GNBD/VIA: A Network Block Device over Virtual I nterface Architecture on
Linux

Kangho Kim Jin-Soo Kim Sung-In Jung
Computer & Software Technology L aboratory
Electronics and Telecommunications Research Institute (ETRI)
Dagjeon 305-350, Republic of Korea
{khk, jinsooki msijung}@tri.re.kr

Abstract the critical path of communication operations. To provide
protected communication, two conditions must be satisfied.

This paper describes a design and implementation of First, the kernel must grant the permission for a process to
GNBD/VIA, a Network Block Device (NBD) over Virtual communicate with another process by providing a commu-
Interface Architecture (VIA), and evaluates its performance nication channel. Second, the network interface must mul-
on Linux-based cluster of PCs. VIA is a user-level memory- tiplex user-level DMA performed through these channel-
mapped communication model which provides zero-copys. This support eliminates the need to trap into the kernel
communication by removing the operating system from the each time a send is executed, and makes the send opera-
critical communication path. Typically, an NBD layer of- tion lightweight. At the same time, no copy is necessary by
fers the abstraction of a storage media across the network. sending data from the user space to a remote receive buffer
GNBD/VIA attempts to improve the performance of the and the end-to-end communication bandwidth approaches
NBD layer by employing the lightweight VIA communica- to the raw bandwidth provided by the network hardware.
tion mechanisms between NBD servers and clients. To ourThere are several hardware and software implementations
best knowledge, GNBD/VIA is the first implementation of of VIA today. Emulex (Giganet before) has a hardware V1-
NBD on VIA. A implementation called cLAN with drivers for Linux and

GNBD/VIA outperforms the normal NBD placed on top Windows NT. VIA implementations at the firmware level
of TCP/IP protocol stacks, and achieves the performance are available for ServerNet (Tandem) and Myrinet (Myri-
comparable to local disk devices, showing the read (write) com) interconnects. M-VIA [6] provides Linux software
bandwidth of 30.6MB/s (25.9MB/s) on the evaluation plat- VIA drivers for various fast ethernet and gigabit ethernet
form with UDMA100 hard disks and Emulex cLAN adapter- adapters.

S. In this paper, we describe a design and implementation

of a network block device (NBD) over VIA for a Linux-
based cluster of PCs. The NBD is a software layer which
offers the abstraction of a storage media across the network,
where a remote server provides the real physical storage.
NBD clients can access the server’s disk device as if it were
a local one through a virtual device created at the client side.
The virtual device acts exactly like a traditional block de-
vice to client applications and it is even possible to make a
file system on it using the UNIX nkf s command.

1. Introduction

The System Area Network (SAN) is a key element in
building scalable cluster systems by providing low latency
and high bandwidth communication. However, the tradi-
tional communication models were unable to fully exploit
the raw performance of the recent SANs operating at gi-
gabit speeds, due to the high overhead added by software
layers [8].

As each disk read/write request to the virtual device is
delivered to the NBD server over the communication net-

The Virtual Interface Architecture (VIA) [1] is an indus-
try standard on user-level memory-mapped communication
model, whose main objective is to reduce the communica-
tion overhead further for high-speed SANs. The basic idea
in user-level communication is to factor out protection from

work, the performance of NBD heavily depends on the un-
derlying communication performance. Our goal is to design
and implement a highly efficient NBD layer which takes
advantage of the low latency and high bandwidth charac-
teristics of VIA, in order to minimize the performance gap

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
1530-2075/02 $17.00 © 2002 IEEE

between local disks and NBDs. The existing NBD layer-
s utilize TCP/IP protocols to communicate between NBD
servers and clients. However, if NBD servers and clients are
interconnected through VIA-enabled SAN within a cluster,
we can accelerate the performance of NBD by replacing the
TCP/IP protocols with the lightweight VIA communication
mechanisms. Among many NBD implementations, we have
modified GNBD (GFS NBD), which is used to build GFS
(Global File System) on IP-based networks [9].

The rest of the paper is organized as follows. Section 2
overviews the VIA and NBD. Section 3 discusses issues for
designing GNBD over VIA. In section 4, we present the
evaluation methodology and the performance results of our
GNBD implementation over VIA. Finally, we conclude in
section 5.

2. Background
2.1. Virtual Interface Architecture (VIA)

In the traditional network architecture, the operating sys-
tem (OS) virtualizes the network hardware into a set of
logical communication endpoints available to network con-
sumers. The OS multiplexes access to the hardware among
these endpoints. In most cases, the OS also implements pro-
tocols that make communications between connected end-
points reliable. This model permits the interface between
the network hardware and the OS to be very simple. The
drawback of this organization is, however, that all com-
munication operations require a call or trap into the OS
kernel, which can be quite expensive to execute. The de-
multiplexing process and reliability protocols also tend to
be computationally expensive.

The Virtual Interface Architecture (VIA) eliminates the
system processing overhead of the traditional model by pro-
viding each consumer process with a protected, directly ac-
cessible interface to the network hardware - a Virtual Inter-
face (VI). Each VI represents a communication endpoint.
A pair of VI endpoints can be logically connected to sup-
port bi-directional, point-to-point data transfers. A process
may own multiple VIs exported by one or more network
adapters. A network adapter performs the endpoint virtu-
alization directly and subsumes the tasks of multiplexing,
de-multiplexing, and data transfer scheduling normally per-
formed by an OS kernel and device driver. An adapter may
completely ensure the reliability of communication between
connected VIs. Alternately, this task may be shared with
transport protocol software loaded into the application pro-
cess, at the discretion of the hardware vendor [1].

The efficiency of memory-mapped communication pro-
vided by VIA does not come for free. As various projects
have started to use VIA or other memory-mapped com-
munication libraries, it becomes obvious that the lack of

Server Client
daemon daemon

Physical
resource -

Figure 1. The concept of Network

Block Device

Application Application
File system File system
Buffer cache ERIADENE

Disk scheduler ? Buffer cache
Disk scheduler
Disk GNBD —p» TCP/IP TCP/IP
driver | driver NIC driver NIC driver Disk driver

il

Figure 2. The structure of GNBD (GFS Net-
work Block Device)

buffer management, flow control, automatic incoming mes-
sage handling, etc. can make communication programming
more complicated. One solution to this problem is to build
high-level communication abstractions on top of VIA, while
preserving its performance benefits. Recently, several com-
munication libraries over VIA have been announced [5, 4].

2.2. Network Block Device (NBD)

Figure 1 illustrates the basic concept of Network Block
Device (NBD). The NBD offers an access model that simu-
lates a block device, such as a hard disk or a hard-disk par-
tition, on the local client, but connects across the network to
a remote server that provides the real physical storage. For
clients, the device looks like a local disk partition, but it is
only an entrance for the remote. Even though the actual ac-
cess requests and data blocks are communicated on the net-
work, the NBD layer hides all the details and the client sim-
ply uses the virtual device as if it were a local disk device.
This is a little lower level and more basic than network file
systems such as NFS or Samba, which require more kernel
interaction to properly handle the file-level access requests
from the remote host.

There are several implementations of the generic NBD:
Linux/NBD, DRBD, ENBD, ODR, and GNBD. Lin-
ux/NBD is the basic NBD driver that is included in the Lin-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
1530-2075/02 $17.00 © 2002 IEEE

application

; application
Library PP application licati
, application
x Library i
g GFS Library GNBD client i
g GNBD GFS =0,
) GFS User-level
Sockets GNBD 3 socket layer R
TCP Sockets GNBD/VIA Over VIA GNBD/VIA
P TCP/IP VIPL Kernel-level socket layer
|P-to-VI layer VIK over VIA
. ernel
NIC Driver VI Kernel Agent | Agent VI Kernel Agent
NIC VI-NIC VI-NIC VI-NIC
(@ The traditional (b) GNBD over (c) GNBD over user-level socket (d) GNBD over kernel-
GNBD LANEVI layer level socket layer

Figure 3. Design alternatives for GNBD client

ux kernel. DRBD (Distributed Replicated Block Device)
is used for mirroring file systems across the LAN, with a
quick sync option for bringing the mirror up to date quick-
ly. ENBD (Enhanced Network Block Device) is an exten-
sion of Linux/NBD. ODR (Online Disk Replicator) is sim-
ilar to DRBD, but it supports more than two nodes and has
a journaling feature. Finally, GNBD is the NBD included
in GFS (Global File System), which is a modified version
of the Linux/NBD mentioned above. The biggest differ-
ence between Linux/NBD and GNBD is that GNBD allows
multiple clients to access the same block device concurrent-
ly while Linux/NBD driver only allows a single client at a
time [2].

Among these NBD implementations, we have chosen
GNBD as our target NBD layer, because GNBD running
over VIA allows us to construct a GFS, a cluster file sys-
tem, on VIA-enabled system area networks. The structure
of GNBD is depicted in figure 2. Currently, GNBD is im-
plemented as a block device driver in client side and as a
kernel thread in server side, which are connected by TCP/IP
networks.

2.3. Motivation

Generally, the NBD layer is built on top of the TCP/IP
layer, which means the location of NBD server and client
can be separated across the LAN or WAN. There are, how-
ever, many application domains of the NBD layer where the
NBD server and client are closely linked within a cluster.
For example, combined with software RAID driver, GNBD
can provide a shared storage between two servers config-
ured with a fail-over support. Another example is the GFS:
it aggressively uses a set of GNBD servers and clients to im-
plement a cluster file system on IP-based networks, even in
the absence of Fibre Channel switch and storages. In these

environments, communication within a cluster is a major
factor which limits the overall performance. As the per-
formance of NBD heavily depends on the underlying com-
munication performance, it is important to extract the raw
performance of network hardware as much as possible in
order to minimize the performance gap between local disks
and NBDs.

The TCP/IP protocol stack is not required to transfer data
between two endpoints on the same cluster if the physical
interconnect is reliable and provides transport-level func-
tionality, as is done in VIA. Therefore, it is desirable for
the NBD layer to run directly over the VIA bypassing the
TCP/IP protocols. In this way, we can implement a highly
efficient NBD layer which takes advantage of low latency
and high bandwidth characteristics of VIA.

3. Design Issues
3.1. Design Alternatives

The original GNBD works on Sockets interface on top of
the TCP/IP stacks as can be seen in figure 3(a). The GNBD
can be implemented on the VIA-enabled system area net-
works in several ways: (1) by emulating IP layer over VIA,
(2) by using a user-level Sockets layer over VIA, and (3)
by using a kernel-level Sockets layer over VIA. We briefly
examine the characteristics of each alternative and discuss
which is the desirable choice for our goal.

Emulating IP layer over VIA. One solution to support
GNBD on VIA is to use an adaptation layer between IP
and VI Kernel Agent which emulates the IP layer over VI-
A, as shown in figure 3(b). This is the approach taken by
the LANEVI (LAN Emulation on VI) [3] driver supplied
by Emulex for its cLAN adapters. As IP is emulated on

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)

1530-2075/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER
SOCIETY

VIA, an IP address is assigned to the VI-NIC and the sys-
tem becomes fully compatible with any of the existing IP-
based network applications including GNBD. However, it
is not simple to emulate connectionless IP services on the
connection-oriented VIA, and applications still suffer from
the overhead of TCP/IP protocols [4]. In addition, our ex-
perience shows that the LANEVI module is not so stable as
we have expected.

Using a user-level Socketslayer over VIA. As we have
mentioned in section 2.3, the TCP/IP layer plays an un-
necessary role in the communication within cluster systems
connected by VIA-enabled networks. One way to bypass
the TCP/IP protocol stack is to use a client daemon living
in user-land which talks to a GNBD server also running
in user-land. Both GNBD server and client communicate
each other through an intermediate layer which emulates the
Sockets interface over VIA at user-level. Such a user-level
Sockets layer makes it easy to port the existing Sockets-
based applications over VIA [4].

However, we still need to modify the GNBD code to
fit into the new structure, and the context switching and
data copying overhead between the kernel and user space
become significant. The disk I/O requests arrived at the
GNBD driver in kernel should be queued by the driver
method and then pumped into the client daemon using a
local socket or a special device. It means the client daemon
enters repeatedly into the kernel in this design to copy data
or the requests.

Using a kernel-level Sockets layer over VIA. The two
approaches explained earlier do not effectively exploit the
VIA’s advantages even though they are built on the NIC
that supports VIA mechanisms in hardware. Instead, we
implement GNBD/VIA based on the kernel-level Socket-
s layer over VIA, as depicted in figure 3(d). We design
and implement a slim layer which provides a subset of
Sockets-like interfaces over VIA inside the kernel. We be-
lieve this approach is the simplest way to port GNBD over
VIA with minimal efforts while producing the maximum
performance. Although VIA enables user-level communi-
cation, the previous observation in figure 3(c) suggests it
is not necessary to move the disk 1/O requests and data to
the user-level because such requests and data are already
present in the kernel.

We show the detailed organization of our GNBD/VIA
implementation on cLAN adapters in figure 4. In fig-
ure 4, cl anlk is a driver module for cLAN hardware and
cl anngr is a user-space daemon which is responsible for
establishing and closing VIA connections. We describe the
role of other layers, specifically KVIPL and VCONN, in the
following subsections in detail.

File system
GNBD/VIA
VCONN

KVIPL
clan1k

NIC

ousay

VIPL]

Figure 4. The layering of GNBD/VIA imple-
mentation

3.2. KVIPL (Kernel-level VIPL) layer

For user-level applications, the VIA specification defines
a set of standardized API called VIPL (VI Provider Li-
brary). However, as the VIPL is provided in the form of a
user-level library, it can not be used inside the kernel. For-
tunately, the cLAN driver from Emulex has a set of kernel-
level VI Provider Library or KVIPL, as part of its LANEVI
layer.

Even though KVIPL is included in the cLAN driver,
KVIPL does not provide a complete set of APIs for VI
programming, because it is an unofficial submodule for im-
plementing the LANEVI layer. For example, since it relies
on cl annmgr when a node connects or disconnects with a
remote node, it does not provide APIs related to the con-
nection management such as Vi pConnect Request (),
Vi pConnect Accept (), Vi pConnect Wi t (),
Vi pConnect Rej ect (), and Vi pDi sconnect Vi ().
It also lacks blocking send / receive APIs such as
Vi pSendWai t () and Vi pRecvWait (), and error
handling ones.

To get around this problem, we have extended the
KVIPL so that it supports the same set of APIs as VIPL.
In fact, our modified KVIPL is not so different as VIPL ex-
cept handling of a receive descriptor. As both KVIPL and
VIPL are consumers of cl anlk driver and cLAN adapter,
they show nearly the same structure and behavior.

Using the KVIPL layer offers a number of advantages.
First, kernel codes access the VIA hardware essentially in
the same way as user-level applications using the familiar
VIPL interfaces. Without the KVIPL layer, kernel codes
would have needed to access the cl an1k driver and cLAN
adapter directly. Second, the communication functions are
well-modularized and the KVIPL layer alone can be used
for other purposes later. Finally, it is easy to migrate user-
level VIA applications into the kernel and vice versa.

3.3. VCONN layer

Modifying GNBD directly over the KVIPL layer re-
quires a significant change in GNBD internals, because the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
1530-2075/02 $17.00 © 2002 IEEE

sender receiver
Vi VI
SQ RQ
-
.
<=

Figure 5. Sender/receiver synchronization

interface provided by the KVIPL layer is very primitive
compared to the Sockets used by GNBD. Instead, we in-
troduce an intermediate layer called VCONN (VIA CON-
Nection), which emulates Sockets interface over the KVIPL
layer. As a normal kernel-level Sockets-like interface is pro-
vided by the VCONN layer, we can minimize the code mod-
ification in GNBD.

We discuss several issues in implementing the VCONN

layer in this subsection. Our goal is to make the VCON-
N layer as efficient as possible so that the performance of
native VIA can be delivered to the upper kernel-level appli-
cations such as GNBD/VIA.
Synchronization between sender and receiver. The VI-
A requires that the receiver should prepost a descriptor to
the receive queue (RQ) before the sender requests a data
transfer. To satisfy this preposting constraintthere should
be a synchronization mechanism between sender and re-
ceiver, with which the sender guarantees that at least one
descriptor is available on the RQ of the destination VI.

VCONN uses a two-way handshaking illustrated in fig-
ure 5, where (REQ, DATA) messages are immediately sent
to the receiver. Initially, the receiver preposts more than
one descriptor in advance and waits an incoming message.
The sender is allowed to transmit a message at a time and
it should receive an ACK from the receiver to send another
message. When the message the sender transmits arrives at
the receiver, the receiver extracts the descriptor, and repost-
s a descriptor for the next message. The receiver sends a
(ACK, REP) message to the sender after posting a descrip-
tor. The ACK message informs the sender that the receiver
is ready to receive the next message.

In this scheme, the (REQ, DATA) message may arrive
before the application calls r ecv() on the destination n-
ode. Therefore, the receiver is required to buffer the incom-
ing data temporarily.

Message handling. When a message arrives at a node,
the corresponding descriptor should be extracted from a
queue and an appropriate action needs to be taken. Nor-
mally, the arrival of an asynchronous message is not au-

Kernel thread
Vi Vi cQ Interrupt

handler
sQ RQ sQra | S R
H recv()

> —

Prepow
|| =l
NIC

Figure 6. Message handling

tomatically notified to the application in VIA. As cLAN’s
implementation of VIA does not support asynchronous no-
tification either, we should invent a scheme to handle the
asynchronous messages efficiently.

In the kernel-level VCONN layer, it is possible to run a
specific code upon the completion of a descriptor by reg-
istering an interrupt handler. When a message arrives, the
cLAN hardware issues an interrupt and the corresponding
interrupt handler is activated. The handler checks the Com-
pletion Queue (CQ), dequeues the entry in CQ and Work
Queue, and then wakes up a kernel thread which is waiting
for a new message. The kernel thread preposts a descriptor
for receiving another message, as depicted in figure 6.

We experience that the task of the interrupt handler is so
long that sometimes it fails to serve all the interrupts. The
Linux kernel solves this problem by splitting the interrup-
t handler into two halves: the so-called “top-half” and the
“bottom-half”. Therefore, we implement our interrupt han-
dler in a way that most work is done by the bottom-half
following a very simple top-half.

Flow control. When we analyze the GNBD, we find that
the communication pattern is very simple and determinis-
tic enough to avoid a complex flow control in the transport
layer. In all the cases, a client and server follow the sim-
ple communication pattern: the client initiates connection,
sends a request and waits for a response; the server waits
for a request and sends a response.

Therefore, we design and develop a very simple but de-
cent flow control method tuned to GNBD communications.
VCONN supports a flow control mechanism similar to the
TCP’s sliding window protocol [10] by extending the two-
way handshaking shown in figure 5. Our implementation
of VCONN also has the notion of window size w, which
denotes the maximum number of messages the sender is al-
lowed to transmit without waiting for an acknowledgment.
Initially, the receiver preposts w descriptors to RQ. When-
ever the sender transmits a (REQ, DATA), it decreases w,
which means that one of the preposted descriptors on the
receiving end has been consumed. If w reaches zero, there

TEEE .2

COMPUTER
SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
1530-2075/02 $17.00 © 2002 IEEE

is no available descriptors on the receiver and the subse-
quent transmission is put on hold until w becomes positive
number [4]. The window size w is increased by one when
an (ACK, REP) is delivered to the sender. Normally, the
window size w is fixed in both client and server side with a
constant value.

4. Evaluation
4.1. Evaluation Methodology

The hardware platform used for performance evaluation
is two Linux servers running Linux kernel 2.2.18 patched
with UDMA-enabling and GFS-enabling code. Each server
consists of Pentium I11-1GHz microprocessor with 256K-
B of L2 cache, 512MB of main memory, UDMA100 hard
disks and an on-board Intel EtherExpress 10/100 FastEth-
ernet adapter. Additionally, a cLAN1000 adapter has been
installed to the 32-bit 33MHz PCI slot of each server. The
cLANZ1000 adapters are connected in a back-to-back topol-
ogy without any intermediate switch.

To evaluate GNBD performance, we have measured the
file read and write bandwidth after mounting EXT2 and
GFsS file systems on GNBD, varying the transport layers:
LANEVI and VCONN on cLAN, and TCP/IP on 100Mbps
FastEthernet (FE for short). We have used bonni e++ [7]
to measure the file system performance.

4.2. Performance

Basic Performance. First, we report the latency of
LANEVI and VCONN in table 1. The message sizes, 22
bytes and 4096 bytes, are the most frequently used sizes
in GNBD if a block size is 4096 bytes. The 22 byte-long
message is used to send a request or receive a response,
and 4096 byte-long message to send or receive a block it-
self. As can be seen in table 1, the latency of VCONN is
far better than that of LANEVI, meaning VCONN is able
to work faster and more efficiently than LANEVI. Note
that although the latency is very important for single block
read/write, it can be hidden by pipelining the requests and
responses.

EXT2/GNBD performance. Figure 7 shows the perfor-
mance of EXT2 file system over GNBD. Looking at the per-
formance results, we can see that GNBD/VCONN results
in higher read/write bandwidth than GNBD/LANEVI and
GNBD/FE. The read bandwidth of EXT2/GNBD/VCONN
(30.6MB/s) reaches nearly the local EXT2 read band-
width (32.5MBY/s) in figure 7(a), while the write bandwidth
(25.9MB/s) is far lower than the local bandwidth (38.1M-
B/s). We observe that the followings are responsible for
the degradation in the write bandwidth of EXT2 file system
over GNBD:

Message size || Native VIA | VCONN | LANEVI
(bytes) (ps) (us) (ps)

22 9 17 31

512 15 26 39

1024 20 32 48

4096 51 68 100

Table 1. Latencies

e Synchronous 1/O: the GNBD server intentionally
opens a file for synchronous I/O and then exports it
to the clients. Turning on the synchronous I/O mode
reduces the write bandwidth significantly because the
buffering system is not utilized. For example, a block
device with synchronous I/0O mode shows the band-
width around 30MB/s, while the normal bandwidth is
about 41MB/s.

e No block clustering: the kernel combines multiple s-
mall /O operations into a larger single 1/O operation
in order to decrease the number of read/write requests
to disk. However, this block clustering is not enabled
for the virtual device created by the GNBD layer on
the client side.

e Dual buffering: a block should be written in the buffer
memory of the client and also in the memory of the
server before being flushed into a physical disk.

The graphs shown in figure 7(a) are obtained when the
server exports a single, large file to the clients. Alternative-
ly, the server can also export a raw partition to clients and
figure 7(b) plots the performance of EXT2 file system in
this case. First, we see that the write bandwidth is slightly
improved when compared to the results of the file-exported
case in figure 7(a). The improvement in write bandwidth is
caused by the simplicity in writing mechanism of the block
device: when a block is written by the client, the server s-
tores nothing but the requested block. When a file is export-
ed, however, the server also needs to touch other meta-data
(for example, an i-node block for the exported file) in the
server’s own file system.

On the contrary, the read bandwidth goes down large-
ly when compared to the case shown in figure 7(a). The
degradation of read bandwidth is due to the inefficiency in
sequential block reading from the exported partition. The
sequential read access can benefit from prefetching where
several adjacent blocks are read in advance before they are
actually requested. The default read-ahead size used for
prefetching from a partition is only 8 sectors (8 x 512 =
4096 bytes). In EXT2 file system, however, the read-ahead
size varies between 3 and 31 pages by considering the read

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
1530-2075/02 $17.00 © 2002 IEEE

5 8
[

=
v
1

Bandwidth(MB/s)
N
o
1

=
o
1

anbd-FE
(a) file-exported

anbd-lanevi anbd-vconn

8 & 8
RV

N
o
1

Py
o
1

Bandwidth(M B/s)
8
1

=
o
1

anbd-FE
(b) partition-exported

ext2-local anbd-lanevi anbd-vconn

Figure 7. The performance of EXT2 file system over GNBD

& 8
[P

Bandwidth(MB/s)
BN
(4] o
1 1

[y
o
1

o o
1

afs-FE
(a) file-exported

afs-local-nolock afs-lanevi

8 & &
R

[}
o
1

=
o
1

Bandwidth(M B/s)
3
1

[
o
1

o o
1

afsFE

(b) partition-exported

afs-lanevi

Figure 8. The performance of GFS file system over GNBD

pattern: the more sequential, the larger read-ahead size,
where the size of a page is usually 4096 bytes.
GFS/GNBD performance. Figure 8 shows the perfor-
mances of GFS over GNBD. Generally, the write perfor-
mance of GFS/GNBD is slightly lower than that of EX-
T2/GNBD due to the overhead of GFS itself such as jour-
naling.

5. Conclusion

In this paper, we present a design and implementation
of GNBD/VIA, a Network Block Device (NBD) over Vir-
tual Interface Architecture (VIA). First, we have extend-
ed the KVIPL layer included in the VIA driver of Emulex
cLAN adapters so that it supports the same set of APIs as
VIPL in the kernel. And then we have developed an in-
termediate layer called VCONN which provides a set of
kernel-level Sockets-like interfaces over KVIPL. Using the
VCONN layer, we can minimize the code modification in
GNBD, while maximizing its performance.

Our measurement results show that GNBD/VIA outper-
forms the normal NBD placed on top of TCP/IP protocol s-
tacks, and realizes the performance comparable to local disk
devices, showing the read and write bandwidth of 30.6MB/s
and 25.9MB/s on cLAN, respectively.

We plan to extend the VCONN layer to a general kernel-
level Sockets layer over VIA in the near future.

References

(1]

(2]

3]
[4]

[5]

(6]

[7]

(8]

9]

[10]

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
1530-2075/02 $17.00 © 2002 IEEE

Compaq Computer Corp., Intel Corp., and Microsoft Corp.
Virtual Interface Architecture Specification Draft Revision
1.0. http://www.viarch.org/, Dec. 1997.

K. Duncan. Fibre Channel and Gigabit Ethernet: A Look at
Technology for Storage Networking Solutions. Fibre chan-
nel group, University of Minnesota, 2001.

Giganet Inc. cLAN for Linux: Software user’'s Guide, 2001.
J.-S. Kim, K. Kim, and S.-I. Jung. SOVIA: A User-level
Sockets Layer over Virtual Interface Architecture. In Pro-
ceedings of the 3rd IEEE Int'| Conf. on Cluster Computing,
pages 399-408, Oct. 2001.

National Energy Research Scientific Computing Cen-
ter. MVICH: MPI for Virtual Interface Architecture.
http://www.nersc.gov/research/FTG/mvich/.

National Energy Research Scientific Computing Center.
M-VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/research/FTG/via, 1999.

R. Coker. Bonnie++ Project. http://www.coker.com.au/
bonnie++/.

M. Rangarajan and L. Iftode. Software Distributed Shared
Memory over Virtual Interface Architecture: Implementa-
tion and Performance. Technical report, Department of
Computer Science, Rutgers University, 2000.

Sistina Software, Inc. Global File System. http://www. sisti-
na.com.

W. R. Stevens. TCP/IP lllustrated, Volume 1: The Protocols.
Addison-Wesley, 1994.

YF]',F.

COMPUTER
SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

