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ABSTRACT
The Virtual Interface Architecture (VIA) is an industry stan-
dard user-lev el communication architecture for cluster or
system area netw orks. The VIA provides a protected, directly-
accessible interface to a netw orkhardware, removing the
operating system from the critical communication path. Al-
though the VIA enables low-latency high-bandwidth com-
m unication, the application programming interface de�ned
in the VIA speci�cation lacks many high-level features.

In this paper, we develop a high performance communica-
tion la yer over VIA, namedSO VIA(Sockets Over VIA). Our
goal is to make the SOVIA layer as eÆcient as possible so
that the performance of native VIA can be delivered to the
application, while retaining the portable Sockets semantics.
We �nd that the single-threaded implementation with con-
ditional sender-side bu�ering is e�ective in reducing latency.
T o increase bandwidth, we implement a 
ow control mecha-
nism similar to the TCP's sliding window protocol. Our 
ow
con trol mechanism is enhanced further by adding delayed ac-
knowledgments and the ability to combine small messages.

With these optimizations, SOVIA realizes comparable per-
formance to nativ eVIA, showing the latency of 10.5�sec
for 4-byte messages and the peak bandwidth of 814Mbps on
Giganet's cLAN. The functional validity of SOVIA is veri�ed
by porting FTP (File T ransfer Protocol) application over
SOVIA.

1. INTRODUCTION
Due to recent advances in commodity microprocessors and
high-speed netw ork in terfaces, it becomes increasingly pop-
ular to use cluster systems as high performance computing
platforms. Cluster systems are easy to build and have ad-
vantages as scalability and cost-e�ectiveness, which lead to
high performance/price ratio [22, 5].

In spite of the adv entof interconnection networks at gi-
gabit speed, recen t studies show that the communication
subsystem is the main performance bottlenec k in cluster
systems [29, 1]. Especially, the use of traditional commu-
nication protocols, such as TCP/IP, is reported to fail in
deliv ering ra w-hardware performance to the end users, due
to (1) protocol overhead, (2) con text switching overhead,
and (3) data cop ying overhead between the user and ker-
nel space. T o address this problem, a number of user-level
communication architectures have been proposed that re-
move the operating system from the critical communication
path [28, 21, 23, 6].

The Virtual Interface Architecture (VIA) [8] is an industry
e�ort to standardize user-level communication architectures
for cluster or system area netw orks (SANs).Being strongly
in
uenced by the previous academic research, the VIA spec-
i�cation 1.0 was de�ned by a group led by Compaq, Intel
and Microsoft, and submitted for industry review in 1997.
Since then, it has been endorsed by a number of companies.

The VIA speci�cation describes a software interface for fully-
protected, user-level access to a netw ork hardware. Network
interface cards (NICs) can be designed to support the VIA
speci�cation at the hardware level to accelerate the perfor-
mance further. Examples of NICs with such VIA-aware
hardwares include Giganet's cLAN [12], Fujitsu's Syn�n-
ity [15], and Compaq's ServerNet-II [7] adapters.

Although the VIA enables low-latency high-bandwidth com-
m unication over SANs, the speci�cation only provides a min-
imal set of primitives mainly for user-level data transfer of a
single message. Those primitives lack many high-level fea-
tures such as a synchronization facility between the sender
and receiver, a 
ow con trol mechanism, and so on. Thus,
w e believ e the application programming interface (API) de-
�ned in the VIA speci�cation is not adequate for direct use
by application programmers and it is desirable to de�ne an
intermediate communication layer on top of the VIA API. In
this paper, we focus on building a high performance commu-
nication layer over VIA, namedSO VIA(Sockets Over VIA),
whic h has similar semantics as Soc kets API. The purpose of
this paper is to support the communication model of Sock-
ets API at user-level, without sacri�cing the performance of
the underlying VIA layer.
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The rest of the paper is organized as follows. Section 2
overviews the VIA and its implementations on Linux. It also
describes the motivation of our study and related work. Sec-
tion 3 presents our evaluation methodology including hard-
ware platform and benchmark programs. In section 4, we
investigate and evaluate several optimizations to improve
the latency and bandwidth of the SOVIA layer. Section 5
shows the resulting performance of FTP (File Transfer Pro-
tocol) application ported over SOVIA. Finally, we conclude
in section 6.

2. BACKGROUND
2.1 Virtual Interface Architecture (VIA)
Figure 1 depicts the organization of the VIA with four basic
components: Virtual Interfaces (VIs), Completion Queues
(CQs), VI Providers, and VI Consumers. The VIA provides
each consumer process with a protected, directly-accessible
interface to a network hardware called Virtual Interface (VI).
Each VI represents a communication end-point and a pair
of connected VIs support bi-directional, point-to-point data
transfer. The VI Provider is composed of a physical network
adapter and a software Kernel Agent. The VI Consumer is
generally composed of an application program and an op-
erating system communication facility, which represents the
user of a VI.

A VI consists of a pair of Work Queues: a send queue and
a receive queue. VI Consumers post requests, in the form
of descriptors, on the Work Queues to send or receive data.
A descriptor is a memory structure that contains all of the
information that the VI Provider needs to process the re-
quest, such as pointers to data bu�ers. Each Work Queue
has an associated doorbell that is used to notify the network
adapter that a new descriptor has been posted to a Work
Queue. Typically, the doorbell is directly implemented by
the adapter and requires no kernel intervention to operate.

When the processing of a request completes, the network
adapter marks a \done" bit in the status �eld of the corre-
sponding descriptor. The completed descriptors should be
explicitly removed from the Work Queue by the VI Con-
sumer itself. They can be discovered either by polling the
head of the Work Queue, or by using a blocking call in which
the calling process is signaled upon the completion of a de-
scriptor. Alternatively, a user-de�ned callback function (a
notify function) may be executed when a descriptor com-
pletes. A Completion Queue (CQ) allows a VI Consumer to
coalesce noti�cation of descriptor completions from multi-
ple Work Queues in a single location. When a VI is created,
each Work Queue can be associated with a CQ. Once this
association is established, noti�cation of completed requests
for the Work Queue is automatically directed to the CQ.

All the memory regions used for communication (including
descriptors and data bu�ers) should be registered prior to
submitting the request, so that the regions are pinned into
the physical memory during data transfer. This is because
the VIA allows the network adapter to read and write data
directly from and to parts of the user address space, thus
enabling the zero-copy protocol. When a memory region is
not needed any more for communication, it should be ex-
plicitly deregistered, whereupon the pages are released and
made available for swapping out. The registered memory

Figure 1: The organization of the Virtual Interface
Architecture

regions are protected from access by other processes using
unique IDs called Protection Tags that are associated both
with VIs and with memory regions.

The VIA speci�cation provides two types of data transfer
models: (1) a traditional send/receive messaging model,
and (2) the Remote Direct Memory Access (RDMA) model.
The RDMA model di�ers from the send/receive messaging
model in that the initiator of the data transfer speci�es
the locations of both source and destination bu�er. Such
RDMA operations provide remote memory access without
receiver intervention. There are two types of RDMA oper-
ations, RDMA Write and RDMA Read, where the support
for RDMA Read is optional.

The VIA supports three levels of communication reliabil-
ity at the NIC level: Unreliable Delivery, Reliable Delivery
and Reliable Reception. All VI NICs are required to sup-
port the Unreliable Delivery level, in which a send or RDMA
Write request will cause at most one receive descriptor to be
consumed. Both Reliable Delivery and Reliable Reception
guarantee that data sent is received uncorrupted, only once,
and in the order that it was sent. Reliable Reception is the
highest level of reliability, and di�ers from Reliable Deliv-
ery in that a descriptor can not be marked complete until
data has been transferred into the memory at the remote
endpoint.

2.2 VIA Implementations on Linux
Table 1 compares three representative VIA implementations
available for Linux platforms. M-VIA (Modular VIA) [3],
developed by NERSC (National Energy Research Scienti�c
Computing), aims at providing a modular implementation
that can be used for various types of NICs including Fast
Ethernet and Gigabit Ethernet adapters. For legacy Fast
Ethernet cards, M-VIA emulates the VIA speci�cation by
software in an intermediate driver layered on top of the stan-
dard network driver. Berkeley VIA [4] implementation sup-
ports the VIA speci�cation on Myrinet [2] by modifying its
�rmware. Finally, Giganet Inc. (now Emulex Corp.) has
developed a proprietary, VIA-aware network adapter called
cLAN [12].

Note that only the Giganet cLAN supports RDMA Write
and Reliable Delivery, but it neither utilizes Protection Tags
nor provides notify functions.
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Table 1: A Comparison of VIA Implementations
M-VIA Berkeley VIA Giganet cLAN

Supported NIC Fast Ethernet (DEC, Intel) Myrinet Giganet cLAN1000
Gigabit Ethernet (Packet
Engines, Intel, Syskonnect)

Supported OS Linux 2.2.x Linux 2.2.x, Linux 2.2.x,
Windows NT, Windows NT
Solaris 2.6

RDMA:
Write No No Yes
Ready No No No

Reliability:
Unreliable Delivery Yes Yes Yes
Reliable Deliveryy No No Yes
Reliable Receptiony No No No

Protection Tags Yes No No
Notify Functions Yes No No
Completion Queues Yes No Yes
MaxTransferSize 32,768 bytes 102,400 bytes 65,486 bytes

y represents the optional features of the VIA speci�cation.

2.3 Motivation
For application programmers, the VIA speci�cation provides
a set of standardized API in the form of a user-level library
called VIPL (VI Provider Library). Although the VIPL can
be directly used to develop applications, it is desirable to
build another communication layer on top of VIPL for the
following reasons:

� In order to support the zero-copy protocol, the VIA
requires that the receiver should be ready before the
sender initiates its operation. This means an applica-
tion at the receiving end should pre-post a descriptor
to the receive queue before the sender requests a data
transfer. Otherwise, the transfer can be lost and the
error is not even detected by the receiving side on an
unreliable VI. As the number of descriptors that can
be posted in the receive queue is �nite, a high-level
synchronization protocol needs to be implemented be-
tween the sender and receiver to satisfy this pre-posting
constraint.

� The VIPL provides only the basic primitives required
for exchanging a single message. To increase band-
width further, it is necessary to implement a 
ow con-
trol mechanism, which allows multiple messages in tran-
sit simultaneously.

� In the traditional communication architecture, incom-
ing messages are managed by an interrupt handler in-
side the kernel. In the VIA, however, the user applica-
tion itself should extract the completed descriptor and
then post a new one for each incoming message that is
delivered asynchronously.

� The programmer needs to manage a large number of
descriptors and data bu�ers for the VIPL. As described
in section 2.1, those memory regions should be locked
in the physical memory through the registration while
they are used for communication. In addition, as most

implementations require descriptors be aligned on a
certain memory boundary (i.e. 64 bytes), the program-
mer should pay attention to the allocation of memory
spaces for descriptors.

� In the VIPL, there is a limitation on the maximum
data size that can be carried on a single message (re-
fer to MaxTransferSize in table 1). Therefore, a long
message needs to be decomposed into a sequence of
small messages and they should be assembled in the
receiving end.

Because it is unreasonable to implement aforementioned fea-
tures on each user application, programmers will typically
get communication services through the other portable lay-
ers. Adding a new software layer introduces an overhead
inevitably. Therefore, the problem is to make such an in-
termediate layer eÆcient so that the low-latency and high-
bandwidth characteristics of native VIA can be delivered to
the application.

In this paper, we develop SOVIA (Sockets Over VIA), a high
performance communication layer over VIA. As the name
implies, SOVIA is a subset of Sockets API and o�ers a sim-
ple and general communication service based on blocking
send() and recv(). More speci�cally, this paper focuses
on various optimizations for SOVIA, quantitatively analyz-
ing the e�ectiveness of each optimization in terms of the
latency and bandwidth seen by the application.

The SOVIA layer also can be used to accelerate the existing
Sockets-based applications on the VIA with a reasonable ef-
fort. It is even possible to stack up another layer over SOVIA,
allowing user applications to transparently bene�t from the
VIA without any source-level modi�cations. For example,
the RPC layer can be easily extended to use SOVIA as one of
the lower-level transports, in which case RPC applications
need not be modi�ed to take advantage of the VIA.
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2.4 Related Work
Two possible candidates that can be used as a upper layer of
VIPL are MPI (Message Passing Interface) [25] and Berke-
ley Sockets API [16], considering their wide spread use and
acceptance in the cluster environment.

There exist several MPI implementations over VIA, such
as MVICH [18], ParMa2 [9], and MPI/Pro [10]. MVICH
and ParMa2 are the modi�cations of open MPI implemen-
tations, MPICH [13] and LAM/MPI [19] respectively, while
MPI/Pro is a commercial product developed by MPI Soft-
ware Technology Inc. Ong and Farrell [20] have compared
the performance of MPICH, LAM/MPI and MVICH on Gi-
gabit Ethernet networks. They show the overhead incurred
in TCP/IP protocol stack is still high and the performance of
MVICH (over M-VIA) is much superior to that of TCP/IP-
based MPICH or LAM/MPI.

Although MPI is important for high-performance parallel
computing, we consider Sockets API in this paper because
it provides simpler, yet more versatile communication inter-
face compared to MPI. Sockets-based applications mostly
use blocking send() and recv()1, while MPI has blocking
and non-blocking message passing primitives with four dif-
ferent communication modes such as standard, synchronous,
bu�ered, and ready. Due to the simplicity in Sockets API,
it is easy to optimize the communication performance, im-
posing less overhead on user applications.

Fast Sockets [24] was the �rst attempt to support Sockets
API over a lightweight user-level protocol, Active Messages
(AM). However, because AM is connectionless and it has a
unique message passing model in which a packet contains
the name of a handler function, Fast Sockets can not be di-
rectly used for the VIA. Recently, Itoh et al. [14] have pre-
sented VIsocket, a Sockets layer implemented between the
STREAM module and the (kernel) VIPL in Solaris, but the
design and performance details of VIsocket have not been
published yet. Giganet Inc. supplies the LANE (LAN Emu-
lation) [11] driver for its cLAN adapters, which emulates IP
layer over VIA. However, VIsocket or LANE is the in-kernel
implementation and still has the overhead of context switch-
ing and data copying between the user and kernel space to
exchange data.

Our approach is conceptually similar to the WSDP (Win-
dows Sockets Direct Path) [17] technology developed by Mi-
crosoft for Windows NT platforms. The WSDP enables
Windows Sockets (WS) applications that use TCP/IP to ob-
tain the performance bene�ts of SANs without application
modi�cations, by switching to the SAN WS Provider below
the Winsock library. Note that in Unix-
avored systems, it
is very diÆcult to emulate Sockets API completely at user-
level, because Sockets-related data structures are kept inside
the kernel and may be shared with child processes.

Speight et al. [26] examine the cost of memory registra-
tion, data copying, and polling vs. blocking receives in
the context of using VIPL to implement MPI_Send() and
MPI_Recv(). In addition to those basic optimizations, this
paper investigates an eÆcient message handling strategy and

1Sockets API also supports non-blocking send() and
recv(), but we do not consider them in this paper.

(a) l(m) = (t2� t1)=2n (b) B(m) = mn=(t2� t1)

Figure 2: The structure of microbenchmarks to
measure the (a) latency and (b) bandwidth. m is
the packet size and n denotes the number of packets
sent and received during the measurement.

a 
ow control mechanism to maximize the performance.
Moreover, we present the performance of real application
executed over the SOVIA layer.

3. METHODOLOGY

3.1 Evaluation Platform
The hardware platform used for performance evaluation is
two Linux servers based on Intel L440GX+ motherboards
running Linux kernel 2.2.16. Each server has dual Pen-
tium III-500MHz microprocessors with 512KB of L2 cache,
256 MB of main memory, and an on-board Intel EtherEx-
press 10/100 Fast Ethernet adapter. Additionally, Giganet's
cLAN1000 network adapter has been attached to the 32-bit
33MHz PCI slot of each server. The cLAN1000 adapters are
connected in a back-to-back topology without an intermedi-
ate switch.

The SOVIA layer has been evaluated on two di�erent VIA im-
plementations: M-VIA version 1.0 on Fast Ethernet adapter
and Giganet's cLAN version 1.1.1. Note that M-VIA does
not achieve the zero-copy protocol on Fast Ethernet due to
the lack of hardware support for doorbells [3]. The TCP
performance on cLAN is measured using the LANE driver
supplied by Giganet. Unless otherwise stated, all the exper-
iments were performed on a uniprocessor kernel using only
one processor.

3.2 Microbenchmarks
To evaluate the impact of each optimization on the applica-
tion's performance, we use microbenchmarks which measure
the latency and bandwidth. The latency, l(m), is the time
needed to send an m-byte message from a sender to a re-
ceiver. It is measured by a half of average round-trip time
in a series of ping-pong tests, as shown in �gure 2(a). If the
message size is not explicitly speci�ed, we assume the time
to send one word, i.e. l(4), is meant by the term \latency".
The (unidirectional) bandwidth, B(m), denotes how many
m-byte messages can be transferred in one way. To measure
B(m), the sender issues a long rapid sequence of send()'s
for a given time and waits until an acknowledgment message
arrives from the receiver (cf. �gure 2(b)).

Similar benchmarks are implemented using the VIPL as
well, to measure the latency and bandwidth of native VIA.
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4. DESIGN ISSUES AND EVALUATIONS
In this section, we investigate and evaluate several design is-
sues related to the implementation of SOVIA. Our goal is to
make the SOVIA layer as eÆcient as possible so that the per-
formance of SOVIA approaches to that of native VIA in terms
of the latency and bandwidth, while retaining the Sockets se-
mantics. We classify our optimizations into two categories;
one for minimizing latency and the other for maximizing
bandwidth.

4.1 Minimizing Latency
The SOVIA layer should be designed carefully to make the
application fully exploit the native VIA's low-latency char-
acteristics. We consider the following three optimizations
for minimizing latency.

The synchronization between send() and recv(). The
VIPL has its own primitives to send and receive a mes-
sage such as VipSendPost() and VipRecvPost(). However,
send() and recv() can not be directly replaced with the
VIPL's messaging primitives, due to the Sockets semantics
and the VIA's pre-posting constraint. A message sent by
send() can be lost if recv() is not yet called on the desti-
nation node. Therefore, there should be a synchronization
mechanism with which the sender guarantees that at least
one descriptor is available on the receive queue (RQ) of the
destination VI.

There are two methods to achieve this synchronization. In
three-way handshaking shown in �gure 3(a), the sender �rst
sends a req packet to the receiver. When ready, the receiver
posts two descriptors on its RQ, one for data and the other
for next req, and then replies to the sender with an ack

packet. Upon the receipt of the ack, the sender transmits
data. Because the data packet is transferred after the des-
tination node calls recv(), the receiver always knows the
target bu�er address. Therefore, it is possible for the NIC
to move the incoming data directly to the user space. The
three-way handshaking has, however, the overhead of ex-
changing req and ack packets before each data transfer,
and this overhead has a substantial impact on latency es-
pecially for small messages (up to almost three times of the
VIA's latency).

Instead, SOVIA uses two-way handshaking illustrated in �g-
ure 3(b), where data packets are immediately sent to the
receiver. In this case, the data packet may arrive before the
application calls recv() on the destination node, hence the
receiver is required to bu�er the incoming data temporarily.
Such an intermediate bu�ering at the receiver side also in-
creases latency, but the overhead is far less than the case of
three-way handshaking.

Message handling strategies. When a packet arrives
at a node, the corresponding descriptor should be extracted
from a queue and an appropriate action needs to be taken.
Normally, the arrival of a packet is not automatically no-
ti�ed to the user application. However, by registering a
notify function in advance, it is possible to run a speci�c
code upon the completion of a descriptor. Under the two-
way handshaking, the notify function pre-posts a descriptor,
sends an ack, and then wakes up the application thread if it
has been suspended on recv() (cf. �gure 4(a)). In M-VIA,

(a) Three-way handshaking

(b) Two-way handshaking

Figure 3: Synchronizing sender and receiver to sat-
isfy the pre-posting constraint.

the notify function is implemented by a notify thread, which
monitors the associated queue. A separate notify thread is
created for each Work Queue.

Unfortunately, Giganet's cLAN does not support the notify
functions as yet. We can still emulate the notify functions by
creating a dedicated handler thread manually, as shown in
�gure 4(b). To avoid creating multiple handler threads, we
associate Receive Queues (RQs) with a Completion Queue
(CQ) and let the handler thread check only the CQ.

Figure 5 compares the observed latency of each SOVIA imple-
mentation with that of native VIA and TCP. An implemen-
tation of SOVIA using the notify functions is labeled as SO-
VIA NOTIFY (for M-VIA only), while one using the handler
thread is labeled as SOVIA HANDLER. First of all, we can see
that native VIA outperforms TCP as expected; native VIA
shows the latency of 43.3�sec (M-VIA) and 8.3�sec (cLAN)
for 4-byte messages, while TCP shows 75.6�sec (M-VIA)
and 54.9�sec (cLAN) for the same condition. In particular,
we can notice that the TCP latency on cLAN, measured
with Giganet's LANE driver, is 6.5 times higher than the
native VIA's latency.

Because both SOVIA NOTIFY and SOVIA HANDLER operate
basically in the same way, they show similar latency on
M-VIA. The minimum latency of SOVIA NOTIFY and SO-

VIA HANDLER is 88.5�sec and 83.3�sec respectively, which
is slightly higher than that of TCP. Although the latency
of SOVIA HANDLER has been improved on cLAN to 29.9�sec
for 4-byte messages, there still remains a signi�cant gap in
latency between SOVIA HANDLER and native VIA.

339



(a) SOVIA NOTIFY

(b) SOVIA HANDLER

(c) SOVIA SINGLE

Figure 4: Message handling strategies.

We �nd the reason of poor performance in SOVIA HANDLER

is due to the high thread synchronization cost in Linux ker-
nel. When we use the separate handler thread, the applica-
tion thread may need to wait for a signal from the handler
thread and any data shared by theses two threads should be
protected using mutexes. The cost of this synchronization is
expensive, sometimes up to tens of microseconds, and more
importantly, it is on the critical communication path. Con-
sidering that the latency of native VIA is less than 10�sec
on cLAN, the high synchronization cost is the main source
that increases latency.

To eliminate the thread synchronization cost, we have de-
veloped a single-threaded version of SOVIA (labeled as SO-
VIA SINGLE), where the application thread itself is in charge
of the handler thread's functionality (cf. �gure 4(c)). In SO-
VIA SINGLE, the incoming messages are handled by the ap-
plication thread when it calls communication-involved func-
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Figure 5: Impact of di�erent message handling
strategies on latency

tions, such as send() or recv(). Communication may be
delayed while the application thread at the receiving node
is busy for computation, but by pre-posting multiple de-
scriptors in advance (described in section 4.2), it is possible
to overlap the communication with the computation.

The performance of SOVIA SINGLE is also plotted in �gure 5.
We can see the latency is improved notably both on M-VIA
and on cLAN. The single-threaded implementation of SOVIA
exhibits the minimum latency of 57.6�sec and 12.3�sec for
M-VIA and cLAN, respectively. From these results, we can
roughly calculate that the overhead due to multithreading
in SOVIA HANDLER is around 20�sec.

Memory registration vs. copying. Each data trans-
fer experiences one memory registration on the sender side,
because a set of bu�ers used in the receiver can be pre-
registered. The memory registration is the key element in
the VIA which enables the zero-copy protocol. However,
registering a memory region is a relatively expensive oper-
ation for small messages. The minimum cost for memory
registration and deregistration is about 3 { 4�sec for M-
VIA and cLAN, and the cost increases with the data size,
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Figure 6: Memory registration vs. copying

as depicted in �gure 6.

For comparison, we also plot the cost of memcpy() as dot-
ted lines in �gure 6. Although the actual time spent on
memcpy() depends on whether the source is always the same
(labeled as cached) or not (labeled as uncached) due to the
caching e�ect2, we can see that memory copying has less
overhead than the registration when the data size is smaller
than 1KB { 4KB. Therefore, we can consider the use of
sender-side bu�ering, where the user data is simply copied
into a pre-registered bu�er before the descriptor is posted
in a send queue.

Table 2 and 3 show the changes in latency on M-VIA and on
cLAN respectively, by the use of sender-side bu�ering (la-
beled as SOVIA COPY). The previous implementation, where
the source data is always registered, is labeled as SOVIA REG.
As can be seen in the tables, the sender-side bu�ering is ef-
fective in reducing latency for small messages, but it is not
adequate for large messages since the cost of memory copy-
ing increases rapidly.

Note that the di�erence in latency between SOVIA REG and
SOVIA COPY on M-VIA is actually greater than the memory
registration/deregistration cost shown in �gure 6. This is
because the cost of memory registration and deregistration
on M-VIA depends not only on the data size, but also on the
size of memory regions that are already registered. For ex-
ample, the cost for registering and deregistering 4-byte data
increases from 4.3�sec to 10.1�sec, if the operation is per-
formed when 2MB of data remain registered in the system.
SOVIA pre-registers several descriptors and data bu�ers for
each socket connection, and as a result, SOVIA REG on M-
VIA performs worse in real situations than it is expected.
The VIPL on cLAN, however, does not show this character-
istics, and its memory registration cost depends only on the
data size.

We take advantage of both implementations by using a hy-
brid approach (labeled as SOVIA HYBRID); data is copied

2The destination of memcpy() was �xed during this measure-
ment.

Table 2: Changes in latency on M-VIA
message Native SOVIA SOVIA SOVIA

size VIA REG COPY HYBRID

(Bytes) (�sec) (�sec) (�sec) (�sec)

4 43.3 57.6 45.1 45.0
8 43.4 57.9 45.4 45.4
16 43.4 58.0 45.4 45.4
32 44.2 58.8 46.0 45.9
64 49.1 63.9 51.2 51.2
128 60.3 75.5 62.9 62.9
256 81.5 97.5 84.7 84.7
512 123.1 140.7 127.7 127.8
1K 206.3 227.9 213.5 213.9
2K 330.3 354.5 339.3 339.6
4K 506.8 539.3 526.3 539.4
8K 859.0 912.7 915.0 912.4
16K 1545.3 1632.5 1660.7 1632.2
32K 2910.2 3053.7 3135.6 3053.4

Table 3: Changes in latency on cLAN
message Native SOVIA SOVIA SOVIA

size VIA REG COPY HYBRID

(Bytes) (�sec) (�sec) (�sec) (�sec)

4 8.3 12.3 10.5 10.5
8 8.3 12.6 10.6 10.7
16 8.4 12.6 10.8 10.8
32 10.1 14.3 12.5 12.5
64 10.1 14.5 12.8 12.8
128 10.5 15.5 14.0 14.0
256 11.9 17.3 16.0 16.0
512 14.9 20.5 19.7 19.7
1K 20.2 26.4 26.5 26.5
2K 30.4 39.5 40.7 40.8
4K 50.5 65.3 74.2 65.0
8K 90.6 123.4 160.1 123.0
16K 169.9 240.7 307.7 240.3
32K 329.0 461.1 603.2 460.6

into the bu�er if the requested size is less than or equal
to 2KB, otherwise it is registered. In this way, we can re-
duce the latency of SOVIA as low as 45.0�sec for M-VIA
and 10.5�sec for cLAN, adding only 2�sec of overhead to
the native VIA's latency. The measurement results for SO-
VIA HYBRID are also presented in table 2 and 3. we can
see SOVIA HYBRID e�ectively follows the minimum of SO-
VIA REG and SOVIA COPY in most cases within measurement
error.

The number of operations for memory registration and dereg-
istration, required for sending messages larger than 2KB,
can be reduced further by the use of memory registration
caching, as suggested in [18]. With the memory registration
caching, the deregistration of a memory region is delayed
expecting that the same region is used again in the near
future. However, this demands a modi�cation to the de-
fault malloc() and free() routines, because users may free
a memory region without notice whose registration is still
cached.
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4.2 Maximizing Bandwidth
The optimizations discussed in the previous section primar-
ily focuses on the eÆcient delivery of a single message. In
this section, we examine a sophisticated 
ow control mech-
anism to maximize the bandwidth of SOVIA.

Flow control. Under the two-way handshaking shown
in �gure 3(b), the sender should wait for an ack before re-
questing the next data transfer. The ack packet informs
that the receiver has pre-posted a descriptor to the corre-
sponding RQ and is ready to receive another data. As a
result, there is at most a single outstanding data packet
per VI at any given time, under-utilizing the physical re-
source. TCP uses a 
ow control algorithm called a sliding
window protocol [27], which allows the sender to transmit
multiple packets before it stops and waits for an acknowl-
edgment. This leads to higher bandwidth since the 
ow of
packets can be pipelined.

Figure 7 compares the observed bandwidth of TCP and
native VIA with that of the SOVIA implementation which
has no 
ow control mechanism. In the �gure, SOVIA BASE

represents the single-threaded implementation with condi-
tional sender-side bu�ering, which has minimized latency
in the previous section. Comparing SOVIA BASE to native
VIA, it is apparent that there is much room to improve the
bandwidth of SOVIA. When we look at the results of TCP
and native VIA, we can see native VIA shows the higher
bandwidth than TCP when the message size is larger than
256 bytes3. Once again, notice the ineÆciency in Giganet's
LANE driver; the bandwidth of TCP for 32KB messages is
limited to about 450Mbps on cLAN, attaining only 55% of
native VIA's performance (815Mbps).

To increase bandwidth, SOVIA supports a 
ow control mech-
anism similar to the TCP's sliding window protocol by ex-
tending the two-way handshaking. Our implementation of
SOVIA also has the notion of window size w, which denotes
the maximum number of messages the sender is allowed to
transmit without waiting for an acknowledgment. Initially,
the receiver pre-posts w descriptors to RQ. Whenever the
sender transmits a data, it decreases w meaning that one
of the pre-posted descriptors on the receiving end has been
consumed. If w reaches zero, there is no available descrip-
tors on the receiver and the further transmission is on hold
until w becomes a positive number. The window size w is
increased by one when an ack is delivered to the sender
acknowledging one of the previous data packets.

Delayed acknowledgments and piggybacking. Nor-
mally, a single ack is generated on the receiving end for each
data packet. The number of ack packets can be reduced
by combining several acknowledgments together directed to
the same sender. In TCP, the receiver delays the ack, typi-
cally up to 200msec, hoping to have data going in the same
direction as the ack. If there is data to send, all the delayed
acks are piggybacked, i.e. sent along with the data.

SOVIA also takes advantage of delayed acknowledgments and

3The socket bu�er size of TCP is increased to the maximum
(128KB) during the measurement of bandwidth. We have
used the default MTU size for TCP, which is 1500 bytes on
Fast Ethernet and 9000 bytes on cLAN.
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Figure 7: A comparision of bandwidth for TCP, na-
tive VIA, and SOVIA with no 
ow control mechanism.

piggybacking, by using an adaptation of TCP's algorithms.
In SOVIA, the receiver simply counts the number of ack
packets (d) that are being delayed, instead of using a timer.
If d becomes greater than the prede�ned threshold t, where
t < w, an ack is delivered to the sender piggybacking d.
This will increase the sender's window size w by d. On the
other hand, when the receiver has a data packet for the
same direction before d reaches t, delayed acknowledgments
are piggybacked with the data. We make use of the 32-bit
Immediate Data �eld of the descriptor to record the packet
type and the number of piggybacked acknowledgments. In
the worst case, w data packets and (w=t) ack packets can
be simultaneously delivered to a node. Therefore, under our

ow control mechanism, each node should pre-post at least
w + (w=t) descriptors into the receive queue.

Figure 8 shows the changes in bandwidth as we apply each
optimization to SOVIA. SOVIA FLOWCNTL denotes the addi-
tion of our 
ow control mechanism to SOVIA BASE, and SO-
VIA DACKS adds delayed acknowledgments and piggyback-
ing to SOVIA FLOWCNTL. We can see that the bandwidth
of SOVIA DACKS is signi�cantly improved compared to SO-

VIA BASE for both M-VIA and cLAN. In particular, SO-
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Figure 8: Impact of various optimizations on band-
width

VIA DACKS has roughly the same bandwidth as native VIA
on M-VIA. On a faster network such as cLAN, the cost of
the SOVIA layer is almost amortized if the message size is
larger than 8KB. The peak bandwidth of SOVIA is 96Mbps
on M-VIA and 814Mbps on cLAN for 32KB messages.

In this experiment, we have used the window size of 32
(w = 32) and the threshold is set to 16 (t = 16). Note that
SOVIA BASE can be emulated on SOVIA DACKS by setting
w = 1 and t = 1. Similarly, SOVIA FLOWCNTL is equivalent
to SOVIA DACKS with w > 1 and t = 1.

Combining small messages. In �gure 7, we can no-
tice that TCP shows higher bandwidth than native VIA
for small messages less than 256 { 512 bytes. This is the
e�ect of the Nagle algorithm [27] enabled in TCP by de-
fault. The algorithm requires that when a TCP connection
has outstanding data that has not yet been acknowledged,
small messages cannot be sent until the outstanding data is
acknowledged or until the TCP can send a full-sized mes-
sage. The Nagle algorithm is originally developed as a way
to avoid congestion on wide area networks, but has a side-
e�ect that combines small messages together. For SOVIA, it

Table 4: SOVIA con�gurations evaluated in this pa-
per.

Labels M D w t C

SOVIA NOTIFY notify R { { No
functions

SOVIA HANDLER handler R { { No
thread

SOVIA SINGLE application
SOVIA REG thread

R { { No

SOVIA COPY " B { { No
SOVIA HYBRID " H { { No

SOVIA BASE " " 1 1 No
SOVIA FLOWCNTL " " 32 1 No
SOVIA DACKS " " 32 16 No
SOVIA COMBINE " " 32 16 Yes
Column M : message handling strategies.
Column D: outgoing data is registered (R), bu�ered
(B), or conditionally bu�ered if it is less than 2KB (H).
Column w: window size.
Column t: threshold for delayed acknowledgments.
Column C: small messages less than 2KB are sent
immediately (No) or combined together (Yes).

is also desirable to have a similar feature, where the con-
secutive data transfer requests of small-sized messages are
combined into a larger one.

Our algorithm to combine small messages works as follows.
The implementation of SOVIA already has an internal bu�er
which is used for sender-side bu�ering (cf. section 4.1). So
far, a small message less than 2KB is copied into the bu�er
and then sent if the window size permits. However from now
on, such a small message is appended into the bu�er and
the sender starts a timer which expires after, say, 100msec.
Any other small messages requested within the expiration
of the timer are also combined into the bu�er. The data
stored in the bu�er is transmitted to the network either (1)
when the timer expires, (2) when there is no enough room
in the bu�er for the new data transfer request, (3) when
the requested message size is larger than 2KB, or (4) when
the application calls recv() or close(). The maximum size
that can be combined is 32KB, which is the message chunk
size of SOVIA. For the messages larger than 2KB, it is too
expensive to copy data, hence the current bu�er is 
ushed
and then the new message is transferred in a normal way.

In �gure 8, the graphs labeled as SOVIA COMBINE show the
�nal bandwidth of SOVIA, where all optimizations, including
the small-message combining, are applied. We can see that
combining small messages signi�cantly improves the band-
width for messages less than 2KB. Combining small mes-
sages increases the latency of SOVIA by 1 { 2�sec to manage
a software timer. However, this feature may be turned o� at
run-time for latency-sensitive applications in the same way
as TCP, where the Nagle algorithm is disabled by specifying
the TCP_NODELAY socket option.

Table 4 summarizes SOVIA con�gurations and their param-
eters evaluated in this paper.
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Figure 9: Latency on SMP systems

4.3 Other Issues
Performance on SMP systems. In section 4.1, we
have observed that the performance of SOVIA NOTIFY and
SOVIA HANDLER is limited by the thread synchronization
cost. Now we investigate how such multithreaded imple-
mentations perform under SMP (symmetric multiprocessor)
systems with more than one processor.

Figure 9 plots the latency of TCP, native VIA, and SOVIA

implementations with di�erent message handling strategies.
The �gure is similar to �gure 5, but now measured on dual-
processor systems with SMP kernels. First, we can see the
latency of TCP and native VIA has increased about 1.5
times on M-VIA, showing 116.0�sec and 68.6�sec respec-
tively. Similarly, SOVIA NOTIFY, SOVIA HANDLER, and SO-

VIA SINGLE show the increased latency of 148.3�sec, 110.0
�sec, and 89.7�sec respectively. This is because the SMP
kernel has an additional overhead of acquiring and releasing
a lock to access kernel data structures.

On cLAN, although the latency of TCP and SOVIA HANDLER

has increased to 96.0�sec and 38.2�sec respectively, native
VIA and SOVIA SINGLE reveal the same latency as on the
uniprocessor kernel. This con�rms that the operating sys-
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Figure 10: CPU utilizations during bandwidth tests
on cLAN (SOVIA COMBINE)

tem is not involved in data transfers on cLAN, due to the
hardware support for user-level communication. On the
other hand, the communication on M-VIA is not performed
completely at user-level because of the lack of such hardware
support in the legacy Fast Ethernet adapter, which hurts the
latency of native VIA and SOVIA SINGLE on SMP kernels.

Under SMP systems, the application thread and the notify
(or handler) thread can run on a di�erent processor, which
may have a positive impact on the performance. However,
our measurement results show there are no advantages of
using multithreaded implementations of SOVIA on SMP sys-
tems.

Polling vs. blocking calls. Our implementation polls
a send queue or a completion queue to �nd a completed
descriptor. Optionally, it is possible to use blocking calls
for the same task. When we use blocking calls both on
the sender and receiver, the latency of SOVIA is increased
to 19.4�sec for 4-byte messages and the peak bandwidth is
reduced to 780Mbps on cLAN.

In spite of the performance degradation, using blocking calls
has an advantage that they do not spend any CPU cycles
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Figure 11: The state transition diagram of SOVIA

to wait for completed descriptors. Figure 10 depicts CPU
utilizations of the sender and receiver during the measure-
ment of bandwidth on cLAN using blocking calls. The CPU
utilization is obtained by inserting a special kernel module
which reports CPU cycles spent in kernel mode and user
mode. In �gure 10, a black (gray) area represents the por-
tion of CPU utilizations spent in kernel (user) mode.

For the sender, the CPU utilization in kernel mode is sud-
denly increased at 4KB as we start to register outgoing data
(cf. �gure 10(a)). However, the relative portion of CPU cy-
cles used in kernel mode is decreasing as the message size
increases. When a 32KB message is sent, 8.7% of CPU cy-
cles are consumed in kernel mode and only 1.4% in user
mode. In other words, out of 335�sec which is the average
time to send a 32KB message unidirectionally, CPU spends
29�sec in kernel mode, 5�sec in user mode, and idles for the
remaining 301�sec. Observing that the CPU utilization in
user mode is maintained less than 10% for messages larger
than 4KB, we can see most of CPU cycles in user mode are
spent on copying and combining the outgoing data when the
message size is less than 4KB.

Compared to the result of the sender, the kernel overhead of
the receiver is very low, kept under 13% (cf. �gure 10(b)).
Instead, CPU spends considerable time in user mode to de-
liver the incoming data to the application. Because the in-
coming data is always bu�ered at the receiving side, the por-
tion of CPU utilizations in user mode is higher than that of
the sender, especially for messages larger than 4KB.

On the other hand, CPU utilizations for M-VIA are mea-
sured to be almost 100% regardless of the use of polling or
blocking calls. This suggests the blocking calls are actually
implemented using a busy-waiting on M-VIA.

In case the message handling is done by a separate notify
thread or a handler thread as in SOVIA NOTIFY and SO-

VIA HANDLER, it is normally required to use blocking calls

to receive messages. Otherwise, such a thread will slow down
the computation of the application thread, even when there
is no communication. Our single-threaded implementation
of SOVIA, however, does not have this restriction, because
the message handling is not overlapping with the computa-
tion.

Establishing and closing socket connections. Fig-
ure 11 illustrates the state transition diagram of SOVIA,
which is very similar to the TCP's [27]. The notation, such

as
appl:close()
send:FIN

, denotes a state transition when an applica-

tion issues close(), and speci�es that a fin type of packet
is sent to the peer as a result of the transition. In SOVIA,
there are �ve types of packets; data, ack, wakeup, fin and
finack. All the communications are done in the normal
state, and the states shown in the shaded areas are used
for supporting active and passive close. To close a connec-
tion completely, both ends should exchange fin and finack
packets. A fin packet is used by a node to notify the peer of
its willingness to close a connection, and finack acknowl-
edges the receipt of fin.

The single-threaded implementation of SOVIA poses a prob-
lem when a connection is closed. The Sockets semantics re-
quires that the application should return immediately from
close(), after sending a fin packet to the peer. Once the
application executes close(), it does not call any Sockets
API and there is no chance to handle incoming finack

and/or fin packets from the peer, which are necessary to
receive before removing associated data structures.

To solve this problem, SOVIA creates a close thread when the
number of open socket connections becomes zero, and asks
it to handle the incoming messages. For each new connec-
tion, a wakeup packet is exchanged between peers. If the
close thread receives the wakeup, it stops handling mes-
sages and is suspended until there is a noti�cation. In this
way, the presence of the close thread does not a�ect the ap-
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Table 5: The performance of �le transfers using FTP
File 1 File 2

File size (bytes) 13,827,767 65,257,948

TCP/IP on Fast Ethernet 88 Mbps (1.18 sec) 88 Mbps (5.58 sec)
TCP/IP on cLAN 288 Mbps (0.38 sec) 256 Mbps (2.00 sec)
SOVIA on cLAN 736 Mbps (0.15 sec) 552 Mbps (0.93 sec)

plication's performance. Similarly, we create a connection
thread whenever the application calls listen() on a port.
The connection thread is used to wait for an incoming VI
connection request.

RDMA. As presented in [10], the use of RDMA may
increase the performance of long message transfers since the
receiver does not have to be involved in the communication.
To utilize RDMA (Write) operations, it is necessary for the
receiver to inform the sender about target bu�er address
and memory handle using a mechanism similar to the three-
way handshaking. This synchronization cost is generally
amortized by transferring long messages.

Unlike MPI, however, Sockets API operates on a byte stream
and the receiver may read a part of incoming data at a time.
This means, even though the application requests the data
transfer of a long message, enough space may not be pre-
pared on the receiving side. Under this situation, our mea-
surement indicates there is no signi�cant advantage of using
RDMA operations. Currently, SOVIA simply decomposes
the long message into a sequence of chunks (sized 32KB)
and each chunk is sent in a normal way as if it is issued by
a send().

5. FTP PERFORMANCE
In order to verify the functional validity of SOVIA, we have
ported FTP (File Transfer Protocol) application over SOVIA.
We slightly modi�ed the FTP server (linux-ftpd-0.16) and
client (netkit-ftp-0.16) contained in Linux NetKit 0.16
and measured the performance of �le transfers between two
nodes. Table 5 compares the performance of �le transfers
reported by the FTP client for two di�erent sizes of �les. To
remove the e�ect of the disk speed, the source and destina-
tion �les are stored in ramdisks.

The core loop of the �le transfer operation is actually the
same as our benchmark program which measures the band-
width. Therefore, it is expected for the FTP application to
achieve the peak bandwidth shown in �gure 8. The mea-
sured bandwidth is, however, slightly lower than the ex-
pected one, showing 736Mbps and 552Mbps on cLAN for
13.8MB and 65.3MB �les respectively. This is because there
is an intermediate bu�er cache layer and the performance
of �le reading and writing is not fast enough even though
we used ramdisks. According to our measurement, a local
ramdisk-to-ramdisk �le copying has the bandwidth of about
580Mbps on the test platform, which is less than the SOVIA's
peak bandwidth. Thus, the underlying �le system becomes a
bottleneck during the �le transfer. On the contrary, it is the
network that becomes a bottleneck in the case of TCP/IP
on Fast Ethernet, hence the bandwidth does not depend on
the �le size.

We note that the raw performance of VIA is not delivered to
the user application eÆciently using Giganet's LANE driver
which emulates TCP/IP inside the kernel. Although the
peak bandwidth of native VIA is 815Mbps, the FTP ap-
plication result in bandwidth less than 300Mbps with the
TCP/IP driver, exploiting only 35% of the available band-
width. Overall, SOVIA shows 6.3 { 8.4 times (2.2 { 2.6 times)
higher bandwidth on cLAN for the FTP application, com-
pared to the kernel-level TCP/IP driver on Fast Ethernet
(on cLAN).

6. CONCLUDING REMARKS
This paper evaluates several design issues for building SO-

VIA, a high performance communication layer over VIA.
First, we have optimized the critical communication path in
terms of the latency and bandwidth, to maximize the per-
formance delivered to user applications. And then, we have
discussed other issues such as the performance on SMP ker-
nels, the e�ect of using blocking calls, and the support for
other Sockets semantics.

We �nd that the single-threaded implementation with con-
ditional sender-side bu�ering is e�ective in reducing latency.
To increase bandwidth, we have borrowed many ideas from
TCP such as a sliding window protocol, delayed acknowledg-
ments and piggybacking, and the ability to combine small
messages.

With these optimizations, the performance of SOVIA closely
matches that of native VIA. SOVIA shows the minimum la-
tency of 45.0�sec and 10.5�sec on M-VIA and cLAN respec-
tively, adding only 2�sec of overhead to the native VIA's
latency. The measured peak bandwidth of SOVIA is 96Mbps
on M-VIA and 814Mbps on cLAN for 32KB messages. Com-
pared to the TCP/IP driver on Fast Ethernet, SOVIA results
in 6.3 { 8.4 times higher bandwidth on cLAN for the FTP
application. We believe the optimizations evaluated in this
paper are also useful for other communication libraries, such
as MPI.

During the development of SOVIA, we �nd that it is neces-
sary to improve the thread synchronization cost of the Linux
kernel if multiple threads are to be used with user-level com-
munication architectures such as VIA. The high thread syn-
chronization cost easily o�set the low-latency bene�t of the
VIA and prevented us from using a separate communica-
tion handler thread. As soon as the VIA implementations
are available, we are going to evaluate SOVIA on the latest
2.4.x Linux kernels again, which are known to show better
performance than 2.2.x kernels.

We expect application programs written in Sockets API can
seamlessly take advantage of the VIA through the SOVIA
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layer. Currently, porting an existing application over the
SOVIA layer requires modest user intervention. It is not suf-
�cient to automatically replace the Sockets API with SO-

VIA, because sockets can be also accessed through �le sys-
tem interfaces or standard I/O routines. We are currently
investigating a way to improve the compatibility of SOVIA
by overriding the existing system calls and library routines.
We also plan to port a parallel �le system over SOVIA.
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