
snapPVFS: Snapshot-able Parallel Virtual File System

Kwangho Cha†‡, Jin-Soo Kim† and Seungryoul Maeng†
†Computer Science Department, Korea Advanced Institute of Science and Technology, Daejeon, KOREA

‡Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, KOREA
{khocha@camars, jinsoo@cs, maeng@camars}.kaist.ac.kr

Abstract

In this paper, we propose a modified parallel virtual file
system that provides snapshot functionality. Because typical
file systems are exposed to various failures, taking a snap-
shot is a good way to enhance the reliability of file systems.
The PVFS, which is one of the famous parallel file systems
deployed in cluster systems, is vulnerable to system failures
or users’ mistakes; however, there is a scarcity of research
on snapshots or online backup for the PVFS. Because a
PVFS consists of multiple servers on a network, snapshots
should be generated properly in each server in the system.
Furthermore, before snapshots are generated, the status of
each PVFS server must be checked to guarantee sound op-
eration. To demonstrate our approach, we implemented two
prototypes of a snapshot-able PVFS (snapPVFS). The per-
formance measurements indicate that an administrator can
take snapshots of an entire parallel file system and properly
access any previous versions of files or directories in the
future without serious performance degradation.

1 Introduction

The parallel virtual file system (PVFS) is an open source-
based parallel file system that utilizes multiple data server
machines connected to a system or storage area network
to provide linearly scaling performance. Furthermore, the
PVFS enables parallel file systems to be easily constructed
and operated with general purpose components. The inde-
pendence and openness of the PVFS has made it the preva-
lent file system in cluster computing systems[1].

In addition to performance, file systems must satisfy re-
liability requirements. According to a recent study on the
reliability of large-scale systems, storage is one of the main
reasons of system failure [2]. This situation, which seems
to have worsened because of the expected growth in storage
systems, is the reason we insist that file systems in large-
scale systems should be reliable.

In the case of large distributed memory computer sys-

tems, especially supercomputers, parallel file systems are
generally used for job scratch space, which is mainly used
to store large volumes of transient data [3]. Unlike user
home directories, which are usually set to store programs,
libraries and documents, the data in the job scratch space are
seldom backed up [4]. Backing up generally takes a long
time, even longer than a day [5]. Hence, modern backup
systems are unsuitable for the job scratch space.

Although the job scratch space contains transient data,
problems in the data can degrade the availability of the en-
tire system. For example, if an intermediate file in the job
scratch space is broken or erased, it may be necessary to
resubmit a job to regenerate the lost file. The method of
recovering transient data helps prevent the squandering of
computational resources [3].

However, because the current version of PVFS has no
online backup or snapshot support, we implemented a pro-
totype snapshot-able PVFS (snapPVFS) by modifying a
PVFS and the Linux-based versioning file system ext3cow.
Our results confirm that snapshots of a file system can be
taken and retrieved properly. The preliminary performance
measurements also show that snapPVFS can generate snap-
shots without seriously degrading performance.

This paper is organized as follows: We summarize the
background of our research in section 2. Section 3 presents
the overall architecture of our proposed scheme, snapPVFS.
The performance measurements are described in section 4.
Finally, we present our conclusions in section 5.

2 Related work

2.1 Parallel virtual file system

One of the well-known parallel file systems is the PVFS
[1]. The PVFS can provide high-performance I/O capabili-
ties by striping blocks of data files across multiple disks on
multiple storage nodes because of the possibility of reading
or writing these blocks simultaneously. There may be any
number of servers and each server may provide either meta-
data, file data or both. Metadata includes attributes such as

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.51

221

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



timestamps, permissions, and file system specific parame-
ters; file data means the actual data stored in the system.
Our approach is based on version 2.6 of the PVFS, which
consists of five major components: a buffered message in-
terface (BMI), flows, a trove, a job interface, and state ma-
chines [1][6].

2.2 Versioning file system

The major goal of data versioning is to protect data in
storage and file systems from system failures or unexpected
misuse. Versioning techniques include a file system snap-
shot and individual file versioning. A snapshot in this con-
text means a read-only, unchangeable, and logical image of
a collection of data at a certain point of time. Snapshots of
a file system are generally used for backup, archiving and
data mining. A snapshot can be implemented at the logical
file system level and the disk storage level. A more detailed
explanation of the snapshot is given in the next section.

File versioning creates a new logical version on every
disk write or on every open or close session. In this study,
we assume that the versioning file system is a file system
with versioning features. The various designs of version-
ing file systems have different functions and implementa-
tion environments. The elephant file system introduced four
retention policies. Depending on which policy is adopted,
file systems can have a different undo period and important
file versions. To reflect the retention policies and maintain
multiple inodes, the elephant file system uses three meta-
data structures: an inode file, an inode log, and an imap [7].

Wayback is a user-level versioning file system for Linux.
The developers of Wayback focused on easy implementa-
tion and portability of their new file system. When Wayback
traps a system call for files with the help of a file system in
user space, it writes an undo log. By applying the undo log
in reverse order, Wayback can go backward in time [8].

The ext3cow file system, which is based on an ext3 file
system, improves the functionality of the ext3 file system
with versioning. It also provides a time-shifting interface
that supports a real-time view of previous data. Users can
generate a snapshot of the entire file system and retrieve
the snapshot as a read-only image. The inodes of ext3cow
were changed to support snapshot and copy-on-write func-
tions by the addition of three fields: an inode epoch counter,
a copy-on-write bitmap, and a field that points to the next
inode in the version chain [9].

2.3 Snapshot

A snapshot generally refers to the ability to record the
state of a storage or file system; it can be found in various
storage-related components, such as file systems, volume
managers, and storage arrays. Because a snapshot provides

easy backup of a large volume of data and point-in-time
copies of data, it facilitates recovery from system corrup-
tion and simplifies analysis of historical changes of data.
Moreover, it can protect data from the mistakes of users,
such as accidental deletion [10][11].

The copy-on-write function is the one of the prevailing
ways of creating snapshots. For the initial snapshot, the
copy-on-write function merely copies the metadata pertain-
ing to the location of the original data. If there are any write
requests for snapshotted data, the original data is moved to a
predesignated space before it is overwritten. In this method,
the creation of a snapshot is almost instantaneous and the
snapshot space only holds the changed data. However, it
has a double write penalty, which means that any change to
the snapshotted data yields two write requests: one for mov-
ing the original data and one for changing the data [10].

The redirect-on-write function is similar to the copy-on-
write function. Because new writes to snapshotted data
are redirected to another space, the double write penalty of
the copy-on-write function is eliminated. However, when
a snapshot is deleted, the redirect-on-write function must
perform more complicated routines than those in the copy-
on-write function [10].

IBM’s GPFS is a commercial high performance file sys-
tem that is available on AIX and Linux. Because the GPFS
has the features of high scalability, data stripping, concur-
rent file access, block-level locking, high availability and
large block size, it has become a famous parallel file system
and is used in many supercomputers[12].

In addition to being a backup solution, the GPFS can pro-
vide a snapshot of the file system. A user with root authority
can create a snapshot of an entire file system by using the
mmcrsnapshot command. In the case of restoring a system
from a snapshot, the file system should be unmounted be-
fore the restore command is issued. After the restore com-
mand is completed, the file system can be remounted [13].

3 The snapPVFS

In this section, we describe our proposed scheme, snap-
PVFS, which is a modified PVFS equipped with the snap-
shot function. Because of the importance of maintaining
the original performance of this parallel file system, we de-
cided to modify the data structure of the PVFS as mini-
mally as possible; hence, the idea of using both the PVFS
and ext3cow. Because the PVFS runs on top of an existing
file system, such as ext2 or ext3, and because ext3cow is
based on ext3, we thought it would be possible to combine
the PVFS and ext3cow without modifying the original data
structure of the PVFS.

As mentioned in the previous section, there are various
kinds of versioning file systems and each system has a dif-
ferent approach. While some file systems can provide a

222

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



Client
(User Application)

System 
Interface

Job Interface

BMI
Flows

PVFS Server

State 
Machines

Job Interface

 BMI                 Trove
Flows

Interconnection Network Storage

pvfs2-
snapshot 

client snapshot
.sm

ext3
cow

Figure 1. Structure of the snapPVFS

snapshot of an entire file system, other systems can handle
snapshots of individual files. Our focus is on the former. In
the following sections, we present the structure of our pro-
posed scheme and describe how the PVFS was retrofitted to
support the snapshot function.

3.1 System overview

Because we tried to preserve the structure and interfaces
of the PVFS, we focused on adding new snapshot com-
ponents and changing the PVFS as minimally as possi-
ble. Furthermore, these added components were designed
and implemented in accordance with PVFS development
guidelines [14]. As shown in Figure 1, snapPVFS has
three new parts: the client-side snapshot command, called
pvfs2-snapshot; the server-side state machine, called snap-
shot.sm; and a modified ext3cow file system on snapPVFS
servers. More detailed explanations are given in the fol-
lowing sections. Although there are supplementary codes
for the message control, signal definition, request scheduler
and so on, we limited our explanations to the major concep-
tual components of the snapPVFS.

3.2 The global time for an inode epoch
counter

The inode epoch counter is an important component of
ext3cow. The essence of generating a snapshot is to set
the time variable, namely the inode epoch counter, with
the new system time. When a file is created or updated af-
ter a snapshot has been generated, the time information in
the inode epoch counter is written in the inode of the file.
Because ext3cow was developed for a single machine en-
vironment, it has only one system time. Using the system
time is as straightforward as setting the inode epoch counter.
However, in the case of parallel or distributed file systems,
there are multiple systems and each of them can have a dif-
ferent time. Owing to this change of environment, we de-
signed the snapPVFS to get the global time before taking
a snapshot; furthermore, each snapPVFS server generates a
snapshot with the global time. The process of deciding the
global time, which is shown in Figure 2, is as follows:

Modified ext3cow

1. inode epoch counter = tg
2. inode write

snapshot
state machine

pvfs2_snapshot
Modified ext3cow

1. inode epoch counter = tg
2. inode write

snapshot
state machine

local time t0

global time tg

local time t1

local time tn

Figure 2. Global time model of the snapPVFS

1. From a snapPVFS client node, a user with root author-
ity executes a pvfs2-snapshot command.

2. Our snapshot state machine in the snapPVFS servers
fetches its own local time and delivers it to pvfs2-
snapshot.

3. Each local time is compared by pvfs2-snapshot, which
selects the greatest value as the global time and sends
it to all the snapPVFS servers.

4. The snapshot state machine passes on the global time
to ext3cow. Then ext3cow uses the global time to set
the inode epoch counter. Because the original ext3cow
uses the system time implicitly, it should be changed
to accept the time parameter from the snapshot state
machine.

5. The snapshot state machines send the snapshot status
to pvfs2-snapshot.

Before the inode epoch counter is changed, the snap-
PVFS servers are examined to see whether they have on-
going I/O jobs. If there are write or update I/O jobs in
progress, the snapshot should be postponed to ensure that
the operation is consistent. Thus, in steps 2 and 5, supple-
mentary information must be delivered to pvfs2-snapshot
to indicate whether a snapshot can be generated. A detailed
explanation of the concept of consistency of operation is
given in the next section.

Although the PVFS consists of multiple servers, there is
no communication among the servers because of the preser-
vation of the scalability of the parallel file system. Because

223

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



[s_flag=SNAPSHOT_TEST : set_epoch_time=""]

[r_flag=SNAPSHOT_SUCCESS : get_curr_time=oooooo]

or

[r_flag=SNAPSHOT_FAIL : get_curr_time=""]

[r_flag=SNAPSHOT_SUCCESS : get_curr_time=oooooo]

[r_flag=SNAPSHOT_FAIL : get_curr_time=""]

[s_flag=SNAPSHOT_TEST : set_epoch_time=""]

[s_flag=SNAPSHOT_SET : set_epoch_time=oooooo]
If  r_flag ==
SNAPSHOT_FAIL

snapPVFS 
client

snapPVFS
Serveri

Figure 3. Message exchange between the
snapPVFS server and the client

we also follow the PVFS design policy, we chose not to im-
plement any communication among the snapPVFS servers.
Hence, it is impossible for a snapPVFS server to check the
status of another server’s snapshot, though pvfs2-snapshot
in the snapPVFS client can collect information on the sta-
tus of a snapshot. Therefore, pvfs2-snapshot is in charge
of choosing the global time and deciding whether snapshot
should be retried.

The snapshot procedure of the snapPVFS in Figure 2 can
be divided in two phases. The first phase of pvfs2-snapshot
occurs when pvfs2-snapshot checks the status of the snap-
PVFS servers to determine whether a snapshot is possible;
this phase corresponds to steps 1 and 2 in Figure 2. The first
phase is periodically iterated until all the snapPVFS servers
confirm the suitability of taking a snapshot.

If all the snapPVFS servers confirm the suitability of tak-
ing a snapshot, pvfs2-snapshot sends the global time and a
message for generating the snapshot to all the snapPVFS
servers. This action marks the beginning of the second
phase. However, due to the characteristics of distributed
systems, when the message is delivered, some snapPVFS
servers may already have another I/O job, which can violate
the consistency of the snapshot. In this case, the snapPVFS
servers send a failure message to pvfs2-snapshot, which
then retries the snapshot operation from the first phase, re-
gardless of the results of other snapPVFS servers. Figure
3 shows an example of the message exchange between the
snapPVFS server and client.

3.3 Consistent snapshot

As with other file systems, our snapPVFS also prepares
the mechanism to ensure consistency in the snapshot. Be-
cause the snapPVFS has multiple servers, the exclusive use
of ext3cow without a reasonable management scheme may
unexpectedly cause an inconsistent state in the file system
when a user performs time-shift operations. Additional

functionality should therefore be considered as a means
of guaranteeing consistency of operation. To follow the
PVFS design policy, we also assumed there was no con-
trol communication among the snapPVFS servers. Each
snapPVFS server tests whether its snapshot is possible and
pvfs2-snapshot checks on the success of the snapshots of all
the snapPVFS servers.

In our design, the snapPVFS first checks if there is a file
write or update request in the snapPVFS servers before is-
suing a snapshot. Although previous works have reported
considerable snapshot granularity, we believe that the snap-
PVFS supports file-level consistency. To detect whether a
snapPVFS server has any I/O jobs, we changed the sched-
uler in the snapPVFS servers. Each PVFS server has a re-
quest scheduler that manages the queue for all I/O opera-
tions. Most of these I/O operations are executed concur-
rently by means of an asynchronous I/O, and the scheduler
only manages the number of asynchronous I/O jobs. In con-
trast, some management requests are served sequentially
and immediately. In the current version of the PVFS, only
one thread is in charge of executing the main PVFS loop, in-
cluding the scheduler and the state machines, for these man-
agement requests. Because our snapshot state machine is
also executed by the main thread, no immediate jobs can in-
terfere with the snapshot state machine. Hence, we fetched
the number of asynchronous I/O jobs in the server and used
that number as one of the identifiers to test whether a snap-
PVFS server can take a snapshot or not.

However, when PVFS I/O servers handle the client’s I/O
request, they manage only a split portion of the original file,
which is named distribution, and they don’t know the re-
lations between each distribution, even if each distribution
makes up the same file. The major problem of supporting
file-level consistency for the snapPVFS is how the snap-
PVFS client notifies the snapPVFS servers about whether
the current distribution is the end of the I/O jobs. Consider-
ing the characteristics of the PVFS, we designed two snap-
PVFSs with a different approach for the purpose of achiev-
ing a consistent snapshot.

The first version of our proposed scheme, snapPVFSα,
uses a simple method. When a snapshot request arrives
at a snapPVFS server, the snapshot state machine checks
for the presence of a write-related distribution in the I/O
queue. Because there is a time gap between any two dis-
tributions, even though the two distributions come from the
same I/O job, snapshots can be generated on the way of
handling the I/O job. To prevent this situation, snapPVFSα
uses another parameter, deferred time, and it is inputted by
the administrator. Whenever a snapPVFS server checks its
I/O queue and the time gap is less than the given deferred
time value, snapPVFSα regards the two distributions as re-
lated and postpones the taking of the snapshot. Although
this approach is not elaborate, snapPVFSα has the advan-

224

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



Server 0

Server n

~

Server 1

epoch 01

epoch 01

epoch 01

epoch 02

epoch 02

epoch 02

epoch 03

epoch 03

epoch 03

epoch 04

epoch 04

epoch 04

epoch 01 epoch 02 epoch 03 epoch 04

∆t ∆t ∆t

∆t ∆t

∆t∆t ∆t

∆t

∆t  : SNAPSHOT_FAIL

∆t : Deferred time

: Distributions

: Distributions
   for 'file A'

Figure 4. Example of correct snapshots in snapPVFSα

Server 0

Server n

~

Server 1

epoch 01

epoch 01

epoch 01

epoch 02

epoch 02

epoch 02

epoch 03

epoch 03

epoch 03

epoch 04

epoch 04

epoch 04

epoch 01 epoch 02 epoch 03 epoch 04

   : Write mode Open

   : Write mode Close

: Distributions

: Distributions
   for 'file A'

 : SNAPSHOT_FAIL

Figure 5. Example of correct snapshots in snapPVFSβ

tage of only having to modify the PVFS server and not the
client. Figure 4 shows the basic concept of snapPVFSα.

When PVFS servers manage I/O requests, they han-
dle distributions and don’t receive any information as to
whether a file is opened or closed. In terms of the second
version of the snapPVFS, we modified the way snapPVFS
clients send information to the snapPVFS servers about a
file being opened or closed with a write mode. With this
additional information, snapPVFSβ can find out how many
files are opened for a write function. Of course, because
of the possibility that only a single independent distribu-
tion is located in the I/O queue, the I/O queue must still
be checked as in the first version of snapPVFS, though de-
ferred time is no longer used. Figure 5 shows a brief outline
of snapPVFSβ.

In the case of ext3cow, taking a snapshot means setting
a new inode epoch counter that is used by subsequent I/O
operations; the data itself is not changed. Thus, although
some servers fail to take snapshots, the fact that the prob-
lematic inode epoch counter is not selected for time shift-
ing causes no problems. Whenever pvfs2-snapshot gets the
message SNAPSHOT FAIL for the second phase, it dis-
cards the epoch time and retries the snapshot operations
from the first step. As shown in Figures 4 and 5, a user
can get only the correct epoch time, such as epoch 01 and
epoch 03.

3.4 Snapshot state machine and commands

A snapshot state machine is located in every snapPVFS
server. When a snapshot request is delivered from pvfs2-

snapshot, it generates messages in the sequence shown in
Figure 3. Figures 6 and 7 describe the pseudocode of the
snapshot state machine and pvfs2-snapshot. Figure 8 also
shows an example of when the pvfs2-snapshot command is
executed. In the example, because the snapPVFS servers
were serving another client’s write request, the snapshot
was delayed for a while.

receive message from pvfs2-snapshot
if(s_flag == SNAPSHOT_TEST) /* PHASE #1 */

get_curr_time <- system time
if(snapshot is possilbe)

r_flag <- SNAPSHOT_FAIL
else

r_flag <- SNAPSHOT_SUCCESS
else /* PHASE #2 */

if(snapshot is possilbe)
ioctl(fd, EXT3COW_IOC_TAKESNAPSHOT2, set_epoch_time)
r_flag <- SNAPSHOT_SUCCESS

else
r_flag <- SNAPSHOT_FAIL

send message to pvfs2-snapshot

Figure 6. Pseudocode of the snapshot state
machine (a snapPVFS server)

As mentioned, because of our focus on taking snapshots
of an entire file system, the time-shift interfaces for each in-
dividual file are not prepared. Instead of making time-shift
interfaces, we altered the startup process of the PVFS server
so that it can receive the additional parameter of the epoch
time. Figure 9 shows an example of starting snapPVFS in
time-shift mode. Because the snapPVFS server was exe-
cuted with the epoch time, the server was launched with a
time-shift mode.

When executed without a description of the epoch time,
the snapPVFS is launched in the normal mode. If the ad-

225

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



get snapPVFS server list
while(1){

while(1){ /* PHASE #1 */
s_flag <- SNAPSHOT_TEST
send message to snapshot.sm in all servers
receive message from snapshot.sm in all servers
if(ALL SNAPSHOT_SUCCESS)

define global_time
break

else
wait

}
s_flag <- SNAPSHOT_SET /* PHASE #2 */
set_epoch_time <- global_time
send message to snapshot.sm in all servers
receive message from snapshot.sm in all servers
if(ALL SNAPSHOT_SUCCESS)

break
else

wait
}

Figure 7. Pseudocode of pvfs2-snapshot (a
snapPVFS client)

[root@c0-14]# pvfs2-snapshot -m /mnt/pvfs2 -i 500 -p
[Test - Retry]
[Test - Retry]
Meta server
-----------------------------------------------------------
server: tcp://c0-0:3334 | current server time : 1201854818

I/O server
-----------------------------------------------------------
server: tcp://c0-1:3334 | current server time : 1201855099
server: tcp://c0-2:3334 | current server time : 1201855099
server: tcp://c0-3:3334 | current server time : 1201854726
server: tcp://c0-4:3334 | current server time : 1201854648
-----------------------------------------------------------
Snapshot OK! Epoch_time = 1201855099
Elapsed time: 1103889 (usec)
Retry Count: 2
[root@c0-14]#

Figure 8. Example of a snapshot command

ministrator inputs the correct epoch time, the snapPVFS re-
trieves and serves an old version of the file system in a read-
only mode. For clients, the snapPVFS must be remounted
so that the clients can get the time-shifted data. If the snap-
PVFS is in the time-shifted mode, the I/O operations for the
write or update functions are all prohibited.

4 Performance evaluation

We implemented two snapPVFSs on a Linux cluster sys-
tem. Table 1 shows the hardware components of our testbed
and software environments on which our snapPVFS were
implemented. Our testbed consists of one metadata server,
four IO servers and some client nodes. We verified that
the snapPVFS generates snapshots properly and its old ver-
sion of data can be retrieved correctly. However, because
our snapPVFS was derived from a parallel file system, we
thought it important to sustain the performance of the paral-

CPU AMD Opteron 240 OS Linux-2.6.20
Memory 2GB PVFS PVFS-2.6.3

(pvfs-lkv21.patch)
HDD SCSI 35GB × 2 Versioning linux-2.6.20.3-

File System ext3cow.patch
Network Gigabit Ethernet MPI mpich2-1.0.6

Table 1. Hardware and software environ-
ments

16000

12000

8000

4000

Test9:
Statfs

Test8:
Symlinks

Test6:
Readdirs

Test5b:
Reads

Test5a:
Writes

Test4:
Attributes

Test3:
Lookups

Test2:
Removes

Test1:
Creates

T
im

e(
m

se
c)

Test Cases

Connectathon Benchmark
ext3cow + snapPVFSα
ext3cow + snapPVFSβ

ext3 + PVFS

Figure 10. Results from the Connectathon
benchmark suite

lel file system. In this section, we explain the performance
and overhead of the snapPVFS.

4.1 Connectathon NFS test suite

The Connectathon NFS Test Suite checks the correctness
and performance of I/O operations[15]. Figure 10 shows the
results from the Connectathon test. Because the current ver-
sion of the PVFS doesn’t support hard link operation, it was
impossible to run the seventh subtest, which includes a hard
link system call. Compared with a general file system, the
PVFS has a long execution time; furthermore, the perfor-
mance of the snapPVFS is similar to that of the PVFS. How-
ever, in this test, we focused on verifying the correctness of
the file system. The performance issues are explained in the
following sections.

4.2 Bonnie

The current version of the PVFS can be accessed via two
low-level I/O interfaces, the UNIX API and the MPI-IO.

[root@c0-0 etc]# pvfs2-server ./pvfs2-fs.conf ./pvfs2-server.conf-c0-0 -t 1201855099
[D 17:39:33.705810] PVFS2 Server version 2.6.3 starting.
[E 02/01 17:39] Storage Path = /data01/pvfs2-storage-space@1201855099
[root@c0-0 etc]# ps ax | grep pvfs2
6250 ? Ssl 0:00 pvfs2-server ./pvfs2-fs.conf ./pvfs2-server.conf-c0-0 -t 1201855099
6264 pts/0 S+ 0:00 grep pvfs2

Figure 9. Example of the snapPVFS while running with a time shift

226

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



0

20000

40000

60000

80000

100000

read(block)read(char)rewritewrite(block)write(char)

B
an

dw
id

th
 (

K
B

/s
ec

)

I/O operations

Bonnie Test(1GB)
ext3cow + snapPVFSα
ext3cow + snapPVFSβ

ext3 + PVFS

Figure 11. Results from the Bonnie test

The purpose of using a Bonnie test, the famous benchmark
for Unix-based file systems[16], is to measure the perfor-
mance of the snapPVFS when it is accessed through the
UNIX API. As shown in Figure 11, the benchmark results
indicate that the snapPVFS and the original PVFS are com-
parable. In practice, the performance degradation of the
snapPVFS is in the range of about 0.5% to 0.6%, especially
in the case of the block-write and block-read experiments.

We also measured the overhead of taking snapshots.
While writing and reading a 1 GB file, we periodically
called the snapshot command. As mentioned, when a file
is being generated, the snapshot is postponed, which causes
an overhead in terms of repeated efforts to take the snapshot.
All the snapshots are generated while a file is being read. As
shown in Figure 12, while the overhead of repeated efforts
to take a snapshot is about 1.8%, the overhead of generat-
ing snapshots is about 8.77%. To generate several snapshots
for the benchmark, we frequently called the snapshot com-
mand. This is the likely reason the performance degradation
is independent of the number of snapshots. When a snap-
shot is generated, the super block of the snapPVFS storage
space is updated. The updating process is the main over-
head of taking the first snapshot, though subsequent snap-
shot commands simply refer to the unified buffers in the
snapPVFS servers.

4.3 IOR

IOR is a parallel file system benchmark based on the
MPI[17]. In this and following sections, we describe the
performance of the snapPVFS with the MPI-IO. Because
we designed snapPVFSβ so that the snapPVFS client trans-
fers information to the snapPVFS server regarding file open
and close functions, the MPI-IO library in mpich2[18] was
also changed to support these transfers.

Four process nodes participated in the IOR benchmark
as clients and they generated a 2 GB file. In the case of
a single I/O benchmark, such as Bonnie, a client accesses
the snapPVFS servers almost in sequence. Therefore, even

0

20000

40000

60000

80000

100000

10
(Read)

5
(Read)

<--------------- # of snapshots --------------->

1
(Read)

w/o
snapshots

(Read)

retry
snapshots

(Write)

w/o
snapshots

(Write)

B
an

dw
id

th
 (

K
B

/s
ec

)

 

Bonnie test with taking snapshots
ext3cow + snapPVFSα
ext3cow + snapPVFSβ

ext3 + PVFS

Figure 12. Results from the Bonnie test
(block-write and block-read) for the taking of
snapshots

0

50

100

150

200

250

10
(Read)

5
(Read)

<--------------- # of snapshots --------------->

1
(Read)

w/o
snapshots

(Read)

retry
snapshots

(Write)

w/o
snapshots

(Write)

B
an

dw
id

th
 (

M
B

/s
ec

)

 

IOR test with taking snapshots
ext3cow + snapPVFSα
ext3cow + snapPVFSβ

ext3 + PVFS

Figure 13. Results from the IOR test for the
taking of snapshots

if a snapshot request is delivered to the snapPVFS servers
during the single I/O benchmark, some of the snapPVFS
servers are likely to be in an idle state. However, IOR can
enable the snapPVFS to operate at full capacity and, when
the snapPVFS servers get a snapshot request, almost all of
them are in a busy state. We therefore expected more se-
rious performance degradation in the IOR test with regard
to the taking of snapshots. Figure 13 shows the results of
the IOR benchmarks. As in the Bonnie test, the overhead of
repeated attempts to take a snapshot is about 1.2%. Accord-
ingly, as expected, the overhead of generating snapshots in-
creases to about 31.26%.

4.4 BTIO

BTIO is a parallel I/O benchmark based on the block-
tridiagonal problem of the NAS parallel benchmarks[19].
Unlike Bonnie and IOR, BTIO combines computations and
I/O operations, and we think BTIO is more suitable for rep-
resenting HPC applications. Owing to the characteristics

227

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.



0

20000

40000

60000

80000

100000

120000

140000

51w/o snapshots

E
xe

cu
tio

n 
tim

e 
(m

se
c)

# of snapshots

BTIO test with taking snapshots
ext3cow + snapPVFSα
ext3cow + snapPVFSβ

ext3 + PVFS

Figure 14. Results from the BTIO (A Class, 4
clients) test for the taking of snapshots

of BTIO, the performance difference among the results is
negligible, as shown in Figure 14.

Figure 14 also shows the results of the different behavior
of two snapPVFSs. BTIO alternately performs I/O opera-
tions and computations. Hence, for the consistency of the
snapshot, the deferred time of snapPVFSα must be longer
than each computation time. One of the disadvantages of
snapPVFSα is that even though a write function is com-
pleted the snapshot must be delayed until the deferred time
has elapsed. Accordingly, snapPVFSα failed to generate
five snapshots before the BTIO operation was completed1.
On the other hand, because snapPVFSβ can generate a
snapshot immediately upon the closure of a file opened for
a write function, five snapshots were generated on time.

5 Conclusion

We have considered the possibility of taking a snap-
shot of an entire file system for the PVFS. To guarantee
a consistent snapshot, we implemented two snapPVFSs.
We verified that our implementation works correctly as ex-
pected. To measure the overhead of the snapPVFS in di-
verse situations, we tested it with various benchmarks. The
overhead was generally reasonable but, in the case of I/O-
intensive parallel benchmarks, the process of taking a snap-
shot caused considerable performance degradation. How-
ever, if snapshots are managed exclusively by administra-
tors, this unwished situation can be avoided.

Although the snapPVFS guarantees consistent and
atomic operation, if there are any consecutive heavy I/O re-
quests, the snapshot is always postponed. For our future
research, we intend to incorporate a quiesce I/O mechanism
into a new snapPVFS to overcome this limitation.

1When the problem size is increased, because the computation time and
the deferred time are also extended, experiments show the same behavior.

References

[1] Parallel Virtual File System, Retrieved June 19, 2008, from
http://www.pvfs.org

[2] Chung-hsing Hsu, and Wu-chun Feng, “A Power-Aware Run-
Time System for High-Performance Computing,” Proc. of the 2005
ACM/IEEE conference on Supercomputing, pp.1∼1, 2005.

[3] Sudharshan Vazhkudai, and Xiaosong Ma, “Recovering transient
data: automated on-demand data reconstruction and offloading for
supercomputers,” ACM SIGOPS Operating Systems Review, Vol.
41(1), pp. 14∼18, 2007.

[4] Joseph Tucek, Paul Stanton, Elizabeth Haubert, Ragib Hasan, Larry
Brumbaugh, and William Yurcik, “Trade-offs in protecting stor-
age: a meta-data comparison of cryptographic, backup/versioning,
immutable/tamper-proof, and redundant storage solutions,” Proc. of
the 22nd IEEE / 13th NASA Goddard Conference on Mass Storage
Systems and Technologies, pp. 329∼340, 2005.

[5] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew P.
Himmer, and Erez Zadok, “A Versatile and User-Oriented Version-
ing File System,” Proc. of the 3rd USENIX Conference on File and
Storage Technologies, pp.115∼128, 2004.

[6] Philip Carns, Walter Ligon III, Robert Ross, and Pete Wyckoff,
“BMI: a network abstraction layer for parallel I/O,” Proc. of the 19th
IEEE International Parallel and Distributed Processing Symposium,
pp. 8∼8, 2005.

[7] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alis-
tair C. Veitch, Ross W. Carton, and Jacob Ofir, “Deciding when to
forget in the Elephant file system,” Proc. of the 17th ACM Sympo-
sium on Operating Systems Principles, pp.110∼123, 1999.

[8] Brian Cornell, Peter A. Dinda, and Fabián E. Bustamante, “Way-
back: A User-level Versioning File System for Linux,” Proc. of the
USENIX Annual Technical Conference, pp. 19∼28, 2004.

[9] Zachary Peterson, and Randal Burns, “Ext3cow: A Time-Shifting
File System for Regulatory Compliance,” ACM Transactions on
Storage, Vol. 1(2), pp. 190∼212, May, 2005.

[10] Neeta Garimella, “Understanding and exploiting snapshot
technology for data protection, Part 1: Snapshot technol-
ogy overview,” Retrieved June 19, 2008, from http://www-
128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html

[11] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory
R. Ganger, “Metadata Efficiency in Versioning File Systems,” Proc.
of the 2nd USENIX Conference on File and Storage Technologies,
pp. 43∼58, 2003

[12] “Enterprise File Management with GPFS
3.2,” Retrieved June 19, 2008, from
ftp://ftp.software.ibm.com/common/ssi/pm/fy/n/clf03001usen/
CLF03001USEN.PDF

[13] “General Parallel File System Advanced Administra-
tion Guide Version 3.1,” Retrieved June 19, 2008, from
http://publib.boulder.ibm.com/epubs/pdf/bl1adv00.pdf

[14] The Pvfs2-developers Archives, Retrieved June 19, 2008, from
http://www.beowulf-underground.org/pipermail/pvfs2-developers

[15] Introduction to the Connectathon NFS Testsuite, Retrieved June 19,
2008, from http://www.connectathon.org/nfstests.html

[16] Bonnie, Retrieved June 19, 2008, from
http://www.textuality.com/bonnie/

[17] IOR HPC Benchmark, Retrieved June 19, 2008, from
http://sourceforge.net/projects/ior-sio/

[18] MPICH2, Retrieved June 19, 2008, from
http://www.mcs.anl.gov/research/projects/mpich2/

[19] NAS Parallel Benchmarks Retrieved June 19, 2008, from
http://www.nas.nasa.gov/Resources/Software/npb.html

228

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 10, 2009 at 03:40 from IEEE Xplore.  Restrictions apply.


