
Impact of Exploiting Load Imbalance on Coscheduling in Workstation Clusters

Jung-Lok Yu† Driss Azougagh† Jin-Soo Kim‡ Seung-Ryoul Maeng†

Division of Computer Science, Department of EECS
Korea Advanced Institute of Science and Technology (KAIST), South Korea

†{jlyu,driss,maeng}@calab.kaist.ac.kr ‡jinsoo@cs.kaist.ac.kr

Abstract

Implicit coscheduling is known to be an effective tech-
nique to improve the performance of parallel workloads in
time-sharing clusters. However, implicit coscheduling still
does not take into consideration the system behavior like
load imbalance that severely affects cluster utilization. In
this paper, we propose the use of global information to en-
hance the existing implicit coscheduling schemes. We also
introduce a novel coscheduling approach - named PROC
(Process ReOrdering-based Coscheduling) - based on pro-
cess reordering exploiting global load imbalance informa-
tion to coordinate communicating processes. The results
obtained from an in-depth simulation study show that our
approach significantly outperforms previous ones (by up to
38.4%) by reducing the idle time (by up to 86.9%) and spin
time (by up to 36.2%) caused by the load imbalance.

1 Introduction

Workstation clusters are emerging as a platform for
the execution of general-purpose workloads [1, 2]. For
the successful use of clusters in domains such as scien-
tific applications, databases, web servers and multimedia,
etc., scheduling techniques are required that can effectively
handle workloads with diverse demanding characteristics
[1, 2, 4, 6, 15]. For those workloads, time-sharing ap-
proaches are particulary attractive because they provide
good response times for interactive jobs and good through-
put for I/O-intensive jobs. Unfortunately, time-sharing can
be very inefficient for running parallel jobs that need pro-
cess synchronization due to the lack of coordination among
local schedulers [13, 15].

Over the years, two main strategies to coordinate indi-
vidual local schedulers have been proposed in the litera-
ture: explicit coscheduling [3, 5] and implicit coschedul-
ing [1, 7, 6, 13]. Explicit coscheduling [3, 5] uses ex-
plicit global knowledge constructed a priori and performs
simultaneous global context switch to coschedule parallel

processes across all CPUs. While it has been shown to
be essential for fine-grained parallel applications, explicit
coscheduling doesn’t seem to be viable option for a clus-
ter environment in that it suffers from high global synchro-
nization overhead. Recently, another class of coschedul-
ing schemes such as Demand-based Coscheduling (DCS)
[7], Spin Block (SB) [6, 13] and Periodic Boost (PB) [1]
have been proposed for cluster systems. These implicit
coscheduling schemes use communication events - message
arrival and response time - of parallel processes to guide
the local schedulers toward coscheduled execution when-
ever needed. For example, on a message arrival (or fast
response), the implication is that the sender (or correspond-
ing) process is currently scheduled. Therefore, it will ben-
efit to schedule, or keep scheduled the receiver process.
Compared to explicit coscheduling, these schemes are eas-
ier to implement on cluster environments, and have better
scalability and reliability.

From the above discussion, we raise two important
questions. (i) how optimal previous implicit coscheduling
schemes are in terms of performance? (ii) if not, what are
the missing factors that limit the system utilization? We ob-
serve that most implicit coscheduling schemes rely only on
the locally available information (message arrival and re-
sponse time). We also realize that there is crucial global
information, for example, load imbalance, representing the
behavior of the system, which can be exploited to optimize
the system utilization.

We argue that global load imbalance information are crit-
ical to implicit coscheduling in a cluster. Load imbalance
is one of the major factors to interfere with the efficient uti-
lization of clusters. Load imbalance has three main sources:
1) uneven load (computation, I/O, and communication) dis-
tribution to equally powerful computing nodes, 2) hetero-
geneity in cluster hardware resources, and 3) the presence
of the local jobs and background (or daemon) jobs (multi-
programming) [4]. Since this load imbalance results in the
increment of the idle time on CPU resources and the waiting
time on communicating processes, it has a marked detri-
mental effect on cluster utilization. Therefore, exploiting

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

globalized load imbalance can be the key point to implicit
coscheduling to improve the performance of cluster. This
paper presents a novel coscheduling approach that exploits
both local and global information to answer above ques-
tions. At the best of our knowledge, no previous study has
exhaustively investigated this issue in the context of implicit
coscheduling on a cluster environment.

In view of this, we present an innovative coscheduling
scheme, called Process ReOrdering-based Coschedul-
ing (PROC), based on process reordering which exploits
global runtime information as well as the limited knowl-
edge available locally to coordinate the communicating pro-
cesses across all CPUs. We realize that the combination of
the average CPU time spent by each process and the ex-
pected number of processes ready to be executed before the
current process is rescheduled, represents the global load
imbalance (and synchronization) information in the sys-
tem. PROC measures these values dynamically at run-time,
and exchanges the information by piggybacking them with
normal messages. Based on the load imbalance informa-
tion, the local scheduler can then make better coschedul-
ing decisions by reordering processes with pending mes-
sages. Through an in-depth simulation study, we show
that our approach significantly outperforms previous im-
plicit coscheduling schemes by reducing the idle time and
the spinning time caused by the load imbalance, thus im-
proves cluster utilization.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the overview of the implicit coscheduling
strategies proposed in the literature. Section 3 discusses the
proposed PROC approach in details. Section 4 describes
the simulation methodology and Section 5 discusses the re-
sults obtained from our experiments. Finally, Section 6 con-
cludes the paper.

2 Related Work

As described in [13], implicit coscheduling are classified
by two components: message waiting action taken by pro-
cesses waiting for a message and message handling action
performed by the kernel when a message arrives, as sum-
marized in Table 1.

LOCAL is the most straightforward coscheduling tech-
nique. A receiving process is just spinning until the message
arrives, and becomes coscheduled with the sender process
only if the message arrives while it is spinning.

The next straightforward one is Immediate Block (IB).
In IB, the process blocks immediately if the message has
not arrived yet, and is waken up by the kernel when the
message eventually arrives. Spin Block (SB) [6, 13] is a
compromise between LOCAL and IB. Here a process spins
on a message arrival for a fixed amount of time, as referred
to spin time, before blocking itself (called two-phased spin

Table 1. Implicit coscheduling schemes
Scheme Msg. Waiting Action Msg. Handling

Sender Receiver Action
LOCAL Spin-Only Spin-Only Nothing
IB Spin-Only Imme. BlockInterrupt & Boost
SB (CC) Spin-Only(-Block) Spin-Block Interrupt & Boost
DCS Spin-Only Spin-Only Interrupt & Boost
PB Spin-Only Spin-Only Periodic Boost

blocking). The underlying rationale is that a process wait-
ing for a message should receive it within the spin time if the
sender process is also currently scheduled. Consequently, if
the message arrives within the spin time, the receiver pro-
cess should hold onto the CPU to be coscheduled with the
sender process. Otherwise, it should block in order not to
waste the CPU resource. On subsequent message arrival,
the network interface cards (NIC) raises an interrupt, which
is serviced by the kernel to wake up the process and give
a priority boost to the awaken process. As a variant of SB,
Agarwal et al. proposed Co-ordinated Coscheduling (CC)
[16], which performs sender-side optimization to cosched-
ule parallel jobs. In the CC scheme, a sender spins for a
fixed amount of time to wait for a send complete event. If
a send is not completed within this time, it is implicitly in-
ferred that the outstanding message queue at the NIC is long
and hence, it is better to block and let another process use
the CPU. However, these blocking-based schemes (IB, SB
and CC) still have the limitation that they can not eliminate
or reduce the idle time caused by load imbalance.

Demand-based CoScheduling (DCS) [7] uses an in-
coming message as an indication that the sending process is
currently scheduled on the sender node. In DCS, a receiv-
ing process performs busy-waiting. Periodically, NIC finds
out which process is currently running on its host CPU. On
message arrival, the NIC checks whether the message des-
tination process is currently executing or not. If there is a
mismatch, an interrupt is raised. The interrupt service rou-
tine (ISR) boosts the priority of the destination process to
coschedule it with the sending process. Periodic Boost
(PB), proposed in [1, 15], is an alternative coscheduling
scheme to avoid expensive interrupt cost. In PB, the re-
ceiving process is busy-waiting like DCS. However, in this
scheme, rather than raising an interrupt for each incom-
ing message, a periodically invoked kernel thread examines
message queues of each process, and boosts the priority of
a process with pending messages based on some selection
criteria. Whenever the scheduler is invoked in the near fu-
ture, it would preempt the current process and schedule the
boosted process. Obviously, these spinning-based schemes
(DCS and PB) suffer from the time wasted by processes
while spinning for messages to arrive. This problem can be-
come more harmful when processes are highly imbalanced

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

in the cluster.
From the above description, we realize that the exploita-

tion of global information (like ready-queue size in remote
nodes) might solve most of those limitations. To exploit
the global information, a new novel coscheduling scheme
to efficiently reduce the idle time and the spinning time,
is required. In this research, we introduce a coschedul-
ing scheme based on reordering technique as an example
to prove the importance of exploiting global load imbalance
information.

3 Proposed Coscheduling Scheme

Exploiting the global load imbalance information has a
major impact on the performance of cluster systems. Fig-
ure 1 shows the example of scheduling sequence performed
by priority boost (and preemption) in each node. Note that
normally, there are multiple incoming messages destined to
distinct processes during a single scheduling quantum, and
as a result of it, multiple processes are boosted (or waken
up) until the next context switch. In this figure, we assume
that N1 and N3 are the nodes with low load, and N2 is heav-
ily loaded (load(N1) < load(N3) < load(N2)). In spinning-
based schemes, N1 and N3 suffer from the spinning time if
N2 schedules the processes with pending messages without
considering the load status of N1 and N3 (see Fig. 1(a.1)).
As depicted in Fig. 1(a.2), P1 and P3 can be scheduled in
advance in N2 if N2 realized that N1 and N3 have the lower
load than other remote nodes. Similarly, in blocking-based
schemes, N1 and N3 suffer from the idle time if N2 sched-
ules the awaken processes regardless of the loads of N1 and
N3 (see Fig. 1(b.1)). As shown in Fig. 1(b.2), using load
imbalance information from N1 and N3, N2 can schedule
P1 and P3 at time t and t

′
to reduce the idle time in N1 and

N3. Therefore, by scheduling in advance a process whose
corresponding processes will be scheduled sooner in remote
nodes, we are able to decrease the spinning time and the
idle time. This allows parallel processes to achieve better
progress.

As described above, although the load imbalance has a
marked detrimental effect on cluster’s utilization, most im-
plicit coscheduling strategies described in Section 2 take
no account of the load imbalance to coordinate commu-
nicating processes. To address this concern, PROC (Pro-
cess ReOrdering-based Coscheduling) measures the load
imbalance information dynamically at run-time, and ex-
changes the information by piggybacking them with normal
messages. Based on the load imbalance information, the lo-
cal scheduler can then make better coscheduling decisions
by reordering processes with pending message(s).

Then, the next question is how to measure the load im-
balance information. In fact, it is very difficult to correctly
measure the degree of load imbalance with a little overhead.

N1

N2

N3

msg

msg

spinning spinning spinning spinning

spinning spinning

N1

N2

N3

msg

msg

spinning

spinning spinning

time time

(1) without considering the load imbalance (2) with considering the load imbalance

(a) Spinning-based schemes

N1

N2

N3

msg

msg

spinning

spinning

N1

N2

N3

msg

msg

spinning

spinning idle

time time

(b) Blocking-based schemes

idle

idle

spinning

idle

t t'

(1) without considering the load imbalance (2) with considering the load imbalance

P1 P8 P1 P1 P8 P1P8

P4 P5 P6 P3 P8 P1

P3 P8 P9 P3 P8

P1 P8 P1

P4 P1 P3 P5 P6 P8

P3 P8 P9 P3

P1 P8
P1

P4 P5 P6 P3 P8 P1

P3 P8 P9 P3

P1 P8 P1

P4 P1 P3 P5 P6 P8

P3 P8 P9 P3

`
`

Figure 1. Effect of load imbalance in (a)
spinning-based schemes and (b) blocking-
based schemes

In order to minimize the overhead for measuring the degree
of load imbalance, we use a heuristic algorithm as follows.

At any time, each node has a current process that uses a
CPU. Each node Ni can compute: (a) the average CPU time
spent by each process (averaged time difference between
consecutive context switches) (TSi), and (b) the expected
number of processes ready to be executed (ENPi) before
the current process is scheduled again. In this paper, ENPi

is calculated to the summation of: (1) the number of pro-
cesses with ready-to-run state (or with pending messages)
in the highest-level ready queue on Ni and (2) the average
number of processes to be additionally waken(or boosted)
up by I/O completion and message arrival during the time
interval (TSi × the number of processes obtained from (1)).

Let us assume that there is a system with N nodes where
each node Ni contains P processes. Each node Ni piggy-
backs TSi and ENPi in every outgoing messages as the
load imbalance information of Ni. When a process Pk in
Nj receives a message from Ni at time t, we define the fol-
lowings:

• TSijk ← TSi, ENPijk ← ENPi

• Tijk : the latest time a process Pk in Nj receives a
message from Ni (Tijk ← t)

• Tij : the time of the last received message by Nj from
Ni (Tij = maxk(Tijk))

• TSij : the most recent TSi of Ni received by Nj

Each time Nj receives a new message from Ni, NIC
updates a data structure (in scheduling layer) related to

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

(a) Process reordering example

(b) Maintenance of global information

Ni

Nj

Nk

time

P1 P1

P2 P2

ENPij1

ENP
kj2

... ...
msg1 = <data, TSi, ENPi>

msg2 = <data, TSk, ENPk>

P2 P1

ERT
ij1

(t)

ERTkj2 (t)

......

... ...

t

Who has minimum ERT ?

Ni

Nj

time

P1 P2

ENP
ij1

... ...
msg1

P2P1

Maintain new ENP
ij1

......

P2 P1... ...

ENPij2

...
msg2

...

update T
ij1

ENPij1 and TSij

update T
ij2

ENPij2 and TSij

Tij (t) - Tij1 (t)

Figure 2. Process reordering example and
maintenance of global information

the load imbalance information (ENPijk, Tijk, TSij , and
Tij) of the remote node Ni based on TSi and ENPi ex-
tracted from the message. As each process with pending
message(s) contains a list of the most recent load imbal-
ance information of remote nodes, our reordering algorithm
makes a new order among processes in Nj by sorting local
processes mainly based on the Expected Remaining Time
(ERT) to schedule the corresponding processes in remote
nodes (see Fig. 2(a)). Our reordering algorithm is shown in
the Algorithm 1.

The ERTijk represents the expected remaining time to
schedule the corresponding process of local process Pk in
the remote node Ni. It is updated by extracting the time
spent in Nj from the total expected remaining time required
to reschedule the corresponding process in Ni, as shown in
line 14 in the algorithm. In line 15, we determine ERTjk

which represents the minimum ERTijk among all remote
nodes. Based on the ERTjk, our reordering algorithm com-
putes the least Expected Reordering Factor (ERF) in Nj

(ERFj) among all processes with pending message(s). The
Candidate Set of the Preferable processes (CSP) in Nj con-
tains all processes with ERTjk equal to the least ERFj

(see from line 18 to 22 in the algorithm). It represents the
set of the most urgent processes which should be sched-
uled first. Note that when the queue has less than two pro-
cesses with pending messages, this reordering procedure is
not invoked. For the simplicity reason, the scheduler ran-
domly selects one candidate process from the set CSP to
be scheduled next. Before computing the CSP, processes
receiving messages from the same remote node, they can
share load imbalance information and maintain their infor-
mation as shown from line 9 to 12 in the algorithm (see also
Fig. 2(b)).

Algorithm 1: Process reordering algorithm
1 Reordering Procedure (node Nj , current time t, CSP) {

2 CSP = null;
3 ERFj = infinite;
4 for each process Pk with pending message(s) in Nj {
5 ERTjk = infinite;
6 for each message m of Pk {
7 i = sender node of message m;
8 // maintain the load imbalance information
9 if (Tijk < Tij) {

10 ENPijk = ENPijk - ((Tij - Tijk) / TSij);
11 Tijk = Tij ;
12 }
13 // determine minimum ERT value in a process
14 ERTijk = (TSij * ENPijk) - (t - Tijk);
15 if (ERTjk > ERTijk) ERTjk = ERTijk;
16 }
17 // determine a process set with minimum ERF value
18 if (ERFj > ERTjk) {
19 ERFj = ERTjk;
20 CSP = { k };
21 }
22 else if (ERFj == ERTjk) CSP = CSP + { k };
23 }
24 }

For experimental purpose, SB and PB are selected as two
case studies since they represent the most successful and
rich strategies among others. In SB, our reordering algo-
rithm can be applied at each scheduler invocation by deter-
mining the process with minimum ERT value. In contrast to
SB, PB needs to apply the reordering algorithm at each PB
kernel thread invocation (∼ 1ms). For the convenience, we
call the former case SB+PROC, and the latter PB+PROC.

4 Experimental Methodology

Simulator. We used a detailed, process-oriented event-
driven simulator, named ClusterSchedSim [17] built on
CSIM19 [19] package, and added our proposed scheme
onto it. As depicted in Fig. 3(a), each workstation com-

CPU

Scheduler

...

NICRun Queues

proc1 proc2 procN
...

Network

To/From the Network

...

Global
Queue

start

job arrival

(a) Workstation clusters

Load
variation (v)

Local
Computation

I/O

Communication

Processes

(b) Parallel job execution

Figure 3. Simulation model of workstation
cluster and parallel job execution

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

Table 2. Workloads characteristics
Comp. I/O Comm. WL1 a set of J1

J1 70 5 25 WL2 a set of J2
J2 48 5 47 WL3 a set of J3
J3 25 5 70 WL4 equal mix of J1,J2,J3

(a) Synthetic Workloads

Pattern Comm. Msg. Size (bytes)
LU NN 11.5% 320, 640 (48.3%)

(four) 40,960, 81,920 (1.56%)
CG NN 63.4% 8 (59%), 16 (1%)

(six) 14,000(40%)
IS AA, 30.1% 4 (50%)

Barrier 32,768 (50%)
FT AA 56.3% 128KB (50%)

256KB (50%)
(b) Realistic Workloads

Table 3. Simulation parameters and values
Parameters Value(s)

System size 32
MPL(Multi-Programming Level) 5, 10

Communication patterns NN, AA
Message size 32 KB

One-way latency 187.97 µs
Variance (v) 0.5, 1.5

Context switching cost 100 µs
Interrupt processing cost 30 µs

Check an endpoint 2 µs
Download (or upload) of global info. 2 µs

Change the position in scheduling queue 2 µs

prises a NIC, OS scheduler, and a set of user processes.
The NIC module models the interactions between user pro-
cesses (or scheduler) and the network. Whenever a mes-
sage is received from the network, the NIC delivers it into
a user buffer and raises an interrupt. Similarly, the NIC
waits for outgoing messages and enqueues them into the
network module. This form of operation is typical of user-
level communication approach [8]. Costs for these opera-
tions have been obtained from microbenchmarks performed
on a cluster of Pentium III-800 MHz workstations con-
nected by Myrinet [9]. The scheduler module emulates So-
laris scheduler [10] and is responsible for manipulating a
priority-based multi-level feedback queue (60 queues) on
which ready-to-run processes are placed. Each workstation
may run an arbitrary number of user processes, whose exe-
cutions are expressed by a simple language that allows the
specification of computations, disk I/O and communication
operations. For the global scheduler, we adopt FIFO.

The periodic boost mechanism used in PB and
PB+PROC becomes active every one millisecond. For SB

and SB+PROC, we set the spin time for a message to be
the expected one-way latency. In both SB+PROC and
PB+PROC, costs for downloading (or uploading) the global
information to NIC (or to scheduling layer), calculating and
comparing the ERT values, and changing the position in the
scheduling queue are modeled in the simulator.
Workloads. We consider two types of workloads: synthetic
and realistic. Synthetic workloads are generated from San
Diego Supercomputer Center (SDSC) SP2 traces, which are
widely used in scheduling studies [11, 12]. During the syn-
thetic workload generation, job arrival time, execution time,
and size information are characterized to fit a mathemati-
cal model called Hyper-Erlang distribution of common or-
der [14]. Each job in the workload requires 32 processes
and iterates phases of local computation, disk I/O, and in-
terprocess communication. We consider two different com-
munication patterns: Nearest Neighbor (NN) and All-to-All
(AA), which are commonly used in many parallel scientific
applications. We assume that both communication patterns
use a fixed message size of 32KB. By fixing the end-to-
end one-way latency of a message, the computation and
I/O time per iteration can be calculated. By multiplying
the computation and I/O time by a value uniformly selected
in (1 + unif (-v/2, v/2)) and by varying the load variance (v),
we model the load imbalance across CPUs (see Fig. 3(b)).

In order to obtain realistic workloads, four parallel ap-
plications (LU, IS, CG, and FT) have been directly derived
from the NAS Parallel Benchmarks (NPB) 2.4 suite [18].
More specifically, these applications have been obtained by
translating their source codes in NPB into the language ac-
cepted by the ClusterSchedSim, without changing their ex-
ecution flow, communication topology, and message sizes.
The duration of sequential parts of these parallel applica-
tion codes have been determined from measurements per-
formed by running the corresponding NPB applications on
a cluster of Pentium III-800MHz workstations. The char-
acteristics of workloads and the simulation parameters used
in our experiments are summarized in Table 2 and Table 3,
respectively.

5 Experimental Results

5.1 Benefit Analysis of PROC

Here, we examine the results concerning the impact of
workload characteristics (different proportions of computa-
tion, I/O, and communication) and communication patterns
on the performance of different coscheduling schemes.
WL1, WL2, and WL3 represent computation-intensive, well-
balanced, and communication-intensive workload, respec-
tively. For this experiment, we limit the maximum Multi-
Programming Level (MPL) to five and set the load variance
factor (v) to 0.5. Figure 4 shows the average job response

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

(a) Avg. Job Response Time (NN)
WL3WL2WL1

A
v
g

.
J
o

b
 R

e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
)

 WaitTime ExecutionTime

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

(b) System Usage Breakdown (NN)
WL3WL2WL1

S
ys

te
m

 U
sa

g
e

B
re

ak
d

o
w

n
 (

%
)

 COMP IDLE SPIN
 OVERHEAD CS

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

(c) Avg. Job Response Time (All-to-All)
WL3WL2WL1

A
vg

. Jo
b

 R
e

s
po

n
s

e
 T

im
e

 (
s

e
c)

 WaitTime ExecutionTime

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

(d) System Usage Breakdown (All-to-All)
WL3WL2WL1

S
ys

te
m

 U
sa

g
e

B
re

ak
d

o
w

n
 (

%
)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 4. Impact of workload characteristics
and communication patterns (MPL = 5, v = 0.5)

time and the system usage breakdown of our interesting six
coscheduling schemes for these three workloads with Near-
est Neighbor and All-to-All communication patterns.

The most striking observation in these figures is
that the proposed coscheduling schemes, PB+PROC and
SB+PROC, achieve better performance than PB and SB,
respectively. We also note that SB+PROC has the lowest
average job response time among all scheduling schemes.
PB+PROC scheme reduces the average job response time
by up to 23.1% compared to PB, and SB+PROC scheme
by up to 38.4% compared to SB. The main reason the
reordering-based schemes outperform prior coschedulings
is that they avoid the unnecessary spinning time or idle time
of previous schemes occurred by load imbalance. In DCS
and SB, the boost sequence of a parallel process is deter-
mined by message arrival, and in PB by simple round-robin
fashion. In contrast, PB+PROC and SB+PROC reorder the
boost sequence of a parallel process according to the global
load imbalance (by boosting a process with minimum ERT
as described in Section 3), trying to reduce the unneces-
sarily wasted time. From Fig. 4(b) and 4(d), we can see
that PB+PROC reduces the spinning time of PB by up to
36.2% and SB+PROC reduces the idle time of SB by up
to 86.9%. When reordering is applied, the overhead is in-
creased due to the cost for the maintenance and appliance
of load imbalance information described in Section 3, and
the context switch is increased since the process reordering
makes the probability of scheduling appropriate (or urgent)
processes high. However, these additional costs do little af-

LOCAL PB PB+PROC SB SB+PROC
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

N
o

rm
a
lize

d
 a

ve
ra

g
e
 jo

b
 s

lo
w

d
o

w
n

 Computation-bound jobs
 Balanced jobs
 Communication-bound jobs

(a) Normalized
avg. job slowdown

scheme coeff. of
variation

LOCAL 0.456
PB 0.157
PB+PROC 0.165
SB 0.107
SB+PROC 0.111

(b) Coefficient
of variation

of slowdown

Figure 5. Fairness (WL4 with NN, MPL=5,
v=0.0)

fect the overall benefit. Across all workloads, we also find
that the blocking-based schemes (SB and SB+PROC) show
better performance than the spinning-based schemes (LO-
CAL, DCS, PB and PB+PROC). This is because blocking
technique allows processes of other applications to proceed
in their computations, thus improving the response time.

Next, to evaluate the fairness, we calculate the coeffi-
cient of variation of slowdown over three different types of
jobs in WL4 with NN1 (see Fig. 5). As depicted in Fig. 5,
our scheme has almost the same fairness value as previous
schemes. We also notice that blocking-based schemes are
more fair than spinning-based schemes.

5.2 Effect of Load Imbalance and Multi-
Programming Level (MPL)

In this section, we examine the effect of the load imbal-
ance and Multi-Programming Level (MPL) on the perfor-
mance of the considered different coscheduling approaches.
In this experiment, we exclude LOCAL and DCS because
there is no point to show their performance. We consider
two extreme scenarios that have less communication (WL1
with NN communication pattern) and intensive communica-
tion (WL3 with AA) to analyze the behavior of reordering
in relation with the load variance and MPL.

Figure 6 shows the average job response time and the
system usage breakdown for these workloads with two dif-
ferent load variance values (0.5 and 1.5) and two different
MPL values (5 and 10). All obtained results show that even
with highly imbalanced load (or with larger MPL), applying
reordering (PB+PROC and SB+PROC) enhances the per-
formance of the previous schemes.

In Fig. 6 (right two groups of bars of each graph),
since the higher load imbalance makes the probability of
mismatch of communicating processes high, we observe
that the response time increases with a larger load vari-

1The results for WL4 with AA are omitted due to space limitation.

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

500

1000

1500

2000

2500

3000

3500

4000

4500

v = 1.5
MPL=5

v = 0.5
MPL=5

v = 0.5
MPL=10

(a) Avg. Job Response Time (WL1 with NN)

A
vg.

Job
 R

es
pon

se
 T

im
e

(s
ec)

 WaitTime ExecutionTime

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

v = 1.5
MPL=5

v = 0.5
MPL=5

v = 0.5
MPL=10

(b) System Usage Breakdown (WL1 with NN)
S

ys
te

m
 U

sa
ge

 B
re

ak
do

w
n

(%
)

 COMP IDLE SPIN
 OVERHEAD CS

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

v = 1.5
MPL=5

v = 0.5
MPL=5

(c) Avg. Job Response Time (WL3 with AA)

v = 0.5
MPL=10

A
vg.

Job
 R

es
pon

se
 T

im
e

(s
ec)

 WaitTime ExecutionTime

P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

-- P
B

P
B

+P
R

O
C

S
B

S
B

+P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

v = 1.5
MPL=5

v = 0.5
MPL=5

v = 0.5
MPL=10

(d) System Usage Breakdown (WL3 with AA)

S
ys

te
m

 U
sa

ge
 B

re
ak

do
w

n
(%

)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 6. Impact of load imbalance and MPL

ance value. This increment is mainly affected by the spin-
ning time increase for the spinning-based approaches (PB
and PB+PROC) and the idle time increase for the blocking-
based approaches (SB and SB+PROC). From Fig. 6(a) and
6(c), we know that the effect of load imbalance (the incre-
ment of job response time) can be better hidden in AA than
in NN due to the overlapping between communication and
computation.

5.3 Realistic Workloads Performance

Finally, we consider four realistic workloads (CG, IS,
LU, and FT) as described in Table 2(b). In each experi-
ment, all jobs require 32 nodes, and are started simultane-
ously. Figure 7 reports the slowdown of implicit coschedul-
ing schemes relative to BATCH (estimated as the ratio of
the last job completion time divided by the sum of the exe-
cution times of the all applications run in isolation) and the
system usage breakdown for these four realistic workloads.

In Fig. 7, it is clearly shown that with the use of global
load imbalance information and reordering, PB+PROC and
SB+PROC significantly outperform PB and SB, respec-
tively, for all realistic workloads. Again, SB+PROC per-
forms the best across all realistic workloads, and consis-
tently shows speedup compared to BATCH. It is observed
that for the application with low communication intensity
like LU, there is hardly any need for coscheduling (note that
in LU case, spinning-based schemes perform even worse
than LOCAL). However, as the communication intensity

CG IS LU FT
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(a) Normalized Slowdown with respect
 to BATCH

S
lo

w
d

o
w

n

 BATCH
 LOCAL
 DCS
 PB
 PB+PROC
 SB
 SB+PROC

L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

-- L
O

C
A

L
D

C
S

P
B

P
B

+
P

R
O

C
S

B
S

B
+

P
R

O
C

0

10

20

30

40

50

60

70

80

90

100

110

(b) System Usage Breakdown

FTLUISCG

S
y
s
te

m
 U

s
a
g

e
 B

re
a
k
d

o
w

n
 (

%
)

 COMP IDLE SPIN
 OVERHEAD CS

Figure 7. Realistic workloads performance
(MPL = 5)

increases (LU < IS < FT < CG), the impact of implicit
coscheduling becomes prominent. In CG, which has the
highest communication intensity, PB+PROC shows about
30% speedup compared to BATCH, and SB+PROC gets at
least 50% speedup. Also, the observation in this experi-
ment reconfirms the fact that blocking-based schemes per-
form better than spinning-based schemes.

5.4 Discussion

From the previous results, applying the reordering mech-
anism substantially enhances the performance of PB and
SB. Using the global load imbalance information, our re-
ordering scheme tries to avoid the unnecessary spinning
time or idle time of previous schemes occurred by load
imbalance. This makes the exploitation of global load im-
balance information as a main key point for our reordering
scheme as well as any future coming reordering variants in
clusters. Accordingly, in this section, we introduce the re-
sults of average message pending time for more analysis.

Table 4 shows the average message pending time
(MSG PENDING TIME) of previous and proposed
schemes for NN communication pattern 2 with different
communication intensity. MSG PENDI-NG TIME is
defined by the average time spent when messages arrive
until they are consumed. Since implicit coscheduling
schemes record small MSG PENDING TIME compared
to LOCAL, the employment of implicit coscheduling
onto workstation clusters is strongly recommended. We
also notice that a considerable MSG PENDING TIME
difference between spinning-based schemes (DCS, PB
and PB+PROC) and blocking-based schemes (SB and
SB+PROC) proportionally reflects the performance
achieved in terms of average job response time in all pre-
vious results. MSG PENDING TIME is reduced by up to

2The results with AA are omitted because the overall trend of
MSG PENDING TIME with AA is the same as with NN.

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

Table 4. Average message pending time (NN,
MPL = 5, v = 0.5)

MSG PENDING TIME
WL1 WL2 WL3

LOCAL 94.590 msec 88.875 msec 98.494 msec
DCS 19.039 15.958 20.959
PB 6.909 5.912 5.916
PB+PROC 6.202 5.587 5.641
SB 4.762 2.913 2.115
SB+PROC 3.726 2.039 1.347

10% in PB+PROC compared to PB and 36% in SB+PROC
compared to SB. This reduction represents one of the key
point of our reordering scheme. Our reordering algorithm
favorites urgent processes that have high expectation to
achieve synchronization with their corresponding ones
in remote nodes in the near future. This fact reduces
the MSG PENDING TIME, and consequently allows a
process in average to consume its messages quicker and
proceed for further executions.

6 Conclusion and Future Work

In this paper, we proposed the use of global informa-
tion to address the main limitation of existing implicit
coscheduling schemes - less accurate decision on who to
boost to be coscheduled without regard to the load imbal-
ance. We also presented a novel coscheduling approach
based on process reordering exploiting global load imbal-
ance information to coordinate the local schedulers.

We used the synthetic and realistic workloads to evalu-
ate PROC compared to other schemes. We performed var-
ious experiments to analyze how the exploitation of global
information using our reordering technique impacts on the
performance of implicit coscheduling. The results reported
in this paper show that our approach clearly provides bet-
ter performance by reducing the idle time and the spin-
ning time, thus improving the utilization of clusters. In
PB+PROC, we achieved the improvement in terms of aver-
age job response time by up to 23.1%, while in SB+PROC,
by up to 38.4%.

We plan to explore more global information that affects
the coordination among communicating processes such as
message frequency, queue size in NIC, etc. We also plan to
extend our work by considering sequential and interactive
jobs, and to implement PROC in a Linux cluster.

References

[1] Y. Zhang, A. Sivasubramaniam et al., Impact of Workload
and System Parameters on Next Generation Cluster Schedul-

ing, IEEE Transactions on Parallel and Distributed System,
2001, 12-9, pp. 967-985

[2] C. Anglano, A Comparative Evaluation of Implicit
Coscheduling Strategies for Networks of Workstations, High
Performance Distributed Computing, 2000, pp. 221-228

[3] J. Ousterhouw, Scheduling techniques for concurrent sys-
tems, 3rd International Conference on Distributed Comput-
ing Systems, 1982, pp. 22-30

[4] U. Rencuzogullari and S. Dwarkadas, Dynamic adaptation
to Available Resources for Parallel Computing in an Au-
tonomous Network of Workstations, Principles and Practice
of Parallel Programming, 2001, pp. 72-81

[5] D. Feitelson and M. Jette, Improved Utilization and Respon-
siveness with Gang Scheduling, Job Scheduling Strategies
for Parallel Processing, 1997, pp. 238-261

[6] A. Dusseau, R. Arpaci and D. Culler, Effective Distributed
Scheduling of Parallel Workloads, ACM SIGMETRICS
Conf. MMCS, 1996, pp. 25-36

[7] P. Sobalvarro, S. Pakin, et al., Dynamic Coscheduling on
Workstation Clusters, IPPS Workshop on JSSPP, 1998, pp.
231-256

[8] D. Dunning et al., The Virtual Interface Architecture, IEEE
Micro, 1998, pp. 66-75

[9] N. Borden et al., Myrinet: A Gigabit-per-second Local Area
Network, IEEE Micro, 1995, 15, pp. 29-36

[10] SUN Microsystems Inc., Solaris 2.6 Software Developer
Collection, 1997, Available from http://www.sun.com/

[11] G. Sabin, R. Kettimuthu, et al., Scheduling of Parallel Jobs in
a Heterogeneous Multi-Site Environment, JSSPP, 2003, pp.
87-104

[12] D. Feitelson, Metric and Workload Effects on Computer Sys-
tems Evaluation, Computer, 2003, pp. 18-25

[13] S. Nagar, A. Banerjee, et al., Alternatives to Coscheduling
a Network of Workstations, Journal of Parallel and Dis-
tributed Computing, 1999, 59-2, pp. 302-327

[14] H. Franke, J. Jann, et al., Evaluation of Parallel Job Schedul-
ing for ASCI Blue-Pacific, Supercomuting, 1999.

[15] S. Nagar, A. Banerjee, et al., A Closer Look at Coschedul-
ing Approaches for a Network of Workstations, ACM Symp.
Parallel Algorithms and Architectures, 1999, pp. 96-105

[16] S. Agarwal, G. S. Choi, et al., Coordinated Coscheduling in
Clusters through a Generic Framework, Cluster Computing,
2003, pp. 84-91

[17] Y. Zhang and A. Sivasubramaniam, ClusterSchedSim: A
Unifying Simulation Framework for Cluster Scheduling
Strategies, SIMULATION: Transactions of the Society for
Modeling and Simulation, May 2004, pp. 191-206

[18] NAS division., The NAS parallel benchmarks Available from
http://www.nas.nasa.gov/Software/NPB/

[19] H. D. Schwetman, CSIM19: a powerful tool for building sys-
tem models, 2001 Winter Simulation Conference, 2001, pp.
250-255

Proceedings of the 2005 International Conference on Parallel Processing (ICPP’05)

0190-3918/05 $20.00 © 2005 IEEE

