
Reducing Overheads of Local Communications 
in Fine-grain Parallel Computation 

Jin-Soo Kim Soonhoi Ha Chu Shik Jhon 

Department of Computer Engineering 
Seoul National University 
Seoul 151-742, KOREA 

{jinsoo, sha, csjhon}@comp.snu.ac.kr 

Abstract 

For fine-grain computation to be ejjective, the cost of 
communications between the large number of subtasks 
should be minimized. In this papec we present an optimiza- 
tion technique which reduces overheads of communications 
between local subtasks by bypassing the network inte$ace 
and transferring data directly from memory or registers to 
memory. On average, the optimization results in 35.6% im- 
provement in total execution time on instruction-level simu- 
lations with six benchmark programs from I to 32 nodes. 

1 Introduction 

Fine-grain parallel computation has several advantages 
such as architecture independence, potential for exploiting 
parallelism, ease of use as a target for code generation, and 
capabilities of balancing loads and hiding communication 
latencies. An architecture that can exploit the fine-grain par- 
allelism is a multithreaded architecture. 

In parallel computation, communication latency between 
subtasks on different nodes is inevitable and keeping a cer- 
tain number of subtasks in each node is necessary for multi- 
threading to be useful. However, an operation that commu- 
nication is expected at compile time may not generate any 
message at run time depending on the location of the target 
subtask. Those operations can not be determined statically 
because subtasks are created and destroyed dynamically and 
the number of subtasks itself is data-dependent. Moreover, 
the exact location of a subtask can not be predicted at com- 
pile time. 

The proposed approach is to generate alternative codes 
at compile time that transfer data between local subtasks 
bypassing the network interface. Before generating a mes- 
sage, the program decides which code to execute according 
to the location of the destination. No message is generated 
in case of local communications and unnecessary context 
switching can be avoided. 

2 A Model for Fine-grain Parallel Computation 
In this paper, we are interested in a model of fine-grain 

multithreading, which can hide a long latency using a large 
number of threads. Also it is desirable for such model to be 
implementable using commodity microprocessors to exploit 
their high performance/price ratio. For these reasons, we 
have adopted the TAM (Threaded Abstract Machine) [ 13, a 
compiler-controlled multithreading model. 

A TAM program consists of a collection of code blocks. 
Each code block represents a subtask, and typically speci- 
fies a function or a loop body. A code block is compiled into 
a set of inlets and threads. Inlets are short message handlers 
and threads are sequences of instructions that can not sus- 
pend. When a code block is invoked, aframe is allocated 
for storage of arguments, local variables, and a list of ready 
threads associated with the frame. 

The TAM scheduling hierarchy consists of a two-level 
structure comprising a collection of frames, each contain- 
ing one or more addresses of enabled threads in a region 
of the frame called the remote continuation vector (RCV). 
When a frame is activated, the list of ready threads in the 
RCV is copied into a special region called the local continu- 
ation vector (LCV). Threads are fetched and executed from 
the LCV until none remains, after which frame switching is 
performed. Any thread forked by other threads within the 
same frame is placed in the LCV rather than in the RCV. 
The set of threads executed in a single frame activation is 
called a quantum. 

The TAM model enhances the parallelism of programs 
further by non-strict execution. Non-strict execution allows 
functions or arbitrary expressions to begin execution and 
possibly return results before all operands are computed. 
Non-strict execution also requires data structures able to 
be accessed while components are still being computed. 
In the TAM model, global data structures are based on I- 
structure [2] semantic, which provides synchronization on 
a per-element basis. 

Several primitives are defined in the TAM model for 

0190-3918/97 $10.00 0 1997 IEEE 
223 



fine-grain multithreading. They are operations for mes- 
sage transfer (SEND, RECEIVE), frame management (FAL- 
LOC, FFREE), scheduling (SWAP, STOP), thread generation 
(FORK, SFORK, SWITCH, POST, SPOST), and I-structure 
management (IALLOC, IFREE, IFETCH, ISTORE). Those 
primitives, combined with ALU operations, form an inter- 
mediate language called TLO. 

3 Reducing Overheads of Local Communications 

We have identified three cases where communication is 
involved between subtasks; message sending, parallel func- 
tion invocation, and I-structure accesses. Each case will be 
discussed in detail in the following subsections. 

3.1 Message Sending 

In our model of fine-grain computation, messages are 
primarily used to carry arguments and results between func- 
tion activations. The TAM model uses a mechanism called 
active messages [3] for fine-grain communication. In active 
messages, each message contains at its head the address of 
a user-level handler which is executed on message arrival 
with the message body as the arguments. The role of the 
handler, or inlet, is to get the message out of the network 
and process the message by posting an appropriate thread. 

For a message to be delivered, data should be copied 
from registers or frame slots to the network output buffer at 
the source node and from the network input buffer to frame 
slots at the destination node. Although the same mechanism 
can be used for local communications by providing a feed- 
back path between the network input and output buffer, it is 
inefficient because the network interface becomes complex 
and unnecessary copying of data is performed. 

To overcome these problems, we implement the LCV as 
a stack and extend it to be used for the linkage between 
sender and receiver in case of a local communication. For 
every inlet, we generate another version of codes, which ex- 
tracts data from the LCV rather than from the network input 
buffer. We call this a pseudo inlet. Before sending a mes- 
sage, the program checks if the destination frame resides in 
the same node or not. If the communication is local, the 
program pushes arguments into the LCV with the address 
of the pseudo inlet. When the current thread reaches STOP, 
it fetches another enabled thread from the LCV, which is a 
pseudo inlet. The posted thread from the pseudo inlet is also 
put into the LCV. Therefore, the pseudo inlet and posted 
threads are executed within the context of the current frame 
without switching to the destination frame. 

Frame accesses from threads or inlets are relative to the 
base address of the frame, or the frame pointer. In the orig- 
inal TAM model, all the threads in the LCV belong to the 
same frame. So the frame pointer is initialized only once 
when a frame switching occurs. On the other hand, the LCV 

in the proposed model holds the addresses of threads and 
pseudo inlets from different frames. Therefore, it is neces- 
sary to keep the frame pointer in the LCV and to initialize 
it whenever a thread is fetched from the LCV. 

Table 1 shows an optimized implementation of SEND. 
me denotes my node number. Node() and PseudoAddrO 
are macros to find the node number for a given frame 
pointer, and an address of the pseudo inlet, respectively. At 
the beginning of a code block, there is a jump table that 
maps an inlet number to an actual address. Because a frame 
holds the base address of the corresponding code block, it 
is possible to find the address of an inlet or a pseudo inlet 
using a frame pointer and an inlet number. 

Table 1. Optimized implementation of SEND 

if (Node(dest5fp) == me) { 
Push argo, ..., arg, into the LCV; 
Push destfp, PseudoAddr(destfp, destinlet) into the LCV; 

Store dest-fp, dest-inlet, argo, ..., arg, to the network output buffer; 
Send a message: 

} else { 

1 

3.2 Parallel Function Invocation 
TAM’S function invocation consists of two phases. In the 

first phase, the caller sends a request for frame allocation us- 
ing a FALLOC operation. The callee allocates a frame upon 
receiving the request, initializes the frame, and then returns 
the frame pointer back to the caller. In the second phase, if 
the caller receives the callee’s frame pointer, it sends argu- 
ments to predefined inlets. Due to the non-strict execution, 
arguments are sent one by one as soon as its value is known 
to the caller. 

Actually, FALLOc is handled by a run-time system 
(RTS). If a user issues a FALLOC, the RTS in the source 
node determines the node where the function is assigned, 
and then sends a request message to the RTS of the desti- 
nation node on behalf of the user. In the destination node, 
the RTS allocates a frame and schedules inlet 0 with the 
caller’s frame pointer, the return inlet number and the new 
frame pointer as the arguments. Inlet 0 initializes the frame 
and returns its frame pointer to the caller. 

Normal messages are used to return the new frame 
pointer or to send arguments and results. Therefore, they 
can be avoided using the optimization described in sec- 
tion 3.1 if the callee is allocated to the same node as the 
caller. However, the request message sent by an RTS also 
should be avoided in case of a local invocation. This can be 
done by revising an RTS routine of FALLOC, as described 
in Table 2. If the callee is local, the RTS adjusts the LCV 
so that the pseudo inlet 0 of the new frame can be executed 
after the current thread. In Table 2, $ f p  denotes the register 
which holds the current frame pointer. 

224 



Table 2. Optimized implementation of FALLOC 

Benchmarks FALLOC code-block, return-inlet 
Determine targetnode, where the code block is assigned. 
if (targetnode = = m e )  { 

Allocate a frame for codrdlock; 
new.fp c base address of the new frame: 
Push $ fp, returninlet, new& into the LCV 
Push new-@, PseudoAddr(new4, 0) into the LCV; 

Send a request message to the RTS of targetnude; 
} else 

Memory Sizes (KR) 
ORG 1 OPT lo Increased Arguments TLO lines 

3.3 I-structure Accesses 
I-structures are accessed by split-phase operations such 

as IALLOC, IFREE, IFETCH and ISTORE. IALLOC and IFREE 
allocate and deallocate I-structures and IFETCH reads an el- 
ement by sending a message to the node containing the data 
which returns the value to an inlet. In particular, reads of 
empty elements are deferred until the corresponding write 
occurs. ISTORE writes a value to an element, resuming any 
deferred readers. 

Table 3 shows an optimized implementation of IFETCH, 
which removes any local message if the element resides 
in the same node and if it has valid data. Tag() indicates 
whether the word contains data (FULL), or not (EMPTY), 
or it has any deferred readers (DEFERRED). Actual data 
can be accessed using the macro Data(). IALLOC, IFREE, 
and ISTORE also can be optimized similarly. 

Table 3. Optimized implementation of IFETCH 

IFETCH return-inlet, heap-add5 element 
if (Node(heap-uddr) == me) 

switch (Tag(heupaddr[element])) { 
case EMPTY 
case DEFERRED: 

Insert <$fp,  returninlet> to the deferred list; 
hreak. .~ ...., 

case FULL: 
Push Data(heup-uddr[element]) into the LCV; 
Push $ fp, PseudoAddr($ fp, returninlet) into the LCV 
break 

1 
else 

Send a request message to the RTS of Node(heupaddr); 

4 Experimental Evaluation 

We have constructed an instruction-level simulator to 
evaluate the efficiency of the proposed optimization. The 
simulator was based on SPIM [4], an instruction-level sim- 
ulator for MIPS instruction set, and was extended to parallel 
and multithreaded environments using a commercial event- 
driven simulator, SESWorkbench [5]. 

We have also implemented a translator which converts a 
TLO program to MIPS assembly codes. The generated code 
consists of MIPS instruction set, assembly directives, and 

Table 4. Benchmark programs 

several system calls. System calls are used to transfer con- 
trol to the RTS for some multithreading primitives. Actu- 
ally, the simulator handles these primitives as if there were 
an RTS on every node. The translator also perfoms register 
allocation, because TLO language uses memory-to-memory 
ALU operations. For experiments, the translator generates 
two versions of codes for a given TLO program; one without 
optimization (ORG), and the other with optimization (OPT). 

The interconnection network is not simulated in detail. 
Instead, we assume that the network has a uniform commu- 
nication latency of 100 instruction cycles. The local feed- 
back of a message is also assumed to take 10 cycles. 

Table 4 shows arguments and program sizes of six 
benchmark programs used in the experiment. These appli- 
cations are originally written in Id, and compiled to TLO 
programs by the TAM group'. 

We can observe that the code size increases by 34.1% 
on average when the optimization is performed. Additional 
pseudo inlets primarily contribute to the increase in the code 
size. Secondary factors include codes to check if the desti- 
nation is local and codes to push arguments and the address 
of a pseudo inlet into the LCV in case of a local communi- 
cation. 

Figure 1 gives a relative speedup when the optimization 
is used. Optimized codes always result in shorter execu- 
tion times in spite of added cost of checking the destination 
of messages for every SEND, and saving and restoring the 
frame pointer for all primitives that access the LCV. Most 
of the benchmarks except f i b  and paraffins follow the 
general trend that the relative speedup decreases as the num- 
ber of nodes increases. This is because the number of allo- 
cated frames per each node decreases, reducing the possibil- 
ity of local communications. On average, optimized codes 
run 1.55 times faster than unoptimized codes on a single 
node, where all communications are local. There is 35.6% 
improvement in total execution times when we average six 
benchmark programs from 1 to 32 nodes. 

It can be easily found that the benefits of our optimiza- 
tion mainly come from eliminating local messages. Figure 2 
shows the ratio of the total number of messages generated 
from optimized codes with respect to that of unoptimized 
codes. Note that no message is generated with a single node 

'They are freely available by anonymous ftp at f tp : / / f tp . cs . 
berkeley.edu/ucb/TAM/idtam-0.3.tar.Z 

225 



1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  

IALLOC 

NI S I SIN 
Benchmarks 

fib qs mm144 dfw speech paraffins 

Figure 1. Relative speedup 

IFETCH ISTORE 
N N 

1 

0.8 

f 0.6 

0, 

$ 0.4 

02 

0 

Normal msS 
I-sII”c1 I . . . . . . . .  ................. ......... ...... - 

................... 

1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  1 2 4 8 1 6 3 2  

lib qs mm144 dfw speech paraffins 

Figure 2. The reduction in total messages 

using the optimized codes. The relatively low speedup of 
mmt44, dtw, and speech (see Figure l), especially for 
the large number of nodes, is closely related to the low re- 
duction in the number of messages. 

We classify each message as Normal if it is generated 
by FALLOC or SEND, and as 1-struct if it comes from I- 
structure operations. It is apparent from the figure that the 
number of I-structure messages is dominant. The reason 
that I-structure messages are not eliminated well in mmt44, 
dtw, and speech can be found from Table 5, which shows 
a dynamic statistics on I-structure operations. 

Table 5. Statistics on I-structure operations 

N denotes the total number of I-structure operations. 
S and SIN indicates the total size and the average size 
of I-structure elements requested by IALLOC, respectively. 
mmt44, dtw, and speech has a very large value of.S/N, 
meaning that the large number of I-structure elements are 
allocated at once on a specific node. Because I-structures 

are concentrated on a few nodes, most of IFETCH requests 
are remote. Issues of the optimal and balenced distribution 
of global data structures are beyond the scope of this paper 
and should be addressed as a separate research topic. 

5 Concluding Remarks 
In this paper, we have presented an optimization tech- 

nique to reduce overheads of local communications in fine- 
grain parallel computation. Although the optimization in- 
creases the code size slightly, the code size hardly af- 
fects the total memory requirement because frames demand 
much more memory at run time. 

The advantage of suggested optimization can be summa- 
rized as follows. First, the network interface can be simpler 
because local feedback path need not be provided. In addi- 
tion, the number of total messages which should be handled 
by the network interface is significantly reduced. Second, 
the cost of a local communication can be reduced by avoid- 
ing unnecessary copying of data to and from the network 
buffers. Third, the scheduling cost can be reduced by ex- 
ecuting pseudo inlets and locally posted threads within the 
context of the current frame. 

From the experimental results, we have observed that it 
is important to distribute I-structures in a balanced way for 
better speedup. This problem can be alleviated by employ- 
ing an I-structure cache [6] .  Note that the suggested op- 
timization can also be used with such I-structure caches by 
eliminating the need for sending a message if the designated 
I-structure element can be found on a local cache. We ex- 
pect greater speedup by combining the proposed approach 
and I-structure caches. 

References 

[l] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. van 
Eicken, “TAM - A Compiler Controlled Threaded Abstract 
Machine,” J. of Parallel and Distributed Computing, pp. 347- 
370, Jun. 1993. 

[2] Arvind, R. S. Nikhil, and K. K. Pingali, “I-Structures: Data 
Structures for Parallel Computing,” Tech. Rep. CSG Memo 
269, MIT, Feb. 1987. 

[3] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser, “Ac- 
tive Messages: A Mechanism for Integrated Communication 
and Computation,” in Proc. 19th Int’l Symp. on Computer Ar- 
chitecture, pp. 256-266, 1992. 

[4] J. R. Larus, “SPIM S20: A MIPS R2000 Simulator,” Tech. 
Rep. #966, University of Wisconsin-Madison, 1990. 

[5] Scientific and Engineering Software Inc., SESmorkbench 3.0 
User’s Manuals. 1995. 

[61 K. M. Kavi, A. R. Hurson, P. Patadia, E. Abraham, and 
P. Shanmugam, “Design of Cache Memories for Multi- 
Threaded Dataflow Architecture,” in Proc. 22th Int’l Symp. 
on Computer Architecture, pp. 253-264, 1995. 

226 


