
Supporting the Sockets Interface over User-Level Communication Architecture:
Design Issues and Performance Comparisons

Jae-Wan Jang
jwjang@camars.kaist.ac.kr

Jin-Soo Kim
jinsoo@cs.kaist.ac.kr

Division of Computer Science
Korea Advanced Institute of Science and Technology (KAIST)

Abstract

Since user-level communication architecture (ULC) pro-
vides only primitive operations for application program-
mers, many high-level communication layers have been de-
veloped on top of ULC. One of such high-level communica-
tion layers is the sockets interfaces and it can be supported
over ULC architectures in several ways. The primary ob-
jective of this paper is to identify design issues and trade-
offs among these different approaches, and to quantitatively
analyze their performance to understand the various costs
associated with the communication.

In this paper, we design and implement KSOVIA, a
kernel-level sockets layer over VIA, and compare it with the
existing approaches such as a user-level sockets layer over
VIA and an IP emulation layer over VIA. Our measurement
results show that using an IP emulation layer exhibits the
worst performance in terms of latency and bandwidth and
a user-level sockets layer is useful for latency-sensitive ap-
plications. KSOVIA is found to be effective for applications
which require high bandwidth or the full compatibility with
the sockets interface.

1. Introduction

Cluster systems are becoming attractive as the needs
of high performance computing grow rapidly. Since clus-
ter systems are relatively easy to build using commodity
off-the-shelf (COTS) components, they show higher per-
formance/price ratio than traditional supercomputers. This
makes cluster systems the most common computer archi-
tecture seen in the world’s fastest TOP500 supercomputer
list [1].

One of the main obstacles in constructing a scalable clus-
ter system is the communication performance; as the num-
ber of cluster nodes increases, the communication traffic
among them also increases inevitably, limiting the overall

performance of cluster systems. Recently, many high-speed
System Area Networks (SANs), such as Gigabit Ethernet,
Myrinet, Quadrics, and InfiniBand Architecture, have ap-
peared supporting raw bandwidth more than one gigabits
per second. In spite of the availability of high-speed in-
terconnection hardware, however, it is not easy to deliver
the raw transmission speed to end users due to various soft-
ware overheads involved in communication. Therefore, it
is essential to devise an efficient communication architec-
ture which minimizes the communication cost in order to
achieve the scalability beyond several tens or hundreds of
nodes.

User-level communication (ULC) architectures attempt
to accelerate the communication performance by remov-
ing the operating system from the critical communication
path. It rests on the observation that the traditional commu-
nication architecture based on TCP/IP protocol suite suffers
from the TCP/IP protocol overhead in the cluster environ-
ment. Moreover, ULC architectures perform most of proto-
col processing in the user space, thus eliminating overheads
associated with context switching and data copying between
the user and the kernel space.

The Virtual Interface Architecture (VIA) [2] is an early
industrial effort to standardize ULC architectures. Recently,
InfiniBand Architecture (IBA) [15] has been standardized
as one of the next generation interconnection networks bor-
rowing many concepts from VIA. The VIA and IBA define
a set of standard application programming interface (API),
called VIPL (VI Provider Library) and VAPI (Verbs API),
respectively. These APIs provide fully-protected, user-level
access to a network hardware, allowing for efficient com-
munication for scalable clusters.

Although VIPL and VAPI enable developers to exploit
high performance network at user-level, they are considered
to be at too low a level for general network application pro-
gramming [3]. Hence, many researchers have endeavored
to build another portable high-level communication layers
over VIA and IBA [11][18][19] that can hide low-level de-
tails to end users. Among various popular high-level com-
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munication layers, one of possible candidates that can be
used over ULC architecture is the Berkeley sockets API [4]
considering its widespread use and acceptance in distributed
environments. The sockets API is a de facto standard for
network programming and provides a means for developing
applications independent of network hardware or protocols.

There can be several different approaches to support-
ing the sockets API over ULC architecture. Specifically,
we can make the sockets API available for use, either (1)
by inserting an IP emulation layer inside the kernel which
bridges the gap between IP layer and user-level communi-
cation device (e.g. LANEVI for VIA or IPoIB for IBA),
(2) by providing a user-level sockets layer, or (3) by provid-
ing a kernel-level sockets layer. Both the user-level and the
kernel-level sockets layers emulate the sockets API directly
over VIA or IBA. However, the user-level sockets layer ex-
ists as a library in the user space, while the kernel-level
sockets layer resides in the kernel space, which bypasses
the TCP/IP protocol stack during data transfer.

Each of the aforementioned approaches reveals different
characteristics and design issues, not to mention the com-
munication performance. This urges us to investigate the
pros and cons of each approach both qualitatively and quan-
titatively. Since we have an access to the implementations
of the first and second approaches from LANEVI driver of
Emulex and our previous work [11], respectively, it is re-
quired to have a kernel-level sockets layer over VIA for
making the comparison.

Thus, we first design and implement a kernel-level sock-
ets layer, called KSOVIA (Kernel-level Sockets Over VIA),
and then compare KSOVIA with other existing approaches.
The primary objective of this paper is to identify design is-
sues and trade-offs among different approaches supporting
the sockets layer over ULC architecture, and to quantita-
tively analyze the various factors which affect the resulting
communication performance.

The rest of the paper is organized as follows. The next
section briefly overviews different approaches to support-
ing the sockets API over VIA, and presents motivations and
contributions of our work. Section 3 compares design issues
among different approaches, with emphasis on implementa-
tion details of KSOVIA. Section 4 shows experimental re-
sults and compares the performance of KSOVIA with other
approaches. Section 5 presents related work. Finally, we
conclude in section 6.

2. Background

2.1. Virtual interface architecture (VIA)

The organization of VIA is briefly depicted in Figure
1. VIA consists of four basic components: Virtual Inter-
faces, Completion Queues, VI Provider, and VI Consumer.
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Figure 1. The organization of the Virtual Inter-
face Architecture

VIA provides a consumer process with a protected, directly-
accessible interface to a network hardware called Virtual In-
terface (VI), which is used as a communication endpoint. A
VI consists of a pair of work queues: a send queue (SQ)
and a receive queue (RQ). VI Provider consists of a physi-
cal network adapter and Kernel Agent, while VI Consumer
represents the user of a VI.

Sending or receiving data in VIA is comprised of two
separate phases, namely the posting phase and the reaping
phase. In the posting phase, VI Consumer posts a request
on a work queue, in the form of a descriptor which contains
all the information to transmit data. When the processing of
the descriptor completes, the NIC marks a DONE bit in the
status field of the descriptor. Those completed descriptors
are identified and then removed from the work queue by VI
Consumer in the reaping phase. A Completion Queue (CQ)
allows a VI Consumer to coalesce notification of descriptor
completions from multiple work queues in a single location.
Once this association is established, notification of the com-
pleted requests for the work queue is automatically directed
to the CQ.

Several VIA implementations are available for Linux
platforms. M-VIA [5] emulates the VIA specification by
software for legacy Fast Ethernet and Gigabit Ethernet
NICs. Berkeley VIA [6], SVIA [7], and MyVIA [8] sup-
port the VIA specification on Myrinet by modifying its
firmware. Finally, Emulex Corp. (former Giganet Inc.) has
developed a proprietary, VIA-aware NIC called cLAN [9].
In this paper, we investigate various issues related to the
sockets support on cLAN, as it is one of the most stable
VIA implementations.

2.2. Supporting the sockets API over VIA

There can be several different approaches for support-
ing the sockets interface over VIA, as illustrated in Figure
2. Figure 2(a) shows the traditional communication archi-
tecture, in which the sockets layer is located on top of the
TCP/IP protocol stack.

A simple way to support the sockets interface on top of
VIA is to insert an adaptation layer between IP and VI Ker-
nel Agent, as depicted in Figure 2(b). As the IP layer is
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Figure 2. Supporting the sockets API over VIA

emulated on VIA, an IP address is assigned to the NIC and
the existing IP-based network applications can be run with-
out any modification. The LANEVI (LAN Emulation on
VI) [10] driver supplied by Emulex for its cLAN NICs is
an example of such layers. Internally, the LANEVI driver
relies on a thin layer called kVIPL, which is a kernel-level
counterpart to VIPL allowing the kernel to use VIPL-like
interfaces to access the NIC. Due to restrictions in the kernel
space, however, not all of VIPL interfaces are implemented
in kVIPL.

In order to eliminate overheads incurred by the TCP/IP
protocol stack and to fully utilize the VIA’s user-level data
transfer capability, a user-level sockets layer over VIA, such
as SOVIA [11], has been proposed. SOVIA is a lightweight
and portable communication layer, which aims at providing
the sockets interface entirely at user-level without sacrific-
ing the performance of the underlying VIA layer. As Figure
2(c) shows, user-level sockets layers are generally imple-
mented as a user-level library on top of VIPL. It is reported
that the SOVIA layer successfully realizes comparable per-
formance to native VIA, while offering the portable sockets
semantics to application developers.

User-level sockets layers implemented on top of ULC
architectures have been also introduced for Myrinet [12].
Gigabit Ethernet [13], and SCI [14]. However, all of
those user-level sockets layers show a compatibility prob-
lem in that they hardly support the exec() system call, since
sockets-related data structures maintained at the user level
are eliminated during exec(). In addition, it is very compli-
cated to share sockets connections between parent and child
processes after the fork() system call, which makes it diffi-
cult to support concurrent server daemons or “super-server”
daemons such as inetd. These problems are inherent limita-
tions in any user-level sockets implementations.

Another approach that can solve the compatibility prob-
lem of user-level sockets layers is to use a kernel-level sock-
ets layer, which moves the sockets support back into the ker-
nel space, as shown in Figure 2(d). The kernel-level sock-
ets layer supports the sockets API inside the kernel, but still
bypasses the TCP/IP protocol stack interacting directly with
the VI-aware NIC. It can freely access sockets-related data
structures kept inside the kernel and is able to preserve most
sockets semantics easily.

2.3. Motivations and Contributions

Our work is motivated by a desire to compare different
approaches to supporting the sockets API over ULC archi-
tecture, both qualitatively and quantitatively. In order to do
that, we first had to develop KSOVIA, a kernel-level sockets
layer over VIA, because there was no corresponding imple-
mentation that could be used for the comparison.

The KSOVIA layer is intended to behave the same as the
existing SOVIA layer as much as possible in terms of pro-
tocol processing such as internal state transitions and flow
control algorithms, with the only exception being located in
the kernel space. There are, however, several cases where
some design changes are required in KSOVIA due to intrin-
sic differences between the user and the kernel space.

The development of KSOVIA enables us to com-
pare three different approaches, LANEVI, SOVIA, and
KSOVIA, on the same cLAN-based platform. Because
SOVIA and KSOVIA work basically the same way, we
can accurately identify the amount of overheads added in
the kernel-level implementation (such as context switching
overhead) by comparing their performance. Similarly, we
can roughly figure out the TCP/IP protocol overhead by
comparing the performance of KSOVIA and LANEVI. In
the next section, we also describe design differences among
LANEVI, SOVIA, and KSOVIA, with respect to data send-
ing, data receiving, connection management, and flow con-
trol.

The major contributions of this paper can be summarized
as follows.

• We classify different approaches to supporting the
sockets interface over ULC architecture such as VIA.

• We design and implement KSOVIA, a kernel-level
sockets layer over VIA, in order to perform the com-
parison with the existing LANEVI and SOVIA layer.

• We examine design and implementation issues in sup-
porting the sockets interface, with paying attention
to design differences and trade-offs among LANEVI,
SOVIA, and KSOVIA.

• We measure the latency and the bandwidth of
LANEVI, SOVIA, KSOVIA, and native VIA, on the
same platform to understand their relative perfor-
mance.
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• We quantitatively analyze the individual costs asso-
ciated with the communication (for example, context
switching overhead, data copying overhead, and the
TCP/IP protocol overhead) by comparing the perfor-
mance of LANEVI, SOVIA, and KSOVIA.

3. A comparison of design and implementation
issues

In this section, we present the internal workings of
KSOVIA, and compare its design and implementation is-
sues with LANEVI and SOVIA. The detailed description
on LANEVI has not been published in the literature, and
thus it is guessed from the source code. Since we are un-
able to cover SOVIA completely in this paper due to the
space limitation, readers are encouraged to refer to [11] for
further details on SOVIA.

3.1. Data receiving

In the traditional TCP/IP-based communication architec-
ture, data receiving is handled by an interrupt handler in a
transparent way to user applications. In VIA, however, VI
Consumer itself should extract completed descriptors from
the receive queue (RQ) and post a new one for each incom-
ing data that is delivered asynchronously.

As the LANEVI driver works at the network device
driver level, data receiving is handled similarly to the tra-
ditional architecture. First, LANEVI prepares a set of re-
ceive descriptors and temporary buffers when it is loaded
into the kernel. These descriptors and buffers are registered
in advance so that the NIC can access them via DMA op-
erations. When a packet arrives from the peer, an interrupt
occurs which enables LANEVI to reap the descriptor after
copying received data to a socket buffer. The socket buffer
is passed on to the upper layer and processed by the TCP/IP
protocol stack.

Whereas LANEVI merely transfers IP packets to and
from VIA using the kernel-level interfaces provided by
kVIPL, SOVIA emulates the sockets interface directly
at user-level using VIPL. Whenever an application calls
socket(), SOVIA creates a new VI. All the RQs of VIs are
connected to a completion queue (CQ) to get the notification
of data arrival in a single location. Usually, the application
itself checks the CQ either by polling or by using a block-
ing VIPL interface, to see if there is any pending data. As in
LANEVI, SOVIA also uses temporary buffers to store data
sent from the peer.

While SOVIA creates a CQ for each process in the sys-
tem, KSOVIA uses only one system-wide CQ as it is lo-
cated in the kernel. KSOVIA also utilizes temporary buffers
as SOVIA does, although they are allocated in the kernel
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Figure 3. Data receiving in KSOVIA

space in KSOVIA. We elaborate upon the KSOVIA’s im-
plementation of recv() in Figure 3. The entire data receiving
phase is divided into two sub-phases in KSOVIA. The first
phase is to receive data from the peer and the second phase
is to multiplex them to a corresponding socket.

When the NIC receives data from the peer, it gener-
ates an interrupt which schedules the callback function in
KSOVIA. The callback function recognizes the data recep-
tion event and delegates the processing to descriptor extract-
ing module (DEM) in the bottom half of the Linux kernel.
The DEM obtains a VI handle from the CQ and extracts the
completed descriptor from the VI. Since we specify source
and destination port numbers in the descriptor, the multi-
plexer module can enqueue the extracted descriptor to the
descriptor queue of the corresponding socket.

As we have seen previously, all of LANEVI, SOVIA,
and KSOVIA rely on temporary buffers to satisfy the pre-
posting constraint, because there is excessive synchroniza-
tion overhead otherwise [11]. As long as we use temporary
buffers, one data copy from the temporary buffer to the user
buffer is unavoidable. Note that LANEVI experiences one
more data copy due to the existence of the kernel socket
buffer; one from the temporary buffer to the socket buffer,
and the other from the socket buffer to the user buffer.

3.2. Data sending

In LANEVI, sending data via sockets is accomplished
with the help of TCP/IP protocols. User data are encapsu-
lated in the socket buffers with TCP and IP headers as they
are passed through the TCP/IP protocol stack. Those socket
buffers are finally handed over to the LANEVI driver for
the transmission. As socket buffers can not be used directly
for DMA operations, LANEVI copies the contents of socket
buffers to the pre-registered temporary buffers in the kernel.
LANEVI also forms send descriptors, and posts them to the
SQ.

Unlike LANEVI, SOVIA does not make use of tempo-
rary buffers in general. Instead, SOVIA registers the mem-
ory region of user data before actual transmission, so that
the NIC can access them via DMA operations. This ap-
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proach avoids the unnecessary data copying and achieves
the zero-copy protocol during data sending. However, as
users should not modify their data before the NIC finishes
the entire sending operation, SOVIA is unable to support
the non-blocking mode of send(). For this reason, SOVIA
also provides a sending mode that performs one copy from
user data to temporary buffers.

In the case of KSOVIA, it is inevitable to use temporary
buffers as the user data should be moved into the kernel
space first. If users request the send() system call, KSOVIA
copies data to temporary buffers located in the kernel, and
posts send descriptors to the SQ (the posting phase). After
the NIC finishes the sending operation, KSOVIA dequeues
them from the SQ (the reaping phase).

3.3. Connection management

Connection management is one of the noticeably differ-
ent parts among LANEVI, SOVIA, and KSOVIA. In cLAN,
when a new node joins, its LANEVI driver automatically
connects to every other node in the same cLAN network be-
cause VIA is based on the connection-oriented communica-
tion model. Establishing a logical connection between two
sockets uses special TCP packets and these packets are ex-
changed through the pre-created VIA connection between
two nodes. Thus, when a socket makes a connection with
the peer, two separate connection establishments are per-
formed in LANEVI. This mechanism is inefficient, but it
is inevitable to emulate connectionless IP services over the
connection-oriented VIA.

SOVIA maintains two POSIX threads for connection
management. One is the close thread which processes in-
coming packets after partial close of the connection. The
other is the connection thread spawned as a result of the lis-
ten() system call. Due to the slight semantic differences in
connection models between sockets and VIA, the connec-
tion thread is necessary to accept an incoming VI connec-
tion request behind the application thread.

KSOVIA does not need a close thread since the kernel
is able to receive any incoming packets without resort to
the user application. KSOVIA, however, employs a kernel
thread to deal with VIA connection requests and replies.
As in SOVIA, this kernel thread is created after the listen()
system call.

3.4. Flow control

LANEVI has no concern for flow control because flow
is mostly managed by the upper TCP layer. Although TCP
has many complicated flow control mechanisms, some fea-
tures of them, such as congestion window, are not necessary
in the reliable cluster interconnection networks. Thus, it is

required to devise a lightweight flow control mechanism for
SOVIA and KSOVIA.

The flow control mechanism used in SOVIA mainly fo-
cuses on increasing the bandwidth. SOVIA supports a
credit-based flow control which is similar to the TCP’s slid-
ing window protocol. It has a notion of windows size w,
which denotes the maximum number of data packets the
sender is allowed to transmit without waiting for an ac-
knowledgment. When a socket is created, w receive de-
scriptors are pre-posted in the RQ. Whenever the sender
transmits a data packet, it decreases w by one to denote
that one of the receive descriptors has been consumed. If w
reaches zero, the sender stops to transmit data packets until
w becomes a positive number. Windows size w is increased
by one if an acknowledgement is delivered to the sender. To
enhance the bandwidth further, acknowledgements can be
delayed and piggybacked to data packets. We have imple-
mented the same flow control algorithm in KSOVIA.

4. Evaluations

4.1. Experimental setup

We have measured the performance of LANEVI, SOVIA
and KSOVIA with the Linux kernel 2.4.18 and cLAN driver
version 2.0.1. As the original kVIPL supplied by Emulex
does not provide connection management APIs, we have
slightly extended kVIPL to implement missing interfaces.
The hardware platform used for performance evaluation is
two Linux servers, each consisting of 1.6GHz Intel Pentium
4 processor, 512KB L2 cache, and 768MB of main memory.
Two cLAN1000 network adapters are attached to a 32-bit
33MHz PCI slot of each server without any intermediate
switch.

We carry out microbenchmarks which measure the one-
way latency and the unidirectional bandwidth. The one-
way latency is measured by a half of the round-trip time
from several ping-pong tests. The unidirectional bandwidth
is obtained by measuring the average time spent for send-
ing 100,000 packets repeatedly. In addition, we use FTP
server and client programs to verify the functionality and to
evaluate the performance of real sockets applications.

Communication mechanisms evaluated in this paper are
summarized in Table 1. The measurement results of VIPL
and VIPL POLL are obtained from microbenchmarks writ-
ten in VIPL and they are considered as the baseline of other
results. Note that SOVIA can be implemented either us-
ing non-blocking APIs (SOVIA POLL) or using blocking
APIs (SOVIA). On the contrary, KSOVIA does not use non-
blocking APIs because polling is not allowed inside the ker-
nel.
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Table 1. Evaluated communication mechanisms
Communication
mechanisms

Description

VIPL POLL Use VIPL with non-blocking APIs in the user space
VIPL Use VIPL with blocking APIs in the user space
LANEVI Use the traditional TCP/IP using the LANEVI driver
SOVIA POLL Use a user-level sockets layer over VIA with non-blocking APIs
SOVIA Use a user-level sockets layer over VIA with blocking APIs
KSOVIA Use a kernel-level sockets layer over VIA (blocking APIs are used implicitly)

4.2. One-way latency
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Figure 4. One-way latency for small messages

Figure 4 shows the measured one-way latency when the
message size varies from 4 bytes to 256 bytes. As expected,
VIPL POLL shows the smallest latency for all the message
sizes. Note that both VIPL POLL and SOVIA POLL check
the arrival of new data by polling the completion queue. In
general, network applications can not use this polling mech-
anism because it wastes most of CPU times on busy wait-
ing. Thus, these results are only meaningful as the practi-
cal lower bound of the one-way latency. Since other com-
munication mechanisms, such as VIPL, SOVIA, KSOVIA,
and LANEVI, are based on blocking APIs, they exhibit the
higher latency than VIPL POLL and SOVIA POLL.

From Figure 4, it can be seen that SOVIA shows the con-
stantly higher latency than VIPL by about 1.3 µsec. It is
mainly due to the added complexity in the SOVIA layer to
support sockets interface. Figure 4 also illustrates that the
latency of KSOVIA is higher than that of SOVIA by 1.7
µsec.

As we have designed KSOVIA to behave the same as
SOVIA, the gap between KSOVIA and SOVIA mostly
comes from the fact that KSOVIA is located in the kernel.
For further analysis on the factors affecting the latency, we
measure the time spent for calling a system call (labeled as
send()+recv()) and for data copy (labeled as memory copy).
We present the results in Figure 5 in conjunction with the la-
tency of VIPL and SOVIA. Note that baseline transmission
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Figure 5. Break down of the one-way latency
of KSOVIA for small messages

denotes the latency of KSOVIA except the time for system
calls and data copy. We can observe that most of the differ-
ence in latency between KSOVIA and SOVIA stems from
the context switching overhead between the kernel and the
user space around the send() and recv() system calls. The
data copying overhead is negligible in Figure 5, as the mes-
sage size is small.

Compared to KSOVIA, LANEVI has the additional
TCP/IP overhead, exhibiting the worst latency in Figure
4. From the difference in latency between LANEVI and
KSOVIA, we can roughly conjecture that LANEVI spends
22% of its time (about 6 µsec out of 27.2 µsec) for the
TCP/IP protocol processing.

4.3. Unidirectional bandwidth

Figure 6 illustrates the unidirectional bandwidth of each
communication mechanism studied in this paper. First, we
can see that LANEVI shows the higher bandwidth than
any other mechanisms when the message size is less then
2Kbytes. This is because TCP’s Nagle algorithm com-
bines small messages together before a packet is transmit-
ted. Although we do not enable this feature for SOVIA and
KSOVIA in the measurement, it is already reported in [11]
that SOVIA outperforms LANEVI even for the small mes-
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Figure 6. Unidirectional bandwidth

sage sizes if we add the similar ability to SOVIA. The band-
width of LANEVI is saturated to 760 Mbps at the 512-byte
message size and remains the smallest when the message
size is larger than 16 Kbytes.

As SOVIA is implemented using VIPL, the performance
of SOVIA and SOVIA POLL are bound to that of VIPL
and VIPL POLL, respectively. The minor difference be-
tween SOVIA and VIPL is due to the protocol maintenance
overhead in SOVIA.

It is impressive that KSOVIA delivers much higher band-
width than SOVIA, in spite of the context switching over-
head which has increased the latency slightly. SOVIA per-
forms the posting phase and the reaping phase in the same
send() system call, while KSOVIA defers the reaping phase
to the bottom half in order to process multiple descriptors in
a single run. This maximizes the concurrency during data
sending in KSOVIA and leads to the bandwidth compara-
ble to SOVIA POLL. If SOVIA supports this kind of con-
currency in sending, the bandwidth of SOVIA is likely to
increase further.

4.4. FTP performance

Table 2. FTP bandwdith
File A File B

Size 13,374,187 bytes 168,919,040 bytes
sec MBps sec Mbps

LANEVI 0.137 744.80 1.74 740.60
SOVIA 0.134 778.91 1.8 762.57

KSOVIA 0.125 816.30 1.56 826.12
Local copy 0.063 1619.63 1.255 1026.89

We run an FTP server (linux-ftpd-0.17) and client
(netkit-ftp-0.17) over different communication mechanisms
such as LANEVI, SOVIA, and KSOVIA, in order to verify
their functional validity and to measure the performance of
real sockets applications. Two files are transferred from the

server to the client; one is small (12.75 MB) and the other
is rather large (161.1 MB). We have arranged that all the
files reside in ram disks to avoid the influence of the disk
subsystems. Table 2 summarizes the performance of file
transfers. First of all, as the bandwidth of local copy using
cp command is large enough exceeding 1 Gbps, we can see
that the FTP performance is not bounded by the ram disks
performance.

Table 2 shows that LANEVI achieves 91.2% (for small
file) and 89.6% (for large file) of the bandwidth of
KSOVIA. These results are analogous to those obtained
from microbenchmarks. As described in the previous sec-
tion, KSOVIA shows a little higher bandwidth than SOVIA
due to several kernel-level optimizations.

5. Related work

The most popular communication layers used in the
cluster environments are MPI (Message Passing Interface)
and Berkeley sockets interface [4]. Since sockets interface
provides more general communication interface, many re-
searches have been performed to support the sockets API
on VIA. VIsocket [16] proposed by Itoh et al. is similar to
KSOVIA in that it provides sockets functionality below the
STREAMS module in Solaris by collapsing internal TCP/IP
layers. However, the design and performance details of VI-
socket have not been published yet.

Recently, InfiniBand Architecture (IBA) [15] has been
standardized by the industry to develop the next generation
high-performance interconnection network. As IBA adopts
many features from VIA, its software layer is very simi-
lar to VIPL. Currently, there are many ongoing research
projects to build new convenient layers on top of IBA, such
as IPoIB [17] and SDP [17]. IPoIB provides the standard-
ized IP encapsulation over IBA fabrics, whose role is iden-
tical to that of LANEVI in a conceptual viewpoint. Sockets
Direct Protocol (SDP) defines a standard wire protocol to
support stream sockets over IBA bypassing the traditional
TCP/IP protocol stack. SDP is essentially a kernel-level
sockets layer over IBA and its purpose is the same as that
of KSOVIA. Even though some implementations of SDP
are availble [17][20][21], there is little publicly available
documetation of internal implementation and comparison
among several design choices we focus on. Due to many
similarities between VIA and IBA, we believe the results
obtained in this paper are also useful in developing such
layers as IPoIB and SDP.

6. Concluding remarks

This paper compares three different approaches to sup-
porting the sockets interface over ULC architecture. We
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utilize VIA, one of ULC architectures, for the comparison.
We compare LANEVI, SOVIA, and KSOVIA which is de-
veloped based on VIA. LANEVI emulates the IP layer on
VIA, while SOVIA and KSOVIA represent a user-level and
a kernel-level sockets layer over VIA, respectively. Since
there is no reference implementation for kernel-level sock-
ets layers, we have designed and implemented the KSOVIA
layer in this paper.

From the measurement results, we observe that LANEVI
exhibits the worst performance among all the approaches
evaluated in this paper. By comparing the latency of
LANEVI and KSOVIA, we can roughly conjecture that
LANEVI spends 22% of its time (about 6 µsec out of 27.2
µsec) for the TCP/IP protocol processing. It is also iden-
tified from the difference in latency between KSOVIA and
SOVIA that the context switching overhead is less than 2
µsec. SOVIA or KSOVIA has the added complexity to
support sockets interface compared to native VIA, which
increases the latency by about 1 µsec.

Putting it all together, we can conclude that there is no
reason to use the LANEVI driver for sockets-based ap-
plications. It shows the worst performance both in terms
of latency and bandwidth, and has the additional over-
head in connection management to emulate connectionless
IP services on the connection-oriented VIA. On the other
hand, SOVIA and KSOVIA have their own pros and cons.
Even though SOVIA presents the slightly lower bandwidth
than KSOVIA, it is useful when applications are latency-
sensitive and do not use fork() or exec() system calls.
KSOVIA can be used effectively for applications which re-
quire high bandwidth or the full compatibility with the ex-
isting sockets interface.

We are going to observe the behavior of the various clus-
ter and Grid applications to see the impact of the different
approaches to support sockets interface on real-world appli-
cations. Additionally, we plan to extend our work on to the
recent InfiniBand Architecture by investigating such layers
as IPoIB and SDP.
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