, well-balanced (with more I/O compared to WL1
and WL3), and communication-intensive workload, re-
spectively. Figure 4 and 5 show the average job response
time and the system usage breakdown of our interest-
ing six coscheduling schemes for these three workloads
with Nearest Neighbor and All-to-All as the communica-
tion pattern, respectively. For this experiment, we fix the
value of MPL (Multi-Programming Level) to 5 and load
variance (v) to 0.5.

From Fig. 4 and 5, we can see that the reordering
schemes achieve better performance than all other previ-
ous strategies. We also observe that the blocking-based
schemes give more chance that processes of other ap-
plications make progress in their computation than
the spinning-based schemes. This observation can ex-
plain that SB+PROC achieves better performance than
PB+PROC.

In particular, we note that PB+PROC reduces the spin-
ning time of PB by up to 31.8% and SB+PROC reduces the
idle time of SB by up to 55.6%. When reordering is applied,
the overhead is increased due to the cost for the maintenance

LOCAL PB PB+PROC SB SB+PROC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

N
o

rm
al

iz
ed

 a
ve

ra
g

e
jo

b
 s

lo
w

d
o

w
n

 Computation-bound jobs
 Balanced (or more I/O) jobs
 Communication-bound jobs

(a) Normalized
avg. job slowdown

Scheme coeff.
of var.

LOCAL 0.456
PB 0.157
PB+PROC 0.165
SB 0.107
SB+PROC 0.111

(b) Coefficient
of variation

of slowdown

Figure 6: Fairness (WL4 with NN, MPL = 5, v = 0.0)

and appliance of load imbalance information described in
Section 3, and the context switch is increased since the pro-
cess reordering makes the probability of scheduling appro-
priate (or urgent) processes high. However, these additional
costs do little affect the overall benefit. Also, the results ex-
hibit that the performance of AA is better than that of NN.
In Fig. 4, the response time is increased as the ratio of com-
munication becomes high, while in Fig. 5, it is decreased
as the communication ratio becomes high. This can be ex-
plained by the fact that the overlapping between communi-
cation messages in each iteration of AA is higher than that
of NN.

In Fig. 6, to evaluate the fairness, we calculate the coef-
ficient of variation of slowdown over three different classes
of jobs in WL4 (the results for WL4 with AA are omitted due
to space limit). As depicted in Fig. 6, our scheme has almost
the same fairness value as previous schemes. We also notice
that blocking-based schemes are more fair than spinning-
based schemes.

As described in the above results, PB+PROC and
SB+PROC use the load imbalance and synchronization in-
formation, reduce the spinning time and the idle time, re-
spectively, and achieve better average job response time as
we expect in Section 3. (see Fig. 1)

5.2. Effect of Load Imbalance

In this section, we examine the effect of the load im-
balance on the performance of the considered different
coscheduling approaches. In this experiment, we exclude
LOCAL and DCS because there is no point to show their
performance. We consider two extreme scenarios that have
less communication (WL1 with NN communication pattern)
and intensive communication (WL3 with AA) to analyze
the behavior of reordering in relation with the load vari-
ance factor. For this experiment, we fix the value of MPL to
5. Figure 7 (right two groups of bars of each graph) shows
the average job response time and the system usage break-
down for these workloads with two different load variance
values (0.5 and 1.5). All obtained results show that with

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

500

1000

1500

2000

2500

v = 1.5
MPL=5

v = 0.5
MPL=5

v = 0.5
MPL=10

(a) Avg. Job Response Time (WL1 with NN)

A
vg

. J
ob

 R
es

po
ns

e
Ti

m
e

(s
ec

)

 WaitTime ExecutionTime

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

v = 1.5
MPL=5

v = 0.5
MPL=5

v = 0.5
MPL=10

(b) System Usage Breakdown (WL1 with NN)

S
ys

te
m

 U
sa

ge
 B

re
ak

do
w

n
(%

)

 COMP IDLE SPIN
 OVERHEAD CS

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

200

400

600

800

1000

1200

v = 1.5
MPL=5

v = 0.5
MPL=5

(c) Avg. Job Response Time (WL3 with AA)

v = 0.5
MPL=10

A
vg

. J
ob

 R
es

po
ns

e
Ti

m
e

(s
ec

)

 WaitTime ExecutionTime

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

v = 1.5
MPL=5

v = 0.5
MPL=5

v = 0.5
MPL=10

(d) System Usage Breakdown (WL3 with AA)

S
ys

te
m

 U
sa

ge
 B

re
ak

do
w

n
(%

)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 7: Impact of load imbalance and MPL

a larger load imbalance, applying reordering (PB+PROC
and SB+PROC) enhanced the performance of the previous
schemes by up to 16.7% and 10.4% for PB and SB, respec-
tively.

In Fig. 7, since the higher load imbalance makes the
probability of mismatch of communicating processes high,
we observe that the response time increases with a larger
load variance value. This increment is mainly affected
by the spinning time increase for the spinning-based ap-
proaches (PB and PB+PROC) and the idle time increase
for the blocking-based approaches (SB and SB+PROC).
Also, from Fig. 7(a) and 7(c), we know that the ef-
fect of load imbalance (the increment of job response time)
can be better hidden in AA than in NN due to the overlap-
ping between communication and computation. As a re-
mark, the load imbalance has more impact on applications
with computation-intensive than communication-intensive.

5.3. Effect of Multi-Programming Level (MPL)

Similarly to the previous section, we use the same ex-
periment setup to analyze the effect of MPL on the
performance when our reordering is applied. The re-
sponse time and the system usage breakdown, when the
load variance (v) value is fixed to 0.5, are shown in Fig.
7 (left two groups of bars of each graph). The results
show performance improvement when applying reorder-
ing (PB+PROC and SB+PROC) compared to the previous
schemes. With a larger MPL, 23.8% and 13.2% of im-

provements are achieved by PB+PROC and SB+PROC,
respectively.

From the figure, when MPL increases, the job response
time is decreased in general due to the large amount of use-
ful work. As instance, all scheduling approaches in both
communication patterns (NN and AA) achieve better job
response time when MPL is equal to 10 than when MPL
is equal to 5. The only exception of the above statement is
the cases of PB and PB+PROC when WL3 with AA is se-
lected (see Fig. 7(c)). These two cases can be explained by
the fact that, when communication intensive workload is se-
lected, the probability of having larger spinning time among
communicating processes and the context switches among
local processes become high. This can be enforced by ob-
serving that in all cases the context switch increases with a
larger MPL.

5.4. Mixed Workload Performance

Finally, we consider the realistic workload (WL5) and
the mixed workload (WL6) with a combination of synthetic
and realistic workloads, varying in computation granular-
ity, communication intensity and patterns as described in
Table 2. All jobs in WL5 and WL6 have been adjusted so
they approximately take the same amount of time (13 ˜ 15
sec) to complete, when executed individually. For this ex-
periment, MPL and load variance (v) values are fixed to
6 and 0.0, respectively. Fig. 8 shows the completion time
and system usage breakdown of WL5 and WL6. Table 4
shows SYNC RATIO and MSG PENDING TIME of the
results shown in Fig. 8 for WL6. SYNC RATIO represents
the ratio of the received messages when their correspond-
ing processes are scheduled to the number of all messages.
MSG PENDING TIME indicates the average pending time
of messages spent in the system before their correspond-
ing processes can consume them.

From the results, it is clearly shown that with the use of
global load imbalance information and reordering, PROC
outperforms previous schemes. The mixture of the work-
load including of realistic workloads and the separate run-
ning of FT, ensure the validity of our reordering scheme
concerning the improvement. We exclude the results of LU
due to the similarity to those achieved in WL1 with NN
pattern regarding the system usage breakdown and the im-
provement. Due to the space limit we omitted the analy-
sis of the completion time and the system usage breakdown
which can be easily induced from the above sections. Our
focus, will be concerned the impact of the workload mixture
on the performance and the analysis of the SYNC RATIO
and MSG PENDING TIME results.

The SYNC RATIO shows a slight improvement when
reordering technique is applied. This implies that the prob-
ability for a message to be consumed right when it just ar-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

P
B

P
B

+
P

R
O

C

S
B

S
B

+
P

R
O

C

-- P
B

P
B

+
P

R
O

C

S
B

S
B

+
P

R
O

C

0

25

50

75

100

125

150

175

200

225

250

(a) Last application completion time
WL6WL5

L
a

s
t

A
p

p
li

c
a

ti
o

n
 C

o
m

p
le

ti
o

n
 T

im
e

 (
s

e
c

)

P
B

P
B

+
P

R
O

C

S
B

S
B

+
P

R
O

C

-- P
B

P
B

+
P

R
O

C

S
B

S
B

+
P

R
O

C

0

20

40

60

80

100

(b) System usage breakdown
WL6WL5

S
y
s
te

m
 U

s
a
g

e
 B

re
a
k
d

o
w

n
 (

%
)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 8: Mixed workload performance

Table 4: Synchronization ratio and average mes-
sage pending time

SYNC RATIO MSG PENDING TIME

PB 40 % 44.416 msec
PB+PROC 41 % 38.197 msec
SB 12 % 15.823 msec
SB+PROC 14 % 11.252 msec

rives mainly depends on the message waiting action adopted
by the coscheduling scheme. As can be seen in PB in
Table 4, the large value of SYNC RATIO is due to the
large amount of time consumed by processes while spin-
ning for some messages. While in SB, the low value of
SYNC RATIO can be explained by the fact that once a pro-
cesses can’t find out the message it gets blocked.

Instead of SYNC RATIO, MSG PENDING TIME is
improved by 14% in PB+PROC compared to PB and 28%
in SB+PROC compared to SB. This improvement repre-
sents one of the key point of our reordering scheme. Our re-
ordering algorithm favorites urgent processes that have
high expectation to achieve synchronization with their cor-
responding ones in remote nodes in the near future. This
reduces the MSG PENDING TIME, and consequently al-
lows a process in average to consume its messages quicker
and proceed for further executions.

5.5. Discussion

From the previous results, applying the reordering mech-
anism substantially enhances the performance of PB and
SB. Using the global load imbalance information, our re-
ordering scheme increases the chance of synchronizing
communicating processes and decrease the average mes-
sage pending time. This makes the exploitation of global
load imbalance information as a main key point for our re-
ordering scheme as well as any future coming reordering
variants in clusters.

In computation-intensive workload, we observe that ERT
is more accurate since TS value is high and has low vari-

low medium high
0

2

4

6

8

10

12

14

16

(a) PB+PROC with NN communication pattern

A
v

g
.

jo
b

 r
e

s
p

o
n

s
e

 t
im

e
 i

m
p

ro
v

e
m

e
n

t
(%

)

Communication Intensity

 variance (v) = 0.5
 variance (v) = 1.5

low medium high
0

2

4

6

8

10

12

14

16

18

20

22

24

(b) SB+PROC with NN communication pattern

A
v

g
.

jo
b

 r
e

s
p

o
n

s
e

 t
im

e
 i

m
p

ro
v

e
m

e
n

t
(%

)

Communiction Intensity

 variance (v) = 0.5
 variance (v) = 1.5

low medium high
0

2

4

6

8

10

12

14

16

18

20

(c) PB+PROC with AA communication pattern

A
v
g

.
jo

b
 r

e
s
p

o
n

s
e
 t

im
e
 i
m

p
ro

v
e
m

e
n

t
(%

)

Communication Intensity

 variance (v) = 0.5
 variane (v) = 1.5

low medium high
0

2

4

6

8

10

12

14

(d) SB+PROC with AA communication pattern

A
v

g
.

jo
b

 r
e

s
p

o
n

s
e

 t
im

e
 i

m
p

ro
v

e
m

e
n

t
(%

)

Communication Intensity

 variance (v) = 0.5
 variance (v) = 1.5

Figure 9: Average job response time improvement
of PROC scheme

ance. However, the low communication intensity degrades
the importance of the global information. This degradation
limits the harness of the improvement of proposed PROC.
In contrast, as the amount of communications in each itera-
tion becomes high, the size of CSP becomes large enough to
allow more overlapping among communicating processes.
This makes the global information (used in this paper) wor-
thy enough for our reordering scheme to increase the degree
of improvement. However, communication-intensive work-
load suffers from the relatively inaccurate ERT due to a
small value of TS and its high variance. This inaccuracy sat-
urates the improvement of our reordering scheme when the
communication intensity exceeds some point as shown in
Fig. 9.

From the Fig. 9, in high load variance (v), the computa-
tion ratio for each iteration varies dramatically inducing the
high variance of TS value and rather low accuracy of ERT.
Thus, the low accuracy of ERT results in degrading the de-
gree of improvement of our reordering approach. As a re-
sult, our reordering scheme needs to use more sophisticated
metrics of load imbalance information for more ERT ac-
curacy when communication-intensive workloads and high
load variance (v) are applied to the system.

6. Conclusion and Future Work

In this paper, we proposed the use of global informa-
tion to enhance the existing implicit coscheduling schemes.
We also presented a novel coscheduling approach, named
PROC (Process ReOrdering-based Coscheduling) based on
process reordering exploiting global load imbalance infor-

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

mation to coordinate the communicating processes. Our ap-
proach addresses the main limitation of previous implicit
coscheduling schemes - less accurate decision on who to
boost to be coscheduled regardless to the load imbalance,
increasing the chance of synchronization among communi-
cating processes and decreasing the average message pend-
ing time.

We used the synthetic and realistic workloads with two
different communication patterns to evaluate PROC com-
pared to other schemes. We performed various experi-
ments to analyze how the exploitation of global infor-
mation using our reordering impacts on the performance
of implicit coscheduling. The results reported in this pa-
per show that our approach clearly provides better average
job response time by reducing the idle time and the spin-
ning time, thus improves the utilization of clusters. In
PB+PROC, we achieved the improvement in terms of aver-
age job response time by up to 20%, while in SB+PROC,
by up to 21.4%.

We plan to explore more global information that affects
the coordination among communicating processes such as
message frequency, queue size in NIC, etc. We also plan
to extend our work by considering more real applications,
including sequential and interactive jobs, and implement
PROC in a Linux cluster.

References

[1] N.J. Borden et al., ”Myrinet: A Gigabit-per-second Local Area
Network”, IEEE Micro, 1995, 15, pp. 29-36

[2] G. E. Alliance, ”10 gigabit ethernet technology overview
white paper”, Available from http://www.10gea.org/Tech-
whitepapers.htm

[3] Emulex Corp., ”The VI/IP Standard and cLan”, Available
from http://www.emulex.com

[4] T. von Eicken, et al., ”U-Net: A User-Level Network Interface
for Parallel and Distributed Computing”, In Proc. 15th ACM
Symp. on Operating System Principles, 1995, pp. 40-53

[5] D. Dunning et al., ”The Virtual Interface Architecture”, IEEE
Micro, 1998, pp. 66-75

[6] Y. Zhang et al., ”Impact of Workload and System Parameters
on Next Generation Cluster Scheduling”, IEEE Transactions
on Parallel and Distributed System, 2001, 12-9, pp. 967-985

[7] Cosimo Anglano, ”A Comparative Evaluation of Implicit
Coscheduling Strategies for Networks of Workstations”, High
Performance Distributed Computing, 2000, pp. 221-228

[8] J.K. Ousterhouw, ”Scheduling techniques for concurrent sys-
tems”, In Proc. of the 3rd International Conference on Dis-
tributed Computing Systems, 1982, pp. 22-30

[9] J.S Kim, et al., ”Design and Implementation of a User-level
Sockets Layer over Virtual Interface Architecture”, Concur-
rency and Computation: Practice and Experience, 2003, pp.
727-749

[10] U. Rencuzogullari and S. Dwarkadas, ”Dynamic adaptation
to Available Resources for Parallel Computing in an Au-
tonomous Network of Workstations”, Principles and Practice
of Parallel Programming, 2001, pp. 72-81

[11] D.G. Feitelson and M. A. Jette, ”Improved Utilization and
Responsiveness with Gang Scheduling”, In Proc. of JSSPP,
1997, pp. 238-261

[12] A.C. Dusseau, et al., ”Effective Distributed Scheduling of
Parallel Workloads”, In Proc. ACM SIGMETRICS 1996
Conf., 1996, pp. 25-36

[13] P.G. Sobalvarro, ”Demand-Based Coscheduling of Paral-
lel Jobs on Multiprogrammed Multiprocessors”, PhD thesis,
Massachusetts. Inst. of Technology, Jan. 1997

[14] P.G. Sobalvarro, et al., ”Dynamic Coscheduling on Work-
station Clusters”, Proc. IPPS Workshop on JSSPP, 1998, pp.
231-256

[15] E. Frachtenberg, et al., ”Flexible CoScheduling: Mitigating
Load Imbalance and Improving Utilization of Heterogeneous
Resources”, In IPDPS03, 2003, 15, 7-8, pp. 625-651

[16] S. Agarwal, G. S. Choi, et al., ”Co-ordinated Coscheduling
in Clusters through a Generic Framework”, ACM SIGMET-
RICS Conference, June 15 - 19, 2002

[17] F. Petrini and Wu-chun Feng, ”Improved Resource Utiliza-
tion with Buffered Coscheduling”, Journal of Parallel Algo-
rithms and Applications, 2001, 16

[18] S. Nagar, et al., ”Alternatives to Coscheduling a Network of
Workstations”, Journal of Parallel and Distributed Comput-
ing, 1999, 59-2, pp. 302-327

[19] Dror G. Feitelson, ”Metrics for Parallel Job Scheduling and
their Convergence”, In JSSPP, Dror G. Feitelson and Larry
Rudolph, (ed.), Springer Verlag, Lect. Notes Comput. Sci.
2001, pp. 188-205

[20] G. Sabin, et al., ”Scheduling of Parallel Jobs in a Heteroge-
neous Multi-Site Environment”, In JSSPP, Dror G. Feitelson,
Larry Rudolph, and Uwe Schwiegelshohn, (ed.), Springer Ver-
lag, Lect. Notes Comput. Sci. 2003, pp. 87-104

[21] Y. Zhang and A. Sivasubramaniam, ”ClusterSchedSim:
A Unifying Simulation Framework for Cluster Scheduling
Strategies”, SIMULATION: Transactions of the Society for
Modeling and Simulation, May 2004, vol. 80, no. 4-5, pp. 191-
206

[22] H. D. Schwetman, ”CSIM19: a powerful tool for building
system models”, In Proc. of the 2001 Winter Simulation Con-
ference, 2001, pp. 250-255

[23] J. L. Yu, et al, ”An Efficient Implementation of Virtual In-
terface Architecture using Adaptive Transfer Mechanism on
Myrinet”, In Proc. of ICPADS2001, 2001, pp. 741-747

[24] SUN Microsystems Inc., ”Solaris 2.6 Software Developer
Collection”, 1997, Available form http://www.sum.com/

[25] N. A. S. division., ”The NAS parallel benchmarks”, Avail-
able from http://http://www.nas.nasa.gov/Software/NPB/

[26] S. Nagar, et al., ”A Closer Look at Coscheduling Approaches
for a Network of Workstations”, In Proc. of 11th ACM Symp.
Parallel Algorithms and Architectures, 1999, pp. 96-105

[27] H. Franke, et al., ”Evaluation of Parallel Job Scheduling for
ASCI Blue-Pacific”, In Proc. Supercomuting, 1999.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

