IEICE TRANS. INF. & SYST., VOL.E87-D, NO.3 MARCH 2004

751

[PAPER

Delaying Coherence Requests to Enhance the Performance of Strict

Consistency Models

Young Chul SOHN', NaiHoon JEONG ', Jin-Soo KIM', and Seung Ryoul MAENG ', Nonmembers

SUMMARY Advances in ILP techniques enable strict consistency
models to relax memory order through speculative execution of memory
operations. However, ordering constraints still hinder the performance be-
cause speculatively executed operations cannot be committed out of pro-
gram order for the possibility of mis-speculation. In this paper, we propose
a new technique which allows memory operations to be non-speculatively
committed out of order without violating consistency constraints. Consis-
tency constraints are guaranteed through delaying the coherence requests.
The proposed technique also improves the performance of spin lock prim-
itives such as TTS lock or MCS lock. Through delaying early acquire re-
quests, the lock transfer time can be improved when there is high contention
for a lock.

key words: multiprocessor, distributed shared memory, memory consis-
tency model, ILP

1. Introduction

The memory consistency model is a crucial factor for the
performance of shared memory multiprocessor systems.
Strict consistency models (such as sequential consistency
(SCO) or total store ordering (TSO)) offer intuitive program-
ming interface, but the inability to perform memory opera-
tions out of program order limits the performance.

Modern microprocessors incorporate techniques to ex-
ploit instruction-level parallelism (ILP). ILP techniques en-
able aggressive optimizations [2],[4],[14] for strict con-
sistency models, which relax memory order speculatively.
Gharachorloo et al. [2] proposed hardware prefetching and
speculative load execution. These two optimizations sig-
nificantly improved the performance of strict consistency
models through issuing memory operations out of program
order. However, ordering constraints in strict consistency
models still hinder the performance [14]. First, the store-to-
load ordering (in SC) prohibits a load from bypassing prior
stores and retiring from the reorder buffer. It may cause a
high latency store to block the instruction flow through the
reorder buffer. Second, the store-to-store ordering (in SC or
TSO) forces stores to be performed one after another. It may
cause underutilization of memory units and cache ports.

To alleviate above problems, speculative retire-
ment[14] and SC++ [4] are proposed. Those techniques

Manuscript received March 10, 2003.
Manuscript revised August 11, 2003.

"The authors are with the Department of Electrical Engineer-
ing and Computer Science, Korea Advanced Institute of Science
and Technology, 373—-1 Guseong-Dong, Yuseong-Gu, Daejon 305—
701, Korea.

"The author is with NCsoft corp., Seung Kwang Bldg, 1438
Samsung-dong, Kangnam-gu, Seoul 135-090, Korea.

allow memory operations to be speculatively committed*
(retired) out of program order. Thus, memory operations
no longer stall processor pipelines waiting for the comple-
tion of prior operations. However, out-of-order commitment
may incur a consistency violation. To recover from possi-
ble consistency violations due to speculative commitment,
a processor should store the architectural state into an addi-
tional history buffer and roll back when a mis-speculation is
detected.

The effectiveness of the speculative commitment tech-
niques is mainly limited by the size of a history buffer; the
number of instructions can be committed speculatively at a
time. The size of a history buffer should scale with the per-
formance gap between processor and memory subsystem.
To hide the higher memory latency, a processor should pro-
vide the larger history buffer [4]. Especially, in case of a
speculative commitment of a load, the history buffer should
keep rollback information not only for the load itself but also
for all of the instructions following the load.

In this paper, we propose a new mechanism, the re-
quest reorder buffer (RRB) technique, to alleviate the im-
pact of the store-to-load and store-to-store ordering con-
straints in strict consistency models. The RRB technique
enables non-speculative commitment of memory operations
(both loads and stores) bypassing prior stores. To guaran-
tee consistency constraints, the RRB technique rearranges
the global order of memory operations by delaying a cache
coherence request. Because the RRB technique does not re-
quire rollback, long memory access latencies can be hidden
with small cost of storage, and the negative effects of the
speculative techniques can be removed. The RRB technique
introduced in this paper can also enhance the performance
of lock hand-off for a contended lock. By out-of-order com-
mitment of release operation, we can reduce the negative
impact of early acquires on a contended lock.

The rest of the paper is organized as follows. Sec-
tion 2 describes the current optimizations for strict consis-
tency models. Section 3 describes the RRB technique. Sec-
tion 4 describes how the RRB technique can improve the
performance of contended lock. In Sect. 5, we report exper-
imental results of the RRB technique. Section 6 concludes
the paper.

*We call an operation is committed when it updates the pro-
cessor and memory state; a load is committed when it update des-
tination register and is retired from the reorder buffer, and a store
is committed when it updates the cache and is removed from the
store buffer (or load/store queue).

752

2. Background

ILP processors execute multiple independent instructions
concurrently and potentially out of program order. To main-
tain precise interrupts [15], all inflight instructions are stored
in the reorder buffer in program order, and modify the ar-
chitectural state of the processor when they retire from the
reorder buffer.

Though ILP technique allows memory operations to
be executed out of order as long as they do not access the
same location, ordering constraints of memory consistency
models prohibits reordering memory operations. Especially
in case of strict consistency models such as SC and TSO,
the inability to reorder memory operations hinders the per-
formance because long latencies of memory access can not
be hidden through overlapping memory operations. On the
other hand, relaxed models such as RC[3] allow most of
operations to be executed out of order except at synchro-
nization points.

To remedy this problem, advanced techniques such as
hardware prefetching, speculative load execution [2], and
store buffering [1] were proposed. With hardware prefetch-
ing technique, non-binding prefetches for memory opera-
tions in the reorder buffer can be issued to hide memory ac-
cess latency. Moreover, speculative load execution allows
the prefetched value to be consumed by a load and subse-
quent instructions. Store buffering allows pending stores to
retire from the head of the reorder buffer. With these tech-
niques, strict consistency models can emulate the behavior
of RC and the performance gap between consistency mod-
els significantly narrowed. However, there still remains the
room for improvement.

Figure 1 shows a typical snapshot of a MIPS
R10000[17]-like ILP processor which incorporates above
techniques. Suppose that the program segment in left side is
executed and operation 11 misses in the cache while 13 and
14 hit. Because of store buffering, 11, 12 and 13 retire from
the reorder buffer although 11 is still pending.

In this situation, two types of ordering constraints may
hinder the performance. Firstly, in SC, though 14 is com-
plete, it cannot retire (committed) from the reorder buffer
until 11 and 13 are complete because of the store-to-load or-
dering constraint. Thus, the processor pipeline may stall if
the store is not complete before the reorder buffer is filled
up. In RC or TSO, however, 14 can be committed as soon
as it reaches to the top of the reorder buffer bypassing prior

Program | p/sT ¢
11:stA Queue =
12: alu

13:stB ¢
14:1d C

15 alu Reorder

=
Buffer ©

|| Issue |4 » | Cache
|| Logic Controller

n
B

st A : cache miss
st B : cache hit
Retire Id C : cache hit
Logic

Id C

Fig.1 A snapshot of an ILP processor.

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.3 MARCH 2004

stores.

Secondly, in SC and TSO, though 13 hit in the cache
and ready to be issued, it cannot be performed until 11 is
complete due to the store-to-store ordering constraint. Be-
cause stores should be performed one at a time in program
order, they may generate a bursty traffic to the cache if a long
latency store at the head of the load/store queue blocks mul-
tiple subsequent stores. And it may also cause the load/store
queue to fill up, which may also produce pipeline stalls. In
RC, I3 can be performed bypassing 11 and removed from the
load/store queue.

3. The RRB Architecture

This section describes the RRB technique. We assume a cc-
NUMA system similar to SGI Origin2000 [7]. Processors
incorporate hardware prefetching, speculative load execu-
tion and store buffering. Also, an invalidation-based cache
coherence protocol is used. We will describe how the RRB
technique works in SC, and it can be directly applied to
TSO.

3.1 Delaying Coherence Request with the RRB Technique

Memory consistency models specify the order in which op-
erations appear to be executed, not necessarily the order in
which they are actually executed in a system. Thus, out-of-
order execution of operations does not violate consistency
constraints as long as the result of the execution is the same
as if the operations were done in an order which is consistent
with program order.

When an operation x is executed out of order, x appears
to be executed in program order if no conflict operation is
executed until all of the operations prior to x are complete.
Two operations conflict if they access the same location, and
at least one is a store.

In the Fig. 2, assume yy,...,y, and x are memory op-
erations in program order. The operation x is executed out
of order (denoted as x”) bypassing yo, . . ., y, and operations
prior to x are complete at ¢;. In this case, if an operation z
which conflicts with x is executed at #,, the out-of-order ex-
ecution x” appears to be executed in program order. It is be-
cause the in-order execution of x (denoted as x’) produces
the same result as x’. On the other hand, if z is executed
at fp, x* and x” produce different results because conflict
operations produce different results if the execution order
is changed — (x,z) and (z, x) produce different results. In

t,: completion of
\J/ prior operations

"

X' YooY, X'en.

T

b

> time

t

2

Fig.2 The correctness of the out-of-order execution.

SOHN et al.: DELAYING COHERENCE REQUESTS TO ENHANCE THE PERFORMANCE OF STRICT CONSISTENCY MODELS

Initially, A=B=0

PO P1
Store A,1 (a) Store B,1 (¢)
Loadrl,B (b) Load r2,A (d)

Fig.3 The sample program.

(i) PO: Db, a,b
P1: I
(ii) PO: b, a
-
P1: T \‘C/,d

Fig.4 The case when out-of-order execution may cause a consistency
violation. (i) In the previous schemes, processor discards the out-of-order
execution and re-issue b. (ii) We can guarantee that ¢ will never be per-
formed between b and a by delaying the coherence request of c.

this case, the out-of-order execution of x may violate con-
sistency constraints.

For example, in the sample program in Fig. 3, suppose
that PO executes b before a. If the operations are executed
in the order of (b, a, ¢, d), the operation b appears to be exe-
cuted in program order (a, b, ¢, d) because no conflict oper-
ation is executed between b and a.

However, if ¢ is executed between b and a, it is not
always possible for b to appear to be executed in program
order. For example, if ¢ and d are performed between b
and a, (b,c,d,a), the result of the out-of-order execution
of b, r1 = 0, is different from the in-order execution of b,
(c,d, a, b), which produces rl = 1. In this case, the result,
rl = 0, should be discarded and b should be re-issued af-
ter a because the result of r1 = r2 = 0 violates sequential
consistency. To avoid this inconsistency, in the speculative
retirement [14] and SC++ [4], PO nullifies the result of the
out-of-order execution of b when it receives the invalidation
request of ¢, then re-issues b (Fig. 4 (i))'.

On the other hand, if the invalidation request of ¢ is
delayed until @ is complete, we can avoid the re-issue of b.
By delaying the invalidation request, we can guarantee that
the result of the out-of-order execution of b is the same as
that of the in-order execution of b because ¢ will never be
executed between b and a—we can avoid an incorrect execu-
tion (b, ¢, d, a) and enforce an execution (b, a, ¢, d), which is
consistent with program order (Fig. 4 (ii)). Note that delay-
ing coherence request does not affect the correctness of the
program because operations from different processors can
be performed at any order.

As seen by above example, the out-of-order execution
of an operation does not violate consistency constraints as
long as the coherence request (invalidation, downgrade, and
replacement) to the accessed block is delayed until prior op-
erations are complete. Because the operation does not need
to be re-issued, the operation can be committed out of pro-
gram order. In this paper, we propose the RRB technique,
which allows an operation to be committed out of order.

753
LD/ST Queue
o [|< A coherence request
v |v|® #
K pr_instr | addr| wait_req
~— C | down, P3
RRB

Fig.5 Example of out-of-order commitment.

Unlike the previous schemes [4], [14] which rely on spec-
ulative commitment and rollback, proposed scheme non-
speculatively commits an operation while consistency con-
straints are guaranteed by delaying coherence requests.

When a completed load reaches the head of the reorder
buffer before prior stores are complete, the load is com-
mitted (retired) bypassing stores. Similarly, when a store
is ready to be issued but should wait for the completion of
prior stores, the store is performed (committed) to the cache
bypassing stores. Whenever a load or a store is committed
bypassing prior stores, processor should guarantee that no
other processor executes a conflict access until prior stores
are complete.

The request reorder buffer (RRB), which is a special
buffer between processor and cache controller, takes charge
of delaying coherence requests. When a processor commits
an operation out of order, the address of the accessed cache
block is stored in the RRB. Whenever a coherence request
is received, cache controller should check the RRB before
it processes the coherence request. If the target address of
the coherence request matches in the RRB, the request is
delayed until the prior operations of the committed oper-
ation (pointed by a field in the RRB) are complete. Fig-
ure 5 shows an example of out-of-order commitment using
the RRB technique. If store C is committed out of order,
the address C is registered in the RRB. When a coherence
request to C is received, the request is removed from cache
pipeline and stored in the RRB until prior stores are com-
plete. Figure 5 depicts a situation that P3 executes load C
and the downgrade request of load C is delayed by the RRB
technique.

Note that on a replacement of cache block which is reg-
istered in the RRB, the replacement request should also be
stored in the RRB. It is because once a block is replaced
from a cache, a coherence request is no longer delivered to
the processor, which may result in a consistency violation.

"Note that (b, c,a,d) does not violate sequential consistency
though ¢ were executed between b and a. It is because there ex-
ists an execution order (a, b, c,d) which produce the same result
as (b, c,a,d). However, it is hard to detect whether d is executed
before a or not. Thus, the previous schemes conservatively assume
that the execution of ¢ as the consistency violation.

754

3.2 Deadlock Avoidance

Because an operation may be delayed indefinitely, the RRB
technique may cause a deadlock. In the sample program in
Fig. 3, suppose that PO commits b bypassing a and the in-
validation request of c is delayed at PO. There is a wait-for
dependency between a and ¢, which is denoted by a — c:
¢ waits for the completion of a. In this situation, if P1 also
commits d out of order, the invalidation request of a should
be delayed until ¢ is complete. Thus, there is also a wait-
for dependency ¢ — a. This cyclic dependency leads to a
deadlock situation. In this paper, we propose a deadlock
avoidance scheme which limits the out-of-order commit-
ment based on the address of the memory block. From now
on, we will denote the address of memory block accessed
by an operation x by ‘&x’.

Deadlock avoidance scheme: Processors are allowed to
commit an operation x bypassing an operation y, if and only
if &x > &y.

Correctness: To perform the proof by a contradic-
tion, suppose that the RRB technique with proposed dead-
lock avoidance scheme makes cyclic wait-for dependencies
among several processors as follows.

ay—a; —...—a, > ay (ay: operations) - (1)

A wait-for dependency ay — a4 implies that there ex-
ists an operation x which access the same memory location
with a1 (i.e. &x = &ags1), and x is committed bypass-
ing a;. By proposed scheme, x can bypass gy if and only if
&ay, < &x. Thus, &ay < &ayyy. Generally, the supposed
dependency (1) means

&ag < &a; < ...< &a, < &ag

It is a contradiction. Therefore, there is no cycle caused
by out-of-order commitment.]

As an example, in Fig. 3, if &b > &a, PO is allowed to
commit b bypassing a but P1 cannot commit d out of pro-
gram order. Thus, cyclic wait-for dependency is not created
and deadlock is avoided.

Although the proposed scheme avoids deadlock, it lim-
its the performance because some of the operations may
not be committed out of order due to the deadlock avoid-
ance condition. In general, the more operations are commit-
ted out of order, the higher performance is achieved. Be-
cause the proposed scheme restricts out of order commit-
ment based on the target address of an operation, the perfor-
mance is highly dependent on the memory access patterns
of an application. The proposed scheme performs well on
applications of which the addresses of long latency stores
are usually lower than addresses of following operations.

We expect that a more sophisticated deadlock avoid-
ance scheme could achieve the more performance enhance-
ment through, for example, exploiting memory access pat-
terns of applications or relocating addresses of memory
blocks by compilers.

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.3 MARCH 2004

Reorder
Logic

GT_prev. .

LD/ST Issue >

Queue Logic by

» | Controller
Reorder Retire iZﬁizt\z in store/revive
Logic
Buffer 9 RRB entry a cohe_req

prior_st{addr| wait_req pp_type

RRB
Fig.6 The block diagram of the RRB architecture.

3.3 Implementation of the RRB Technique

Figure 6 shows the block diagram of processor architecture
for the RRB technique. For simplicity, we present logic
blocks related to the RRB technique but omit other compo-
nents. The load/store queue is similar to the address queue
of MIPS R10000 processor [17], which holds memory op-
erations in program order. The retire logic commits the re-
sult of completed operations in the reorder buffer. The is-
sue logic actually performs memory operations in load/store
queue. Without the RRB technique, the retire logic cannot
retire a load bypassing stores and the issue logic should per-
form stores one after another in the program order.

In the RRB technique, loads and stores are commit-
ted bypassing prior stores. To delay the coherence request
which conflicts to the committed operation, an RRB entry
for the committed operation is created.

An RRB entry consists of four fields; addr field which
stores the block address of a committed instruction, prior_st
field which points to the nearest prior store to the committed
operation in the load/store queue, wait_req field which stores
the delayed coherence requests. Maximum two coherence
requests can be stored in wait_req field; one is a coherence
request from the directory and the other is a replacement
request. Note that once a coherence request is delayed by the
RRB, the directory does not send another coherence request
to that block until the delayed coherence request is replied.
The last field of the RRB is op_type field which indicates the
type (load or store) of the committed operation. The op_type
field is required to prohibit useless delays; when a load is
committed out-of-order and the accessed block happens to
be in the cache with exclusive state, an invalidation request
to the block should be delayed, but a downgrade request can
be serviced because loads can be executed concurrently. A
downgrade request is delayed only if there is an RRB entry
whose op_type is ‘store’.

To implement deadlock avoidance scheme, we add the
reorder logic and one-bit GT_prev field to the load/store
queue; GT_prev field indicates whether the operation can be
committed out of order with respect to the deadlock avoid-
ance condition. The reorder logic sets GT_prev field of each

SOHN et al.: DELAYING COHERENCE REQUESTS TO ENHANCE THE PERFORMANCE OF STRICT CONSISTENCY MODELS

operation in the load/store queue through comparing the tar-
get address of the operation with that of prior operations. If
an operation accesses the highest address than all of prior in-
structions, GT _prev field is set indicating the operation can
be committed.

Out-of-order commitment of loads and stores are ac-
tually done by the retire logic (loads) and the issue logic
(stores). If a load reaches to the top of the reorder buffer,
the retire logic checks the load/store queue status. If the
GT_prev field of the load is set, the load is committed even
if there are prior incomplete stores. Stores are committed
by the issue logic. If there is a store whose GT_prev field is
set, the issue logic performs the store to the cache. When-
ever an operation is committed out of order, the operation
is registered in the RRB and removed from the load/store
queue.

Whenever a coherence request is received, the cache
controller checks the RRB before it processes the coherence
request. If the target address and the op_type of the coher-
ence request matches with an RRB entry, the request is re-
moved from the cache controller and stored in the wait_req
field of the RRB entry.

An RRB entry is removed from the RRB when all of
operations prior to the operation which is pointed by the
prior_st field are complete. Whenever an operation is com-
plete and removed from the head of load/store queue, the
issue logic should search the prior_st field of the RRB. If it
matches, the RRB entries are freed and the delayed coher-
ence requests are revived, if any.

For a multiprocessor system with 256 nodes with a 64-
bit processor, an RRB entry requires 74 bits as depicted in
Table 1. To build the RRB table with 64 entries, 592 bytes of
storage is requred. In case of history buffer with 64 entries,
it requires about 1152 bytes of storage and similar amount of
storage is required to add 64 enties to the reorder buffer [14].

Note that the wait_req field is not enough to store
the whole replacement request for a modified cache block.
When a modified cache block is replaced, the replacement
request contains the cache block for write-back to the main
memory. In this paper, we assume that the replaced cache
block is temporally stored in a internal buffer which is used
for handling replacement requests. In the RSIM abstrac-

Table1 The RRB fields.

DESCRIPTION
indicates one of entry in the load/store
queue.
cache block address which is accessed by an
operation which is committed out of order.
We assumed 32 byte cache line.
coherence request which is delayed by the
RRB technique. For a external coherence
request, 2bits of type and 8bits of the re-
questor’s node ID is required. For a re-
placement request 2 bits of request type is re-
quired.
indicates the operation type of committed
operation.

FieLp Birs

prior_st 6

addr 59

wait_req 12

op-type 1

755

tion[11], they assume the WRB (write-back buffer) struc-
ture to correctly handle possible replacement incurred by
incoming reply. The WRB keeps the replaced cache block
until the replacement request can be successfully injected
into the memory subsystem. Thus, we can utilize the al-
ready existing buffer space for storing the replaced cache
block.

When the RRB technique is implemented in cc-NUMA
systems, it would complicate the design of the memory sub-
system because resource contention in the memory subsys-
tem may incur a deadlock situation. For example, suppose
that an operation y is delayed by the RRB mechanism and
waits for the completion of x (x — y). If y occupies a re-
source which is required for the completion of x, deadlock
could occur due to resource contention because x also waits
for y to release the resource (y — x).

Because a detailed implementation of memory subsys-
tem is significantly different for each multiprocessor system,
we will describe some of the general techniques to avoid
deadlock due to resource contention. One simple method
is to release all of resources occupied by a delayed mem-
ory operation. It can be implemented by retrying the de-
layed operation, rather than blocking it at a cache. Be-
cause the delayed operation would not hold any resources
but release and re-occupy them, a fair arbitration mechanism
for resources would guarantee deadlock freedom. Another
method is to guarantee the completion of the oldest mem-
ory operation of each processor by limiting the number of
outstanding operations from one processor. In this method,
processors are allowed to issue maximum n operations at
a time and the memory system supplies plenty of resources
enough for all of the outstanding operations to be performed
without contention. If each processor reserves the issue slot
for the oldest operation, the oldest operation in a processor
can be always issued and never blocked for resources. Thus,
we can avoid deadlock.

4. Fast Lock Transfer with the RRB Technique

Efficient locking synchronization primitives are essential for
achieving high performance in parallel programs. One func-
tion of locking primitives is to enable exclusive access to
shared data and critical sections of code.

While many papers suggest various locking mecha-
nisms [6], [9],[13], the most simple and popular mecha-
nisms are spinlocks based on atomic read-modify-write op-
erations (such as TTS (test&test&set) or MCS lock [9]). In
those spinlocks, a lock is transfered from a lock holder to a
next lock requestor by a store to a lock variable which a lock
requestor is spinning on.

For example, in case of TTS lock in Fig.7, a lock re-
questor spins on a lock variable until the lock is released.
The lock holder release it by clearing the lock variable. If
there is no contention for the lock, release operation can
be performed within the lock holder’s cache. However if
other processors try to acquire the lock before it is released,
the exclusive ownership for the lock variable is relinquished

756

from the lock holder. In this case, the lock transfer time
would be significantly increased because it requires sev-
eral roundtrip messages between the lock holder and the re-
questor as in Fig. 8. Figure 9 (a) shows a best case that the
acquire of the next requestor arrives on time — right after the
release is complete.

As shown in Fig.8 and Fig.9 (a), early acquires de-
grade the performance because it increase the lock transfer
time and messages in the interconnection network. Thus, if
we enforce that the early acquires do not invalidate the lock
holders cache, the lock transfer time can be significantly re-
duced. As in Fig. 8 (b), if we delay the coherence request of
the early acquire until the critical section is end, we can pre-
tend that the acquire has arrived right on time and the lock
would be transfered with one-way message.

Rajwar et. al. proposed delaying coherence requests
for this purpose in LL/SC- based locking primitives [13].

typedef volatile bool TTS_ lock;
acquire (TTS ock *L)

while (test&set(L) == LOCKED)
while (L == LOCKED) ;

}

release (TTS_lock *L)
*L = 05

}

Fig.7 TTS primitives.

Lock holder X home Lock requestor

Acq (XY test&set (X)
/
<
Rel (X)
7 \»§
. e liest (%)
E / ‘/
5 |
G
i \‘wtest&set (X)
g L
\
V.
v v \ 4

Fig.8 The negative impact of contention in TTS lock.

Lock holder X home Lock requestor Lock holder X home Lock requestor

Acq (X Acq (X est&set (X)

test&set (X)
Rel (X) Rel (X)

@ ®

Fig.9 Reducing lock transfer time. (a) If the acquire arrives on time, the
lock can be transfered with one-way message. (b) If the early acquire is
delayed, we can pretend the acquire arrived on time.

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.3 MARCH 2004

They modified cache coherence protocol and introduced a
new type of cache coherence request (LPRFO) which can
be delayed by other processor which is considered as a lock
holder. To guarantee forward progress, they rely on time-out
mechanism.

In this section, we show that the lock transfer time
can be reduced with the RRB technique. As shown in the
Fig. 9 (b), we delay the coherence requests of early acquires
until the release of the lock holder is complete. Delaying the
coherence requests can be implemented without additional
modification to the RRB technique, but relocate the address
of the lock variable so that the release operation can be com-
mitted out of order — thus, the coherence request of the early
acquire can be delayed.

Proposed method is effective for a critical section
which executes long latency stores in it. Note that pro-
posed method do not require modification to the cache co-
herence protocol or discrimination of synchronization op-
eration from regular memory operations. Moreover, the
method presented in this section can be applied to any spin
locks based on atomic read-modify-write operations (such
as ticket lock or MCS lock).

4.1 Delaying the Early Acquires

In parallel applications, locks are often used to guarantee
threads have exclusive access to shared data for a critical
section. Typically, shared location is loaded at the beginning
of the critical section, and the location is modified at the
end of the critical section. Memory accesses in the critical
section usually invoke a cache miss which requires cache
coherence request because the locations are actively shared
with other processors. Thus, it is common that a critical
section is complete when a store at the end of the critical
section is complete. Figure 10 shows a typical example of
critical section in Raytrace benchmark. In this example, the
last operation in the critical section is a store to a shared
location and it usually invoke a cache miss which requires
remote memory access latency.

In this case, if we commit the release operation as soon
as it can be committed (i.e. as soon as it is retired from the
reorder buffer), we can remove the negative impact of early
acquires through delaying the coherence request with the
RRB. Note that the release is a store opertion to a lock vari-
able. Figure 11 shows that example of out-of-order commit-
ment of the release in the critical section in the figure. The

acquire(global->wplock);

wpentry = global->workpool[0];
if ('wpentry)

global->wpstat[0] = WPS_EMPTY;
release(global->wplock);
return (WPS_EMPTY);
global->workpool[0] = wpentry->next;
release(global->wplock);

Fig.10 An example critical section of Raytrace.

SOHN et al.: DELAYING COHERENCE REQUESTS TO ENHANCE THE PERFORMANCE OF STRICT CONSISTENCY MODELS

Lock holder X home Lock requestor
Critical section:

Acq (X) /ftest&set (X)
Load G P Rel (X)
y .
° / .
Y (.
L4 \\ Store G
Store G - Rel (X)
Rel (X) —
v v

Fig.11 Out-of-order commitment of a release bypassing prior store.

release is committed bypassing incomplete store G which
is prior to the release in program order and the coherence
request of early acquire is delayed.

To do it, all we have to do is just allocate the lock vari-
able to a higher address range than the address of the loca-
tion accessed in the critical section (G in the Fig. 11), so that
the release operation can be committed out of order. It can
be done by the application programmer or automatically by
the compiler.

Though above scheme improve the performance of
lock hand-off, there is a window of vulunerability — if the
early acquire is received before the release is committed
out of order, the exclusive ownership would be relinquished.
Moreover, proposed method does not effective for a critical
section which does not have long latency stores in it because
we rely on out-of-order commitment of the release bypass-
ing long latency stores.

In the following section, we evaluate the effectiveness
of the RRB technique on reducing the lock transfer time.

5. Performance Evaluation

In this section, we evaluate the performance of the RRB
technique. We present the evaluation methodology and the
results. The performance is measured in terms of overall
execution time of selected benchmark applications and mi-
crobenchmarks.

5.1 Experimental Methodology

We used RSIM [10] to simulate cc-NUMA system with 16
processors. Table 2 shows the base system configuration.
We assume a relatively large L2 cache to eliminate capacity
and conflict misses, so that performance difference among
the memory models is solely due to the intrinsic behav-
ior of the models. In our experiments, all implementations
use non-blocking caches, hardware prefetching, speculative
load execution and store buffering. We set the RRB entry
size to 64.

Benchmark applications are from the SPLASH2[16]
suite, except for Mp3d from SPLASH [5]. Table 3 gives the
input sizes used for the benchmark applications.

To show the effect of fast lock transfer with the RRB
technique, we performed an experiment similar to the
method used by Kagi [6] and Lim [8]. We constructed a mi-
crobenchmark that accesses a critical section in a loop re-
peatedly (the benchmark accesses the critical section a total

757
Table 2 Simulated architecture.
SYSTEM PARAMETERS
CPU 4-issue per cycle
Reorder buffer 64 instructions
Memory queue 64 instructions
L1 cache 16 KB, direct-mapped
L2 cache 4 MB, 4-way assoc.
Cache line size 32 bytes
L2 fill latency local 41 processor cycles
L2 fill latency remote 117 processor cycles
RRB entry 64 entries
Table 3 Application parameters.
APPLICATION INPUT PARAMETERS
Radix 512K keys
Ocean 128x128 ocean
Barnes 4K particles
Mp3d 50000 particles
Raytrace Balls4

while (loop < 2048/node_num) {

acquire(global->lock);
global->sum = global->sum + 1;
release(global->lock);

delay (4000 cycles);
loop+-+;
}

Fig.12 Microbenchmark used for locking primitives.

of 2048 times which is distributed evenly among the proces-
sors). In the critical section a processor execute a load and
store to a shared location as in Fig. 12. After release, the
releasing processor waits for 4000 cycles.

We simulated four implementations; sequential consis-
tency (SC), total store order (TSO), and adding the RRB
technique to SC and TSO (SC+RRB and TSO+RRB, re-
spectively). Note that the performance of TSO is the upper
limit of relaxing store-to-load constraint in SC. For the base
case, we simulated release consistency (RC). In RC, we do
not use the hardware prefetching and speculative load exe-
cution because previous results show it is not always benef-
ical for RC[12].

5.2 Performance of Locking Primitives with the RRB
Technique

Figure 13 and Fig. 14 show the total execution time (in
cycle) of the microbenchmark of Fig.12. We measured
the performance of TTS and MCS lock with and with-
out the RRB technique. For the +RRB versions, we lo-
cate the address of lock variable in the higher address than
global->sum.

As the number of nodes is increased, the execution time
is reduced to some extent by removing the delay of 4000
cycles in the critical path. However, as the contention for
the lock increases, and eventually the reduction in execution
time is stopped by the increase in the lock transfer time.

As shown in Fig. 13, the RRB technique improves
17.8% of TTS lock and 24.5% of MCS lock in case of 16

758

OM —a—TTS

= TTS+RRB
—A—MCS

4 MCS+RRB

Elapsed time (clock cycles)

Number of processors

Fig.13 The effect of fast lock transfer in SC.

M- —=—TTS
. = TTS+RRB
8M~ —&—MCS
A MCS+RRB
™
m
©
2 6M -
k]
g M-
A
(o]
2
3 am
Q
o
i 2m-
4 A
M~ 4

Number of processors

Fig.14 The effect of fast lock transfer in TSO.

[C_1SCE—1SC+RREIM TSO[_JTSO+RRBL__IRC |

1.0 - - A A A

0.8

0.6

0.4

Normalized Execution Time

0.2

0.0+ —
radix ocean barnes mp3d raytrace avg

Fig.15 Normalized execution time relative to SC.

nodes contention.
5.3 Performance Benefits of the RRB Technique

In this section we show the result of the RRB technique in
benchmark applications. Throughout the result in this sec-
tion, the effect of fast lock transfer is included.

Figure 15 shows the execution time of benchmarks nor-
malized to SC. In Radix and Raytrace, 17.9% and 16.8% of
the execution time were reduced in SC. In TSO, 7.5% and
13% of the execution time were reduced in Radix and Ray-
trace. On the average, the RRB technique achieves the per-
formance improvement of 10.5% in SC and 6.3% in TSO.

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.3 MARCH 2004

[C—JsCIsc+RREEEM TSOL__JTSO+RRBL__IRC |

1.0 A L - -
0.8 W L —
Q
£ —
=
15
‘g 0.6
2
w
el
& 044
K]
E
o
=z
0.2+
0.0+ =
radix ocean barnes mp3d raytrace avg
Fig.16 Impact of network latency.
[1 sCe4—1 SC128[m SC64+RRB_] SC128+RRB
1.0 4— M M M — M
o 08-
£
=
5
= 0.6+
3
o
(]
>
|
B 04
N
©
E
2 o024

0.0 -

radix ocean barnes mp3d raytrace avg

Fig.17 Impact of reorder buffer size in SC. Each of the implementation
labeled with a number indicating the size of reorder buffer.

The performance gap between SC+RRB and TSO is within
3.8%. In Barnes and Raytrace, SC+RRB outperforms TSO
because these applications are more sensitive to store-to-
store ordering. Ocean, Barnes and Raytrach use locks to
synchronize between processors. In these applications, the
fast lock transfer with the RRB technique enhance the per-
formance to the extent that TSO+RRB outperforms RC.
Comparing to RC, the performance gap between SC+RRB
and RC is within 6.4% and TSO+RRB outperforms RC with
3.1%, on the average.

Throughout the simulation, 64 entries of the RRB were
sufficient for all cases. In most applications, about half of
operations couldn’t be committed out of order solely due
to the consistency constraints. It is because the proposed
deadlock avoidance scheme was too restrictive and sensitive
to memory access patterns of applications.

Figure 16 shows the normalized execution time when
we increased the network latency to 5 times the remote
latency described in Table 2. On increasing the network
latency, the performance gain by the RRB technique in-
creased. In TSO, 12.1% of execution time was reduced by
the RRB technique on the average. It is due to the fact that
as the network latency increases, the processors are more
likely to be stalled by long latencies of stores.

Figure 17 and Fig. 18 shows the comparison with in-

SOHN et al.: DELAYING COHERENCE REQUESTS TO ENHANCE THE PERFORMANCE OF STRICT CONSISTENCY MODELS

\ [17SO64 1 TSO128 I TSO64+RRB[_]TSO128+RRB

104+ — — — — —

0.8

0.6

0.4+

Normalized Execution Time

0.2

0.0 -

radix ocean barnes mp3d raytrace avg

Fig.18 Impact of reorder buffer size in TSO. Note that the execution
time is normalized to TSO64.

creasing the size of reorder buffer. We doubled the size of
the reorder buffer (128 entries). We also increased the size of
load/store queue to 128 entries. In general, as the size of the
reorder buffer is increased, the negative effect of ordering
constraints is mitigated. It is because the reorder buffer and
the load/store queue are less likely to fill up and hardware
prefetches from the reorder buffer can be issued much ear-
lier which effectively reduces memory access latencies. In
Fig. 17, SC128 outperforms SC64+RRB in Ocean, Barnes
and Mp3d and in Radix and Raytrace, SC64+RRB outper-
forms SC128. On the average, the RRB technique achieves
the similar effect of doubling the reorder buffer in our base
system. Figure 18 shows TSO cases. Note that the execu-
tion time is normalized to TSO64. In TSO, increasing the
reorder buffer is more effective than adding the RRB tech-
nique except for Raytrace.

6. Conclusion

We have presented the RRB technique to enhance perfor-
mance of strict consistency models. To enhance the perfor-
mance of strict consistency models, previous schemes relax
memory order through speculative execution of operations.
However, ordering constraints still hinder performance be-
cause speculatively performed operations cannot be com-
mitted out of order and uncommitted operations frequently
exhaust implementation resources.

With the RRB technique, memory operations can be
committed out of program order without violating consis-
tency constraints. Moreover the RRB technique effectively
alleviate the lock hand-off problem when there is contention
for a lock through delaying coherence requests. With a 64-
entry RRB, proposed technique achieves maximum 17.9%
(SC) 13% (TSO) of performance improvement on our base
architecture. The RRB technique reduced the execution
time gap between SC and TSO to within 3.8% on the av-
erage. Because the RRB technique does not rely on rollback
mechanism, storage overhead is small; 592 bytes for a 64-
entry RRB.

Current proposal limits the performance gain to avoid
deadlock. We expect that deadlock avoidance condition

759

could be more relaxed through exploiting memory access
patterns of applications, or relocating address of memory
operations by compilers.

Acknowledgment

This research is supported by KISTEP under the National
Research Laboratory program.

References

[1] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance evalu-
ation of memory consistency models for shared memory multipro-
cessors,” Proc. 4th International Conference on Architectural Sup-
port for Programming Languages and Operating System (ASPLOS),
vol.26, pp.245-259, 1991.

[2] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to en-
hance the performance of memory consistency models,” Proc. 1991
International Conference on Parallel Processing, vol.I, Architecture,
pp.I-355-1-364, Aug. 1991.

[3] K. Gharachorloo, D. Lenoski, J. Laudon, P.B. Gibbons, A. Gupta,
and J.L. Hennessy, “Memory consistency and event ordering in scal-
able shared-memory multiprocessors,” 25 Years ISCA: Retrospec-
tives and Reprints, pp.376-387, 1998.

[4] K. Gniady, B. Falsafi, and T. Vijaykumar, “Is SC+ILP = RC?,” Proc.
26th Annual Int’l Symp. on Computer Architecture (ISCA’99),
pp.162-171, 1999.

[S] W.D. Weber, J.P. Singh, and A. Gupta, “Splash: Stanford parallel ap-
plications for shared-memory,” Computer Architecture News, pp.5—
44, March 1992.

[6] A. Kagi, D. Burger, and J.R. Goodman, “Efficient synchronization:
Let them eat QOLB,” ISCA, pp.170-180, 1997.

[7] J. Laudon and D. Lenoski, “The SGI origin: A ccNUMA highly
scalable server,” Proc. 24th Annual International Symposium on
Computer Architecture (ISCA-97), pp.241-251, June 1997.

[8] B. Lim and A. Agarwal, “Reactive synchronization algorithms for
multiprocessors,” Proc. Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
pp.25-35, 1994.

[9] J.M. Mellor-Crummey and M.L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Trans.
Computer Systems, vol.9, no.1, pp.21-65, Feb. 1991.

[10] V. Pai, “Rsim: An execution-driven simulator for ILP-based shared-
memory multiprocessors and uniprocessors,” Proc. 3rd Workshop on
Computer Architecture Education, 1997.

[11] V.S. Pai, P. Ranganathan, and S.V. Adve, “Rsim reference manual
version 1.0,” Technical Report 9705, Dept. of Electrical and com-
puter engineering, Rice univ., Aug. 1997.

[12] V.S. Pai, P. Ranganathan, S.V. Adve, and T. Harton, “An evaluation
of memory consistency models for shared-memory systems with ILP
processors,” Proc. 7th Symp. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOSVII), pp.12-23,
Oct. 1996.

[13] R. Rajwar, A. Kagi, and J.R. Goodman, “Improving the through-
put of synchronization by insertion of delays,” HPCA, pp.168-180,
2000.

[14] P. Ranganathan, V.S. Pai, and S.V. Adve, “Using speculative retire-
ment and larger instruction windows to narrow the performance gap
between memory consistency models,” ACM Symposium on Paral-
lel Algorithms and Architectures, pp.199-210, 1997.

[15] J.E. Smith and A.R. Plezkun, “Implementing precise interrupts
in pipelined processors,” IEEE Trans. Comput., vol.C-37, no.5,
pp.562-573, May 1988.

[16] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consid-

IEICE TRANS. INF. & SYST., VOL.E87-D, NO.3 MARCH 2004
760

erations,” Proc. 22th International Symposium on Computer Archi-
tecture, pp.24-36, 1995.

[17] K.C. Yeager, “The MIPS R10000 superscalar microprocessor,”
IEEE Micro, vol.16, no.2, pp.28—40, April 1996.

Young Chul Sohn received the B.S. and
M.S. degree in computer science from the Ko-
rea Advanced Institute of Science and Technol-
ogy in 1994 and 1996, respectively. He is cur-
rently towards the Ph.D. degree in computer sci-
ence at the Korea Advanced Institute of Science
and Technology. His research interests include
parallel computer architectures and cluster com-
puting.

Nai-Hoon Jeong received the B.S. in com-
puter science from the Yonsei University in
1989. received the M.S and Ph.D. degree in
computer science from the Korea Advanced In-
stitute of Science and Technology in 1991 and
2002, respectively. He is currently working at
NCsoft corporation. His research interests in-
clude parallel computer architectures and pro-
cessor architecture.

Jin-Soo Kim is currently an assistant profes-
sor of the department of electrical engineering
and computer science at Korea Advanced Insti-
tute of Science and Technology (KAIST). Be-
fore joining KAIST, he was a senior member of
research staff at Electronics and Telecommuni-
cations Research Institute (ETRI) from 1999 to
2002. He was with the IBM T.J. Watson Re-
search Center as an academic visitor from 1998
to 1999. He received his B.S., M.S., and Ph.D.
degrees in Computer Engineering from Seoul
National University in 1991, 1993, and 1999, respectively. His research
interests include cluster computing, computer architecture, and operating
systems.

Seung Ryoul Maeng received the degree of
B.S. in electronics engineering from the Seoul
National University, Seoul, Korea, in 1977, and
the M.S. and Ph.D. degrees in computer science
from the Korea Advanced Institute of Science
and Technology in 1979 and 1984, respectively.
Since 1984 he has been a faculty member of the
Department of electronic engineering and com-
puter science of the Korea Advanced Institute of
Science and Technology. From 1988 to 1989,
he was with the University of Pennsylvania as a
visiting scholar. His research interests include parallel computer architec-
tures, cluster and grid computing.

