
Resource Co-Allocation : A Complementary Technique that Enhances
Performance in Grid Computing Environment

Driss Azougagh� Jung-Lok Yu� Jin-Soo Kim§ Seung-Ryoul Maeng�

Division of Computer Science, Department of EECS,
Korea Advanced Institute of Science and Technology (KAIST), South Korea

�{driss,jlyu,maeng}@calab.kaist.ac.kr §jinsoo@cs.kaist.ac.kr

Abstract

This paper introduces an Availability Check technique
(ACT) as a complementary technique to most resource co-
allocation protocols in the literature. For a given resource
co-allocation protocol, ACT tries to reduce the conflicts
that happen between co-allocators when they try to allocate
multiple resources simultaneously. In ACT, each job checks
for the availability state of required resources and gets in-
formed with updates each time one of the resources avail-
ability state changes until all the resources become avail-
able. Once all required resources become available a job
starts applying the given resource co-allocation protocol.
Two co-allocation protocols: All-or-Nothing (AONP) and
Order-based Deadlock Prevention (ODP2) Protocols are
chosen to be the case studies to simulate the proposed tech-
nique (ACT). To simulate ACT, each job is allowed to allo-
cate from 1 to 5 different types of resources simultaneously
using a uniform distribution. The results show that apply-
ing ACT to one of the two protocols outperform the origi-
nal one. The resource utilization is improved by up to 34%
and 41% for AONP and ODP2, respectively. The job re-
sponse time is improved by up to 13% and 8% for AONP
and ODP2, respectively. And the communication overhead
is improved by up to 96% and 94% for AONP and ODP2, re-
spectively. Also, applying ACT to AONP represents the most
scalable and fully distributed scheme that outperforms orig-
inal schemes (AONP and ODP2) and competes well with all
other schemes presented in this paper.

1. Introduction

Computing over the Internet is becoming increas-
ingly popular. Also, with the emerging infra-structures such
as Computational Grids and Web Services, it is possible to
develop applications that support various Internet-wide col-
laborations through seamlessly harnessing appropriate

Internet resources. Grid computing has emerged as an im-
portant new field [10], distinguished from conventional
distributed computing by its focus on large-scale re-
source sharing, innovative applications, and, in some cases,
high-performance orientation. Jobs running in compu-
tational Grid may require multiple types of resources
simultaneously [9]. These observations present new chal-
lenges in designing efficient resource allocation protocol
that allows an application to simultaneously acquire mul-
tiple resources from distributed locations [5], by com-
municating (or negotiating) only with the corresponding
resource managers and without requiring communica-
tion with other applications. To overcome these challenges,
we argue that a more tighten collaboration between re-
source managers and resource co-allocators need to be
developed. Here, we introduce a new collaborative tech-
nique that can easily merge with most existing resource
co-allocation protocols.

A distributed system consists of a set of sites that com-
municate with each other by sending messages over a com-
munication network. We assume that every site has some
resources that might be requested by any process from
the same or different site. Each site has the capability to
exchange light messages with any process requesting re-
sources (from the site). To access resources, a process pi

need to receive permissions from a set of sites Si. If all sites
in Si grant permission to pi, then it is allowed to access the
resources. To ensure mutual exclusion the sets Si are re-
quired to satisfy the intersection property: for any i and j,
Si ∩ Sj �= φ when i �= j. These and related concepts were
formalized and analyzed in different papers [12, 13, 14, 16].

In general, most introduced multiple resource co-
allocation protocols in the literature can be inferred from
the dinning philosophers problem [3, 7, 13, 16]. The
problem consists of five philosophers sitting at a ta-
ble who do nothing but think, pick up (sticks), eat, and
drop down (sticks). Between each two neighbor philoso-
phers, there is a single stick. In order to eat, a philosopher
must pick up both sticks.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

In this paper, two protocols: All-or-Nothing (AONP)
and Order-based Deadlock Prevention (ODP2) protocols are
used as two case studies. In AONP, each philosopher tries
to pick up both sticks. If the philosopher picks up one stick
or none then he must drop any stick he holds back to the
table and after some while he can retry again. In ODP2

[12, 13, 14], the sticks are supposed to have some global or-
der: by fixing a different number from 1 to 5 for each stick.
Each philosopher tries to pick up and secure the sticks one
by one starting by the stick that has a small number.

In this work, we propose an additional technique to re-
duce the time consumed by all philosophers while apply-
ing any chosen resource co-allocation protocol. In contrast
to the standard formulation of dinning philosophers prob-
lems which try to focus on either maximizing the num-
ber of philosophers who eat immediately or minimizing
time it will take to feed all philosophers, our technique
tries to cover both of the issues at the same time. This
can be achieved simply by adding an alarm for each stick.
Each alarm keeps informing its corresponding (or related)
philosophers about the availability state of the correspond-
ing stick. When the philosopher realizes that both required
sticks are available, the philosopher goes for the action and
starts applying the given protocol (AONP or ODP2). Hence,
by using this technique, the philosopher will try not to pick
up the sticks if one or both of them are still in use by some-
one else.

In our proposed technique, the pick up stage introduced
above in the dinning philosopher problem can be either de-
fined or replaced with an inner loop in which every philoso-
pher must apply before proceeding to the eating stage: (1)
wait until all stick states are set to available, (2) try to pick-
up sticks, (3) if failed, drop down holden sticks and restart
from 1, and (4) if succeed proceed to the next (eat) stage.

In this paper, we present the technique that enhance the
existing resource co-allocation protocols and demonstrate
its potential performance benefits using simulation. Next
section (section 2) introduces a related work related to re-
source allocation enhancement presented in the literature.
Section 3 introduces the resource co-allocation problem ac-
companied with a description of AONP and ODP2, Section
4 describes the proposed technique in details, and Section
5 presents preliminary simulation results. Finally, we con-
clude this paper with a discussion in Section 6 followed by
a conclusion in Section 7.

2. Related Work

Resource management architecture for resource co-
allocation protocol is proposed in [6, 8], implemented in
Globus Toolkit [1], developed in Condor [17] as a Di-
rected Acyclic Graph Manager (DAGMan), and supported
in Legion [4] as a mechanism similar to an atomic trans-

action strategy. Another way of resource allocation is
introduced in Nimrod/G [2] by introducing a Grid Archi-
tecture for Computational Economy (GRACE) and propos-
ing simulation model in [11]. In all these researches,
the developed resource co-allocation protocols luck im-
provement and/or scalability when many jobs running in
computational Grid require multiple types of resources si-
multaneously.

Based on general models of computation Grids and par-
allel tasks running in computational Grids, a parallel
task scheduling algorithm for resource co-allocation (PT-
SARC) is developed in [18, 19]. It extends the conven-
tional list scheduling [15] heuristics and considers re-
sources co-allocation for parallel tasks in computational
Grids. However, their proposed resource co-allocation does
not support dynamic scheduling of parallel tasks and it as-
sumes knowledge of all tasks in advance before running
the co-allocation algorithm. Instead, our proposed tech-
nique enhances existing resource co-allocation protocols
when multiple parallel jobs are running simultaneously,
without requiring knowledge of the running tasks a pri-
ori.

Resource co-allocation to tasks is an important problem
for grid computing systems. As an effective solution, agent
coalition formation had become a research hotspot [20]. A
resource allocation strategy via agent coalition formation
for real-time, dynamic, time-bounded grid computing sys-
tems is presented. However, no enhancement of the intro-
duced resource co-allocation protocol is presented.

A scalable, decentralized resource co-allocation protocol
that can facilitate the dependable deployment of Internet ap-
plications is presented in [13, 14]. In this research, the pro-
posed order-based deadlock prevention protocol with paral-
lel requests (ODP3) protocol ensures deadlock and live-lock
freedom during the resource co-allocation process. At the
same time, the protoccol takes advantage of parallelism in
making resource allocation requests in order to achieve in-
creased efficiency. ODP3 protocol requires the use of par-
allel requests feature, a set of goal states associated to each
job in which achieving one of the goals satisfies the con-
dition to run the corresponding job. In contrast to ODP3,
our approach does not require using parallel requests fea-
ture and still it presents quite competitive results.

3. Multiple Resource Co-Allocation Protocols

This research is conducted to increase the resource us-
ability by reducing resource waste time, communication
overhead, and job response time (job waiting time), for
small job inter-arrival time and high number of resource
types. In this paper we define: (l) job response time as
the time a job spends in a queue before it starts execu-
tion, (2) communication overhead as the total number of

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

messages exchanged between resource co-allocators and re-
source managers to allocate resources for jobs during the
simulation (including ACT communication overhead when
ACT is applied), and (3) resource waste time as the sum of
critical section intervals where a resource cannot be used
by any (competitive) job that acquires the resource. A crit-
ical section interval of a resource is defined by the interval
its corresponding lock is assigned to a non-running job (a
job waiting for some other resources to be allocated).

This paper considers a set R of distinct type of resources
R = {r1, . . . , rm} and a set of jobs J = {j1, . . . , jn}. A
size function |.| can be defined such that |r| represents the
total number of instances (or total size) of the resource r
and |j, r| represents the number of instances (or size) of the
resource r required by the job j. Without lose of general-
ity, for any subset of resources R′ ⊂ R and any subset of
jobs J ′ ⊂ J , we define |R′|, |J ′, r| and |J ′, R′| as follow:

|R′| =
∑

r∈R |r|,
|J ′, r| =

∑
j∈J′ |j, r|, and

|J ′, R′| =
∑

r∈R′ |J ′, r|.
We assume that each running job j (or process pj) tries to

get its (required) resources through a resource co-allocator
RCj and each resource r has a resource manager RMr.
When a job j is scheduled, its corresponding resource co-
allocator RCj tries to allocate all required resources in
Rj = {r ∈ R/|j, r| > 0} by contacting the correspond-
ing set of resource managers in SRMj = {RMr/r ∈ Rj}.
Once all resource managers in SRMj reply with success to
the resource co-allocator RCj , the corresponding job j re-
sumes its execution and starts using the resources in Rj .

There are three major problems that degrade the resource
usability and job response time and increase communica-
tion overhead between the resource co-allocators and the re-
source managers: deadlock, starvation, and livelock. Dead-
lock or permanent blocking happens when two or more jobs
are trying to allocate two or more resources in a crossing
way simultaneously. Starvation might happen when some
jobs that are not deadlocked cannot (or will never) proceed
due to the competition among jobs to get some resources.
Livelock happens when some jobs are forced to release their
allocated resources (again and again) when some deadlock
prevention technique is used. The described three problems
above depend mainly on how much conflict C exist between
jobs which can be calculated by the following formula:

C(J,R) =
∑

r∈R
max(|J,r|−|r|,0)
|R|×|J|

And for this reason, many protocols are presented in the
literature [12, 13, 14] that either prevent or detect the occur-
rence of the above problems.

In this paper we will concentrate our work on two types
of protocols, AONP and ODP2 protocols. In the next two
paragraphs, we will present some more details about the two
protocols selected for our simulation.

3.1. All-or-Nothing Protocol

In this protocol, the idea is very simple, if a resource co-
allocator RCj fails to allocate some resource r then the re-
source co-allocator RCj will release all the resources in Rj

it holds and try again sometime later. Once all resources in
Rj are allocated successfully, the corresponding job j will
proceed and start using the resources in Rj . This protocol is
in some how totally decentralized and it does not depend on
some global (or centralized) approaches. In this protocol,
resource co-allocators use only local information to make
their decisions to either allocate or release resources.

Even if each individual parallel computer is reasonably
reliable and well understood, the probability of resource
re-allocation, sub-job failure due to improper configura-
tion, network error, authorization difficulties, etc., increases
rapidly as the number of sub-jobs increases. So, the strict
”all or nothing” semantics of the distributed job abstraction
severely limited scalability in the real world. Hence, in this
paper we introduce a technique that attenuates these prob-
lems by reducing the amount of unneeded communication
when the number of jobs and the degree of conflict between
jobs are quite high. Also, we show that applying our tech-
nique to AONP outperforms the original ODP2.

3.2. Order-based Deadlock Prevention Protocol

To prevent deadlock and to reduce the degree of starva-
tion of resource allocation, this protocol was proposed in
expense of some global assumption: distinct resources need
to be globally ordered. This assumption makes this proto-
col neither scalable nor fully decentralized to some extent.
This protocol simply applies a multiple requests feature to
globally linear ordered resources. The order-based deadlock
prevention protocol (ODP2) requires each job (or the corre-
sponding co-allocator) to secure its resources one by one
in an increasing order according to the given global order.
Once all resources are allocated the job starts running. This
protocol is deadlock-free, starvation-free and livelock-free.

The weak points in this protocol are: resource usability,
scalability, and central point of failure - a central node is re-
quired to keep global order among resources. The resource
usability problem can be seen when a resource co-allocator
RCj secures a resource r and waits for the next resource
r′ which is still in use by some job j′. During this waiting
time all jobs in J” = {j”1, , j”l} that try to allocate the re-
source r must wait for the job j, even if some jobs in J”
has their next resources are available. To attenuate the de-
gree of this problem, in ODP2, the job j releases all secured
resources and retries some while later when one of the re-
sources cannot be secured for some period of time. An other
way to prevent this problem can be achieved by applying
our proposed technique. This is because our technique tries

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

not to let the RCj to compete for the resources until all re-
quired resources in Rj are available at once. By granting
this, the number of jobs in J” will reduce and hence the re-
source usability will increase.

4. Proposed Technique

The proposed technique is based on increasing the coop-
eration between resource co-allocators and resource man-
agers over different sites, which we will call as the Avail-
ability Check Technique (ACT). When a job j tries to al-
locate resources, the resource co-allocator RCj sends a re-
quest to each resource manager in the set of resource man-
agers SRMj . Once the resource manager RMr receives
for the first time the request from the resource co-allocator
RCj , it creates a new entry of the job j, computes the avail-
ability state of the resource r regarding the job j, and then
sends the availability state to the RCj .

Whenever a change occurs in the resource r, either by
locking or releasing r, RMr sends notifications to the af-
fected jobs in the list of entries created before. If some of
the resources in Rj are still unavailable, RCj keeps receiv-
ing updates from all resource managers in SRMj that ex-
perience some changes in their resources regarding the job
j. Once all resources in Rj become available at once, RCj

proceed to apply one of the selected resource co-allocation
protocols like the ones introduced in the previous section.

Finally, if the job j completes its execution, the job j tries
to release the resources in Rj through the corresponding re-
source co-allocator RCj by sending a release message to all
resource managers in SRMj . When the resource manager
RMr receives a release request from RCj , it deletes the
corresponding entry of the job j from the list, updates the
remaining entries, and notifies those resource co-allocators
that have their corresponding states have been changed.

In multiple resource allocation environments, ACT guar-
antees the improvement of the resource usability by reduc-
ing the resources waste time, especially, when the conflict
degree C(R, J) is very high. It also guarantees the reduc-
tion of communication overhead and job response time.

5. Experimental Results

Here, we present the advantages of the introduced ACT
technique by comparing the results of each resource co-
allocation protocol when ACT is and is not applied. In the
experiment, the jobs compete for 10 different resource types
that are distributed. For each simulation run, the maximum
capacity of each resource type is set to 1, each job may re-
quire up to 5 different resource types (random value from
1 to 5), and the resource usage time is chosen to be a ran-
dom value between 10 and 1000 seconds to reflect the di-
versity of the jobs.

For our experiments, we assume that the delay for one-
way message delivery follows a uniform distribution with
parameters RTT

20 and RTT
2 , where RTT represents the es-

timated RTT (Round-Trip Time) upper bound for which
we choose 2 seconds. We compare the protocols with and
without applying the ACT by examining the effect of vary-
ing the jobs arrival rates on the resource waste time, com-
munication overhead, waiting time and total completion
time. We measured the resource waste time by extract-
ing the total job usage from the total resource usage dur-
ing the simulation. We define resource waste/usage ratio
as the ratio between resource waste time and total job us-
age (TotalResourceUsage−TotalJobUsage

TotalJobUsage). The communica-
tion overhead represents the total number of exchanged
messages between the resource co-allocators and resource
managers required during the whole simulation (including
ACT communication overhead when ACT is applied). And
the waiting time of a job is measured by the time between
its arrival and successful resource co-allocation (starting of
execution). We used an exponential distribution to simulate
the inter-arrival times of jobs, and varied the mean inter-
arrival time from 1000 seconds to 10 second. The simula-
tions were repeated 100 times for each case.

5.1. All-or-Nothing Protocol

In AONP, all results show that applying ACT to AONP
achieved better improvement than the original AONP. Fig-
ure 1, 2, 3 and 4 show the results of resource waste/usage
ratio, communication overhead, average response time (per
job), and their improvements accompanied with that of
the total completion time, respectively. The workload se-
lected in this experiment was fixed to 64 jobs. The im-
provement of the resource waste time increases from 3%
to 34% as the inter-arrival mean time decreases from 1000
to 10 seconds. In both AONP and ACT-AONP, the to-
tal exchanged messages increases as the inter-arrival time
becomes smaller. Applying ACT improves the total ex-
changed messages from 92% to 96% as the inter-arrival
time decreases. Once the inter-arrival time goes below 300
seconds the average job response time improvement in-
creases starting from 1% and saturates at 12% (for 64 jobs).
The total completion time improvement is in somehow lin-
early proportional to that of the job average response time
and it reaches 8%.

The above results show that applying ACT to AONP may
greatly improves the overall system when competitive jobs
that compete for multiple resources simultaneously are nu-
merous and the network traffic is severe as it is the case in
most distributed systems. This is because ACT tries to pre-
vent jobs from competition when one of its resources is not
available. And by reducing the number of jobs competitors,
the communication overhead decreases as well.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

10

20

30

40

50

60

R
e

so
u

rc
e

 W
a

st
e

/U
sa

g
e

 R
a

tio
 (

%
)

Inter-Arrival Time (sec)

 AONP
 ACT-AONP

Figure 1. AONP - Resource Waste/Usage

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

2x10 5

4x10 5

6x10 5

8x10 5

T
o
t.
 E

xc
h
a
n
g
e
d
 M

e
ss

a
g
e
s

Inter-Arrival Time (sec)

 AONP
 ACT-AONP

Figure 2. AONP - Communication Overhead

5.2. Order-based Deadlock Prevention Protocol

In this section, we introduce the results of applying ACT
to two different ODP2 schemes. The first one is named
ODP2I and represents an ODP2 with infinite timeout. In
ODP2I, a job secures a resource once and only once until
all it successors are secured and then completes its execu-
tion. The second scheme is named ODP2L and has a lim-
ited timeout which in these experiments has been fixed to
RTT . Once a job fails to lock the current resource at hand
before a period of time (RTT) it releases all secured re-
sources and retries after some while.

In these experiments, the workload selected was fixed to
128 jobs for five schemes: ODP2I, ODP2L, ACT-ODP2I,
ACT-ODP2L, and ACT-AONP as well. Notice that the re-
sults shown in the figures 5, 6 and 7 use the notation
”ODPP” instead of the term ”ODP2”.

The figures 5, 6 and 7 present results of resource
waste/usage ratio, communication overhead, and aver-
age job response time, respectively, of the five schemes
(ODP2I, ODP2L, ACT-ODP2I, ACT-ODP2L, and ACT-
AONP). ODP2I and ACT-ODP2I achieve high degra-
dation in performance concerning resource waste time

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

1000

2000

3000

4000

5000

6000

7000

8000

A
vg

.
R

e
sp

o
n
se

 T
im

e
 (

se
c)

Inter-Arrival Time (sec)

 AONP
 ACT-AONP

Figure 3. AONP - Average Response Time

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

20

40

60

80

100

Im
p
ro

ve
m

e
n
ts

 (
%

)

Inter-Arrival Time (sec)

 Total Exchanged Messages
 Resource Waste Time
 Response Time
 Completion Time

Figure 4. ACT-AONP/AONP - Improvements

and average job response time. In contrast, the total ex-
changed messages when using ODP2I represents the lower
bound over all other co-allocating schemes. This can be ex-
plained by the fact that, in ODP2I, each job waiting for a re-
source secures, uses, and releases that resource once
only. Overall, in all experiments, applying ACT to re-
source co-allocation protocols achieves better results.

By looking at figures 4 and 8 we can easily observe the
similarity of the improvement results when ACT applied to
either AONP or ODP2L. In figure 8, the improvement of the
resource waste time increases from 5% to 41% as the inter-
arrival mean time decreases from 1000 to 10 seconds. Ap-
plying ACT improves the total exchanged messages from
84% to 94% as the inter-arrival time decreases. Once the
inter-arrival time goes below 300 seconds the average job
response time improvement increases starting from 2% and
saturates at 8%. The total completion time improvement is
in somehow linearly proportional to that of the average job
response time and it reaches up to 3%.

ACT-AONP has been introduced in these experiments to
compare its results to those of ODP2L and ACT-ODP2L.
The results show that ACT-AONP achieves quite competi-
tive improvements to that of ACT-ODP2L in most results.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

20

40

60

80

100

120

R
e
so

u
rc

e
 W

a
st

e
/U

sa
g
e
 R

a
tio

 (
%

)

Inter-Arrival Time (sec)

 ODPPI
 ACT-ODPPI
 ODPPL
 ACT-ODPPL
 ACT-AONP

Figure 5. ODP2 - Resource Waste/Usage

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

2x10 5

4x10 5

6x10 5

8x10 5

T
o

t.
 E

xc
h

a
n

g
e

d
 M

e
ss

a
g

e
s

Inter-Arrival Time (sec)

 ODPPI
 ACT-ODPPI
 ODPPL
 ACT-ODPPL
 ACT-AONP

Figure 6. ODP2 - Communication Overhead

Figure 6 shows that ACT-AONP achieves an improvement
of 90% over ODP2L and a degradation of 80% over ACT-
ODP2L. This degradation can be seen as a tradeoff over the
scalability and resource usability while supporting a fully
decentralized protocol when allocating multiple resources.
Figure 9 shows the improvements achieved by ACT-AONP
over ODP2L. In these results, The response time and the
completion time improvements tend to convert to 7% and
1%, respectively, when high inter arrival time is applied.

Fairness analysis shows no difference between the re-
sults of ACT-AONP, ODP2L, and ACT-ODP2L. While
worst results has been achieved by ODP2I and ACT-ODP2I.
Also, the experiments show that the improvements in fig-
ure 4 and 8 tend to convert to some limits when the number
of jobs increases.

6. Discussion

The figures clearly illustrate the advantage of using the
ACT technique regarding the resource usability, communi-
cation overhead, and job response time.

ACT reduces the communication occurred between the
resource co-allocators and the resource managers mainly in

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

1x10 4

2x10 4

3x10 4

A
vg

.
R

e
sp

o
n

se
 T

im
e

 (
se

c)

Inter-Arrival Time (sec)

 ODPPI
 ACT-ODPPI
 ODPPL
 ACT-ODPPL
 ACT-AONP

Figure 7. ODP2 - Average Response Time

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

20

40

60

80

100

Im
p

ro
ve

m
e

n
ts

 (
%

)

Inter-Arrival Time (sec)

 Total Exchanged Messages
 Resource Waste Time
 Response Time
 Completion Time

Figure 8. ACT-ODP2L/ODP2L - Improvements

the case of AONP and reduces the number of secured re-
sources that are not in use mainly in the case of ODP2.

Since the resource usage time for each job is between 10
and 1000 seconds, when the inter-arrival time goes higher
(1000 sec) the conflict between jobs decreases and the job
response time and total completion time become small.
Therefore the effect of ACT, which can be seen in the job
response time improvement figures, either is negligible or
represents an overhead. When the inter-arrival time goes
smaller (10 sec) the conflict between jobs increases, the
job response time and completion time become high. There-
fore the effect of ACT becomes important. As a conclusion,
ACT reduces the number of useless messages to be sent
and the number of locked resources which are not in use.
These two advantages reduce communication overhead and
resource waste time, hence the job response time as well.
The only disadvantage of ACT is when the inter-arrival time
is very high, the overhead of applying ACT may has some
impacts on real distributed systems which can be compro-
mised with the amount of resource waste time and commu-
nication overhead reduced (when ACT is applied).

ACT-AONP outperforms the original AONP and ODP2

protocols. Also, the results of ACT-AONP are quite com-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

10
00 90

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0 90 80 70 60 50 40 30 20 10

0

20

40

60

80

100

Im
p
ro

ve
m

e
n
ts

 (
%

)

Inter-Arrival Time (sec)

 Total Exchanged Messages
 Resource Waste Time
 Response Time
 Completion Time

Figure 9. ACT-AONP/ODP2L - Improvements

petitive to those of ACT-ODP2L (as well as ACT-ODP2I).
Therefore, ACT-AONP represents a fully decentralized and
scalable resource co-allocation protocol that outperforms
previous schemes.

7. Conclusion

This discussion clearly shows that the use of ACT im-
proves the resource co-allocation protocols. Up to l2% of
overall improvement is achieved in AONP protocol. And
in ODP2, the overall completion time is improved by up to
3% and the job response time is improved by up to 8%.
ACT-AONP shows competitive results to those of ACT-
ODP2. In this paper, ACT-AONP is considered to be the
most distributed and scalable scheme that has smaller re-
source waste time and communication overhead among all
other schemes.

Since this study shows some interesting results different
from the previous research on resource co-allocation proto-
cols, more surveys are needed to generalize the above con-
clusions for other protocols and to provide more materials
to use as a feedback in the future.

References

[1] Grid project. http://www.globus.org.
[2] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An ar-

chitecture for a resource management and scheduling sys-
tem in a global computational grid. In Proceedings of the
4th International Conference on High Performance Comput-
ing, 1:283–289, May 2000.

[3] K. Chandy and J. MiSra. The drinking philosophers problem.
ACM Transactions on Programming languages and Systems,
6(4):632–646, October 1984.

[4] S. J. Chapin et al. The legion resource management system.
Proceedings of the 5th Workshop on Job Scheduling Strate-
gies for Parallel Processing, pages 162–178, 1999.

[5] K. Czajkowski et al. A resource management architecture
for metacomputing systems. Proceedings of the Workshop

on Job Scheduling Strategies for Parallel Processing, pages
62–82, 1998.

[6] K. Czajkowski, I. Foster, and C. Kesselman. Resource co-
allocation in computational grids. Proceedings of the Eighth
IEEE International Symposium on High Performance Dis-
tributed Computing, 3(6):219–228, August 1999.

[7] E. W. Dijkstra. Hierarchical ordering of sequential processes.
Acta Informatica, 1:115–138, 1971.

[8] I. Foster et al. A distributed resource management architec-
ture that supports advance reservations and co-allocation. In
Proceedings of the Seventh International Workshop on Qual-
ity of Service, 31(4):27–36, May 1999.

[9] I. Foster and C. Kesselman. The grid: Blueprint for a new
computing infrastructure. Morgan Kaufmann Publishers Inc,
1999.

[10] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations. Interna-
tional Journal Supercomputer Applications, 15(3):200–222,
June 2001.

[11] J. Gomoluch and M. Schroeder. Market-based resource al-
location for grid computing: A model and simulation. pages
211–218, June 2003.

[12] N. A. Lynch. Upper bounds for static resource allocation in
a distributed system. Journal of Computer and System Sci-
ences, 23(2):254–278, October 1981.

[13] J. Park. A scalable protocol for deadlock and livelock free
co-allocation of resources in internet computing. Proceed-
ings of the Symposium on Applications and the Internet,
27(31):66–73, January 2003.

[14] J. Park. A deadlock and livelock free protocol for decen-
tralized internet resource coallocation. IEEE Transactions
on Systems, Man, and Cybernetics, 34(1):123–131, January
2004.

[15] G. I. Sih and E. A. Lee. A compile-time scheduling heuristic
for interconnection constrained-heterogeneous processor ar-
chitectures. IEEE Transactions on Parallel and Distributed
Systems, 4(2):175–187, February 1993.

[16] M. Singhal. Deadlock detection in distributed systems. IEEE
Computer, 22(11):37–48, November 1989.

[17] D. Thain, T. Tannenbaum, and M. Livny. Condor and the
grid. John Wiley & Sons Inc., December 2002.

[18] L. Wang et al. Resource co-allocation for meta-task in com-
putational grids. In Proceedings of the International Confer-
ence on Parallel and Distributed Processing Techniques and
Applications, volume 1, pages 36–42, June 2003.

[19] L. Wang et al. Resource co-allocation for parallel tasks in
computational grids. pages 88–95, June 2003.

[20] H.-J. Zhang, Q.-H. Li, and Y.-L. Ruan. Resource co-
allocation via agent-based coalition formation in computa-
tional grids. International Conference on Machine learning
and Cybernetics, 3:1936–1940, November 2003.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

