
LZ4m: A Fast Compression Algorithm for

In-Memory Data

Se-Jun Kwon∗, Sang-Hoon Kim†, Hyeong-Jun Kim∗, and Jin-Soo Kim∗

∗College of Information and Communication Engineering, Sungkyunkwan University

Email: sejun000@csl.skku.edu, hjkim@csl.skku.edu, jinsookim@skku.edu
†School of Computing, Korea Advanced Institute of Science and Technology (KAIST)

Email: sanghoon@calab.kaist.ac.kr

Abstract—Compressing in-memory data is a cost-effective
solution for dealing with the memory demand from data-intensive
applications. This paper proposes a fast data compression algo-
rithm for in-memory data that improves performance by utilizing
the characteristics frequently observed from in-memory data.

I. INTRODUCTION

Dealing with the ever-increasing memory requirements of

data-intensive applications is the subject of intensive work

in both industry and academia. In particular, it becomes an

important issue in consumer devices as their fast evolution

places a high demand on memory. As a cost-effective solution

for the demand, manufacturers attempt to compress in-memory

data thereby increasing the effective memory size and lower-

ing manufacturing cost [1], [2]. Specifically, in-memory data

compression techniques become important since the market

for consumer devices becomes extremely price sensitive and

sales are shifted from premium to cheaper models equipped

with small memory [3].

Data compression, or compression shortly, refers to the

technique that reduces the size of data by representing the

data in a more concise form. There have been many studies

that employ the compression for in-memory data, ranging

from computer architecture systems to operating systems. For

instance, some memory technologies [4], [?] compress cache

lines at the memory controller before writing them to memory,

providing a larger amount of memory than physically equipped

one. Compcache and zram [5] find out rarely referenced page

frames and compress them to reduce their memory footprint.

A compression algorithm for in-memory data must be

fast in both compression and decompression while providing

acceptable compression ratio1 as the performance of memory

access heavily influences on overall system performance. To

this end, Wilson et al. have proposed the WKdm algorithm

that utilizes the regularities that are frequently observed from

in-memory data [6]. However, although WKdm exhibits out-

standing compression speed, its poor compression ratio is the

major concern that hinders the application of the algorithm. On

the other hand, general-purpose compression algorithms such

This work was supported by the National Research Foundation of Ko-
rea (NRF) grant founded by the Korea Government (MSIP) (No. NRF-
2016R1A2A1A05005494).

1Throughout the paper, we use the term compression ratio to refer to the
ratio of the compressed size to the original size.

as Deflate [7], LZ4 [8], and LZO [9] compress in-memory data

better than WKdm. However, they exhibit poor performance

in terms of compression and decompression speed, thereby

impairing system performance.

This paper proposes a new novel compression algorithm

called LZ4m, which stands for LZ4 for in-memory data. We

expedite the scanning of input stream of the original LZ4

algorithm by utilizing the characteristics frequently observed

from in-memory data. We also revise the encoding scheme

of the LZ4 algorithm so that the compressed data can be

represented in a more concise form. Our evaluation results

with the data obtained from a running mobile device show

that LZ4m outperforms previous compression algorithms in

compression and decompression speed by up to 2.1× and

1.8×, respectively, with a marginal loss of less than 3% in

compression ratio.

II. ZIV-LEMPEL ALGORITHM AND LZ4

Many compression algorithms aiming at low compression

latency are based on the Lempel-Ziv algorithm [10]. The key

strategy of Lempel-Ziv algorithm is to scan an input stream

and find the longest match between the substring starting from

the current scanning position and the substrings in the already

scanned part of the input stream. If such a match is found, the

matched substring at the current position is substituted with

a pair of the backward offset to the match and the length of

the match. However, identifying the longest match can incur

high overheads in time and space. Thus, algorithms in practice

usually alter the strategy to quickly identify a substring that

is long enough to be compressed [7], [8], [9].

LZ4 is one of the most popular and successful compres-

sion algorithms based on the Lempel-Ziv algorithm. Fig-

ure 1 illustrates how LZ4 identifies the match and encodes

an input stream. LZ4 scans an input stream with a 4-byte

window (“DABE” at position 10 in this case) and checks

whether the substring in the window appeared before. To assist

the match, LZ4 maintains a hash table that maps a 4-byte

substring to a position from the start of the input stream.

If the hash table contains an entry for the current 4-byte

substring in the scanning window (Figure 1(a)- 1©), it implies

that the current substring appeared at the certain position in

the previously scanned stream (Figure 1(a)- 2©). Therefore, the

substring starting at the position has an identical prefix with

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE

Scanning window

Substring Position

FCDA 0

CDAB 1

DABE 2 10

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data F C D A B E G E A B D A B E G E A F C D D

(a) Matching process of LZ4

4 bits 4 bits 0+ bytes 2 bytes 0+ bytes0+ bytes

Token Body

Literal

length

Match

length

Literal Match

Length Data Offset Length

(b) Encoding of LZ4

Fig. 1. Matching process and encoding of LZ4

the substring starting at the current scanning position. LZ4

utilizes this property and finds the longest match starting from

these two positions. In this example, the longest match string

is “DABEGEA”. Then, the corresponding hash table entry

is updated to the current scanning position and the scanning

window is slid forward by the length of the match (Figure

1(a)- 3©). If no entry for the current substring is found in the

hash table, a new entry is inserted into the hash table and

the scanning window is advanced by one byte. The scanning

is repeated until the scanning window reaches the end of the

stream.

According to the matching scheme, the input stream is

partitioned into a number of substrings, called literals and

matches. The literal means a substring that does not match

any of previously appeared substrings. The literal is always

followed by one or more matches unless the literal is the last

substring of the input stream. LZ4 encodes the substrings into

encoding units which are comprised of a token and a body as

shown in Figure 1(b). Every encoding unit is started with a 1-

byte token. If the substring to encode is a literal followed by a

match, the upper 4 bits of the token are set to the length of the

literal and the lower 4 bits are set to the length of the following

match. If 4 bits are not enough to represent the length, i.e., the

substring is longer than 15 bytes, the corresponding bits are

set to 1111(2), and the length subtracted by 15 is placed on the

body which follows the token. The body contains the literal

data and the description of the match, which is comprised of

a backward offset to the match and the length of the match.

As the offset is encoded in 2 bytes, LZ4 can look back up

to 64 KB to find a match. Additional matches immediately

followed by a certain match are encoded in the similar way,

except that the literal length field in the token is set to 0000(2)

and the body omits the part for the literal.

Scanning window

Substring Position

FCDA 0

BEGE 4 12

ABDA 8

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data F C D A B E G E A B D A B E G E A B C D D

(a) Matching process of LZ4m

2 bits 3 bits 0+ bytes 1 byte 0+ bytes3 bits 0+ bytes

Token Body

Offset
Literal

length

Match

length

Literal Match

Length Data Offset Length

(b) Encoding of LZ4m

Fig. 2. Matching process and encoding of LZ4m

III. PROPOSED LZ4M ALGORITHM

LZ4 focuses on the compression and decompression speed

with an acceptable compression ratio. However, as LZ4 is

designed as a general-purpose compression algorithm, it does

not utilize the inherent characteristics of in-memory data.

In-memory data consists of virtual memory pages that

contains the data from the stack and the heap regions of

applications. The stack and the heap regions contain constants,

variables, pointers, and arrays of basic types which are usually

structured and aligned to the word boundary of the system [6].

Based on the observation, we can expect that data compression

can be accelerated without a significant loss of compressing

opportunity by scanning and matching data in the word

granularity. In addition, as the larger granularity requires less

bits to represent the length and the offset, the substrings (i.e.,

literals and matches) can be encoded in a more concise form.

We revise the LZ4 algorithm to utilize these characteristics

and propose the LZ4m algorithm which stands for LZ4 for in-

memory data. Figure 2(a) illustrates the modified compression

scheme and the unit encoding of LZ4m. LZ4m uses the same

scanning window and hash table of the original LZ4. In

contrast to the original LZ4 algorithm, LZ4m scans an input

stream and finds the match in a 4-byte granularity. If the hash

table indicates no prefix match exists, LZ4m advances the

window by 4 bytes and repeats identifying the prefix match.

As shown in the Figure 2(a), after examining the prefix at

position 8, the next position of the window is 12 instead of 9.

If a prefix match is found, LZ4m compares subsequent data

and finds the longest match in the 4-byte granularity as well.

In the example, although there is a 6-byte match starting from

position 12, LZ4m only considers the 4-byte match from 12

to 15, and slides the scanning window forward by four bytes,

to position 16 (Figure 2(a)- 3©).

We also optimize the encoding scheme to utilize the 4-byte

granularity. As the offset is aligned to the 4-byte boundary and

the length is a multiple of 4 bytes, two least significant bits of

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE

these fields are always 00(2). Thus, every field representing the

length and the offset (the literal length and the match length

in the token, and the literal length, the match length, and the

match offset in the body) can be shortened by 2 bits. Moreover,

as LZ4m is targeting to compress 4 KB pages in a 4-byte

granularity, the field for the match offset requires at most 10

bits. Consequently, we place the two most significant bits of

the match offset in the token and put the remaining 8 bits in

the body.

IV. EVALUATION

We evaluated the proposed LZ4m algorithm using real in-

memory data obtained from a mobile device. We evaluated

LZ4 and LZO1x as the representatives of general-purpose

algorithms, and WKdm as a specialized one. To collect in-

memory data, particularly the one that in-memory data com-

pression schemes are interested in, we collected data that are

evicted from main memory via swapping. We set up a mobile

system platform on a mobile system development board. And

then we configured the kernel to swap data on a custom block

device emulated with a SSD development platform board.

The custom block device collects swap data to a particular

partition that can be examined later off-line. We collected

98,995 pages (386.7 MB) of swap data while launching 24

popular applications 512 times in total.

Figure 3 compares the algorithms in terms of their com-

pression ratio and compression/decompression speed. Recall

that the compression ratio is the average of pages, and the

smaller compression ratio implies the smaller compressed size

for the same data. Also, the speeds are normalized to that

of LZ4m. Compared to the general-purpose algorithms (i.e.,

LZ4 and LZO1x), LZ4m shows the comparable compression

ratio which is only degraded by up to 3%. However, LZ4m

outperforms these algorithms in speed by up to 2.1× and

1.8× for compression and decompression, respectively. On

the other hand, LZ4m outperforms WKdm significantly in

compression ratio and decompression speed at the cost of 21%

slowdown in compression speed. These results suggest that

LZ4m substantially improves the compression/decompression

speed of LZ4 with a marginal loss of compression ratio.

Figure 4 shows a cumulative distribution of compression

ratio for pages. The compression ratio curve of LZ4m does

not fall much behind those of the LZO and LZ4 algorithms.

However, WKdm shows distinctively compression ratio curve

which lags much behind other algorithms. In addition, 6.8%

of pages cannot be compressed at all with WKdm whereas

less than 1% does with others. This suggests that the WKdm’s

speed-up in compression can be offset by its poor compression

ratio.

To further analyze the implication of the 4-byte granularity

of the match offset and the match length, we counted the length

of match substrings from the trace. Figure 5 compares the

results from the original LZ4 and LZ4m with a cumulative

count of matches over match length. The inset magnifies the

original result whose match lengthes are between 0 to 32. We

can verify that the increased granularity decreases the total

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LZ4m LZ4 LZO1x WKdm

C
o
m

p
re

ss
io

n
 r

at
io

(a) Compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LZ4m LZ4 LZO1x WKdm

N
o
rm

al
iz

ed
 s

p
ee

d

Compression Decompression

(b) Compression/decompression speed

Fig. 3. Compression ratio and compression/decompression speed of various
compression algorithms

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

ra
ti

o

Compression ratio

LZ4m

LZ4

 LZO1x

WKdm

Fig. 4. Cumulative distibution of compression ratio

occurrence of matches only by 2.5%, which implies that the 4-

byte granularity scheme influences just little on the opportunity

to find a match. Also, the distribution of the match lengths

shows that an n-byte match in the original scheme can be

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE

0

4

8

12

16

20

 0 512 1024 1536 2048 2560 3072 3584 4096

C
u
m

u
la

ti
v
e

m
at

ch
 c

o
u
n
t

(x
1
0

6
)

Match length

LZ4 LZ4m

0

4

8

12

16

20

 0 4 8 12 16 20 24 28 32

Fig. 5. Cumulative count of matches over match length

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

ic
ro

se
co

n
d
)

Compression ratio

LZ4m

LZ4

LZO1x

WKdm

Fig. 6. Average compression speed over compression ratio

substituted with a ⌊n/4⌋ × 4-byte match. This suggests that

the disadvantage of the 4-byte granularity in the match length

is also marginal.

Figure 6 shows the relationship between the compression

speed and the compression ratio of the algorithms. The speed

is obtained by measuring the time to compress each page and

averaging the time of pages having the same compression

ratio. The time to compress well-compressed pages (pages

with small compression ratio values) are similar across the

algorithms. For badly-compressed pages (pages with large

compression ratio values), however, LZ4m shows outstanding

compression speed compared to LZ4 and LZO1x. This con-

siderable amount of speedup is originated from the scanning

process of LZ4m that advances the scanning window by 4

bytes if no prefix match is found, expediting the scanning by

four times on the hardly-compressible pages.

Figure 7 shows the relationship between the decompression

speed and the compression ratio of the algorithms. The speed

is obtained in the same way as the average compression speed.

We can confirm that LZ4m outperforms other algorithms in de-

compression speed over almost entire range of the compression

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

T
im

e
(m

ic
ro

se
co

n
d
)

Compression ratio

LZ4m

LZ4

LZO1x

WKdm

Fig. 7. Average decompression speed over compression ratio

ratio. Interestingly, WKdm does not excel other algorithms

in decompression speed, especially for the pages that are

not compressed well, although it promises outstanding com-

pression speed. This is a critical drawback as a compression

algorithm for in-memory data since decompression usually

happens on performance-critical paths in memory subsystems,

such as fault handling or swap-in.

V. CONCLUSION

We optimized a popular general-purpose compression algo-

rithm by utilizing the inherent characteristics of in-memory

data. Evaluation with real-life data confirms that the proposed

LZ4m greatly boost the compression/decompression speed

without substantial loss in compression ratio. We plan to apply

the LZ4m to a real in-memory compression system and to

measure its implication on the overall system performance.

REFERENCES

[1] Samsung Electronics, Co., “Galaxy Note 3.” [On-
line]. Available: http://www.samsung.com/uk/consumer/mobile-
devices/smartphones/galaxy-note/SM-N9005ZKEBTU

[2] Android. Low RAM. [Online]. Available:
https://source.android.com/devices/tech/low-ram.html

[3] International Data Corporation (IDC), “Worldwide quarterly
mobile phone tracker,” Aug. 2015. [Online]. Available:
http://www.idc.com/tracker/showtrackerhome.jsp

[4] S. Arramreddy, D. Har, K.-K. Mak, R. B. Tremaine, and M. Wazlowski,
“IBM “MXT” memory compression technology debuts in a serverworks
northbridge,” in Proceedings of Hot Chips 12, 2000.

[5] F. Douglis, “The compression cache: Using on-line compression to
extend physical memory,” in Proceedings of the Winter USENIX Con-

ference, 1993, pp. 519–529.
[6] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for com-

pressed caching in virtual memory system,” in Proceedings of the 1999

USENIX Annual Technical Conference, June 1999, pp. 101–116.
[7] J. loup Gailly and M. Adler. (2013) zlib:a massively spiffy

yet delicately unobtrusive compression library. [Online]. Available:
http://www.zlib.net/

[8] Y. Collect. (2013) LZ4: extremely fast compression algorithm. [Online].
Available: http://code.google.com/p/lz4

[9] M. F. Oberhumer. (2011) LZO real-time data compression library.
[Online]. Available: http://www.oberhumer.com/opensource/lzo

[10] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, 1977.

2017 IEEE International Conference on Consumer Electronics (ICCE)

978-1-5090-5544-9/17/$31.00 ©2017 IEEE

