

Abstract—It is an important issue to reduce the power
consumption of a hard disk that takes a large amount of
computer system’s power. As a new trend, an NV cache is used
to make a disk spin down longer by servicing read/write
requests instead of the disk. During the spin-down periods,
write requests can be simply handled by write buffering, but
read requests are still the main cause of initiating spin-ups
because of a low hit ratio in the NV cache. Even when there is no
user activity, read requests can be frequently generated by
running applications and system services, hindering the
spin-down. In this paper, we propose new NV cache policies:
Active Write Caching to reduce or to delay spin-ups caused by
read misses during spin-down periods and a Read Miss-Based
Spin-Down Algorithm to extend the spin-down periods,
exploiting the NV cache effectively. Our policies reduce the
power consumption of a hard disk by up to 50.1% with a 512MB
NV cache, compared with preceding approaches.

I. INTRODUCTION
Green computing has surfaced recently as a new paradigm

for the study of using computing resources efficiently. The
low power consumption of computer systems has been a key
issue on green computing. Especially, in mobile computer
systems, it has emerged more seriously as an essential part to
extend working time under the limited lifetime of a battery.
Among various devices in a computer system, hard disks are
the main source of power dissipation. Previous researches
have shown that a hard disk can occupy 30% or more of the
power consumed by typical computer systems [1], [2].

To reduce the power consumption, a disk can be spun
down when it is not in use. However, it is well-known that
spinning a disk up consumes much power. If the spin-down
time is shorter than spin-down cost [3], a disk consumes more
power than keeping it spinning. The spin-down cost means
the amount of time it should be spinning to consume as much
as the power consumed by a spin-up. Therefore, it is a
challenging problem to determine when a disk should be spun
down. In the existing spin-down techniques [3], [4], static or
dynamic time-out value is used to determine when to spin it
down. When an idle time where there is no request to a disk is
longer than the time-out value, a disk is spun down.

 Recently, a new technology employing a non-volatile
storage cache called NV cache in computer systems has been
introduced [5], [6]. One of the main purposes of the NV cache
is to reduce the power consumption of a hard disk by
eliminating disk activity, ensuring reliability after an
unexpected power failure. In several previous researches [7],
[8], [9], [10], [11], [12], [13] it has been demonstrated that the
NV cache is effective in reducing power consumption by

eliminating disk activity.
The NV cache is located at the block level as shown in Fig.

1, and so existing file systems can be compatibly used [7].
The NV cache consists of a read-cache and a write-cache. The
read/write requests from the file system pass through the
block level hybrid-layer, which manages where the requests
are serviced, what requests are prefetched into the NV cache,
and what cached data are flushed to the disk.

On a read request, if the requested data is in the NV cache,
the read request is serviced by the NV cache. Otherwise, the
request is serviced by the disk. If the read miss occurs during
spin-down periods, the disk must be spun up. On a write
request during spin-down periods, it can be simply redirected
to the NV cache. The disk must be spun up only when there is
no space for write buffering.

In this paper, our approach is predicated on the observation
that read requests can be frequently generated by running
applications without user activity. In this case, it is difficult to
maintain and to initiate the spin-down. To address these
problems, we present two new techniques. First, we propose
Active Write Caching (AWC) to reduce or to delay spin-ups
caused by read misses through investigating read requests
that become the cause of the spin-ups. Second, we propose a
Read Miss-based spin-down Algorithm (RMA) that makes the
disk spin down even when read requests frequently arrive,
which is supported by AWC. The proposed techniques are
compared with the preceding studies [7], [8] by using
trace-based simulation.

The rest of this paper proceeds as follows. Section II
contains a brief survey of related work. Section III and IV
describe the two main techniques in detail. Section V explains
our experimental methodology. Section VI presents on
simulation results that demonstrate the improvement caused

RMA: A Read Miss-Based Spin-Down Algorithm using an NV Cache
Hyotaek Shim, Jaegeuk Kim, Dawoon Jung, Jin-Soo Kim, and Seungryoul Maeng

Computer Science Department at KAIST
{htsim, jgkim, dwjung}@camars.kaist.ac.kr {jinsoo, maeng}@cs.kaist.ac.kr

Fig. 1. The architecture of a hard disk with an NV cache

978-1-4244-2658-4/08/$25.00 ©2008 IEEE 520

by the proposed techniques, and Section VII concludes the
paper.

II. RELATED WORK
In NVCache [7], NV cache management policies were

proposed to extend spin-down periods. In the policies, the
read-cache is filled with read requests while a disk is active.
They investigated some read-cache policies, such as Least
Recently Used (LRU), Least Frequently Used (LFU), and
their combination. The write-cache accommodates write
requests during spin-down periods. The data in the
write-cache are ordered by insertion time and are flushed in a
FIFO manner.

Flushing Policies for an NV cache, which decrease the
overhead of data synchronization, were proposed in [9]. In
these policies, all the data of a write-cache are flushed to a
disk only when the disk is spun up by write-cache fullness
because flushing performance can be more improved by
sorting and merging techniques. The sorting technique makes
an array of requests, and the merging technique converts
multiple requests into a single large request, to reduce disk
access time.

III. ACTIVE WRITE CACHING

A. Background and Motivation
Fig. 2 shows disk accesses for 12 hours without user

activity on a Windows XP system. As shown in Fig. 2(a),
there are few read requests during the period without running
application. In this case, the spin-down performance can be
guaranteed by write buffering with an NV cache. Fig. 2(b)
illustrates the disk activity with four running user applications
including web browser, e-mail client, messenger, and
anti-virus program. We observed that read requests are
frequently generated by the user applications. Unless the NV
cache accommodates the read requests during spin-down
periods, spin-ups are inevitable because most spin-ups are
generated not by the write-cache fullness but by read misses
[8], [9]. Accordingly, we need to populate the NV cache with
data likely to be read during spin-down periods to reduce or to
delay the spin-ups.

In the previous studies [7], [8], [9] write requests are
redirected to an NV cache only while a disk is spun down.
The write request during active periods is defined as active
write. If the active writes overlap with cached data, the
overlapped data are removed from the NV cache. When the
removed data are read during spin-down periods, we cannot
avoid a read miss and consequently a spin-up. If such a case
frequently occurs, the performance of a spin-down algorithm
gets worse.

We investigate the problem with four block level traces
shown in Table 1. They are recorded from the desktops using
Windows XP/Vista, with filter drivers. The Desk trace is
collected from the desktop used mostly for desktop search,
audio applications, and file downloads. The Soft trace is from
the desktop used mostly for online games, electronic mail,

and web browsing. The Doc trace is from the desktop used
mostly for document work. The Web trace is from the desktop
used mostly for web-based applications without user activity.

We classify a read request into two types of read after read
and read after write on the same sectors. Fig. 3 presents the
ratio of read after write to all reads. Without storing the
preceding write requests, the following read requests can
bring read misses during spin-down periods. Accordingly, we
investigated the spin-ups caused by the discarded active
writes through the simulation based on the existing studies [7],
[8], of which the implementation details will be explained in
Section V. We also classify a read miss into two types of read
miss after read and read miss after write on the same sectors.
Whenever a read miss occurs during spin-down periods, we
accumulate the number of read miss after write. As a
simulation result, Fig. 4 shows the ratio of read miss after
write to all read misses during spin-down periods according
to the size of the NV cache. From the results of the Soft and
Web traces with an NV cache of over 1GB, the ratio is over
70%. Hence, to reduce read misses caused by the data written
directly to a disk, or removed from the NV cache due to
overlap, we need to store the active writes into the NV cache.

B. Write-Cache Replacement Policy
In our approach, all active writes are insertion candidates

for a write-cache. The write-cache is operated as an LFU
write-back cache because it reduces the amount of insertion
into the NV cache and performs better than FIFO or LRU [7].
In addition, the number of write requests to the disk is
significantly decreased compared with write-through cache.
The frequency used in the LFU policy is the read access count
collected from the history of all read requests.

When an active write arrives, the overlapped data in the
NV cache is first removed. Then the frequency of the active

(a) Without a running user application

(b) With four running user applications

Fig. 2. The disk accesses of Windows XP system without user activity

Name OS / File System Duration Read / Write (GB)
Desk Win. XP / NTFS 7 days 12.1 / 47
Soft Win. Vista / NTFS 7 days 53.2 / 45.5
Doc Win. XP / NTFS 7 days 15.6 / 31.6
Web Win. XP / NTFS 7 days 15.5 / 14.4

Table 1. The summary of the four block level traces

521

write is compared with the average frequency of the requests
on victim blocks, which means erase blocks, in the
write-cache. If its frequency is bigger than the victim, the
victim blocks are flushed to the disk, and then the active write
is stored into the write-cache. Otherwise, the active write is
directly stored into the disk.

C. Spin-Ups caused by Write-Cache Fullness
In NVCache [7], when a disk is spun up, small empty space

as much as the average amount of insertion during the recent
N spin-down periods occupies the write-cache to avoid future
spin-ups caused by write-cache fullness. To prevent the
empty space of the write-cache from gradually getting
smaller, the amount of the data flushed is increased by 25%
when a spin-up is caused by write-cache fullness. Moreover,
the empty space can become a bit larger during active periods
because the write-cache is removed by overlap, decreasing
the possibility of write-cache fullness.

However, if active writes are stored into the write-cache, its
capacity always becomes full up to the limit of the empty
space, thereby increasing spin-ups caused by write-cache
fullness. If whole read-cache space is allowed for additional
write buffering during spin-down periods, the spin-ups will
be significantly decreased. But the removed data of the
read-cache can be the cause of read misses during the future
spin-down periods. Therefore, in our approach, a maximum
of 10% of the read-cache space is allowed to reduce spin-ups
caused by write-cache fullness. In addition, to alleviate the
loss of the removed read-cache, the read-cache data replaced
by write buffering are selected by the read-cache replacement
policy.

D. Limited Lifetime of Flash Memory
As an NV cache, NAND flash memory [14] is widely used

since it provides large capacity, non-volatility and low power
requirement considerably smaller than hard disks. It has,
however, the limited program/erase cycles from 10K to 100K
according to the type of NAND flash memory, and the

lifetime of flash memory varies according to the amount of
data inserted into the NV cache. In our approach, as the
amount of insertion into the NV cache increases by storing
active writes, its lifetime is likely to get shorter than the user’s
expected lifetime. We need to, therefore, protect the lifetime
of flash memory.

The preceding research [8] suggested one method to ensure
the expected lifetime by keeping the insertion bandwidth
lower than the maximum bandwidth (MB/sec), which is
computed by the predefined expected lifetime, e.g., 10 years.
In our approach, we use the maximum rate of an erase
operation (erase/sec) because it precisely protects the
expected lifetime. When the erase rate exceeds 90% of the
maximum rate, we stop prefetching read/write requests. Over
the maximum rate, we also stop permitting a disk to spin
down.

IV. A READ MISS-BASED SPIN-DOWN ALGORITHM

A. Background and Motivation
In the existing spin-down algorithms for conventional

disks [3], [4], an idle time is computed as current time - last
access time, regardless of whether a request type is a read or a
write, because they assume that any I/O is likely to cause a
spin-up. In a hybrid-disk, through write buffering, write
requests are not responsible for initiating spin-ups any more.
Accordingly, in a Hybrid Disk-aware spin-down Algorithm
(HDA) [8], it is proposed that the idle time should be
computed as current time – last read access time and reset
only on a read request.

With few read requests as shown in Fig. 2(a), the hybrid
disk-aware spin-down algorithm can perform better than
traditional algorithms. However, if read requests frequently
arrive as shown in Fig. 2(b), it is difficult even to initiate the
spin-down while the interval time between read requests is
shorter than the time-out value, which is defined as short
interval duration, considering that the idle time is reset at
every read request.

We investigated the short interval duration with four block
level traces shown in table 1. Fig. 5 represents the ratio of the
short interval duration relative to total duration according to
the time-out value. In all the traces, the rate is over 10% even
when the time-out value is configured as small 5 seconds.
When configured as 30 or 60 seconds, the ratio considerably
grows up, and the problem gets worse.

B. Idle Time Computed by Read Miss
We propose a new spin-down policy, which is called RMA,

to make a disk spin down even when read requests frequently
arrive. In RMA, the idle time is computed as current time -
last read miss time. This policy makes the disk spin down
earlier than HDA, and its profit and loss is determined by
whether the following read requests are hits or not within the
spin-down cost. For example, Fig. 6(a) shows the case that
RMA performs better than HDA. Using RMA, the disk is
spun down after the time-out from the first read miss. In
addition, the spin-down state is maintained since the

0

10

20

30

40

50

Desk Soft Doc Web

R
at

io
 (

%
)

Fig. 3. The ratio of read after write to all reads

0

20

40

60

80

100

Desk Soft Doc Web

0.5 1 2
NV-cache Size (GB)

R
at

io
 (

%
)

Fig. 4. The ratio of read miss after write to all read misses
during spin-down periods

522

following three read requests are all hits. Therefore, the
earlier-initiated spin-down period is truly profitable.
Conversely, as shown in Fig. 6(b), if the following read
requests after spun down are misses, a disk must be spun up
shortly, thereby consuming more power than keeping the disk
spinning.

Thus, if numerous spin-ups are generated by the read
misses, it is better not to spin it down with respect to the
spin-down cost. But if the read requests are sufficiently
satisfied by the NV cache, which is supported by AWC, we
can point out that we still have opportunities to enhance the
performance of the spin-down algorithm. In addition,
although there may be loss caused by using RMA, the amount
of the loss can be reduced gradually as the read hit ratio
increases. In Section VI, the profit and the loss are
investigated in detail.

V. IMPLEMENTATION
We implemented a trace-based simulator to measure the

power consumption of a hard disk and flash memory. As
summarized in table 2, Hitachi Travelstar 7K200 hard drive
[15] and Compact Flash Memory Card specifications [16]
were used. On a read/write request, the power consumption
was calculated with the disk’s maximum I/O rate, and seek
power was computed by average seek time when a request is
not sequential. The expected lifetime of the flash memory
was configured as 10 years.

A frequency history for LFU replacement policy is
collected from all read requests composed of a sector address
and length. But assigning a read count to each request [7] is
likely to be incorrect, considering that the sector address and
length of the request is variable. Hence, in our
implementation, we assign read count to each sector group,
which is composed of 8 sectors, and the history information is
maintained as a hash table for fast access in main memories.

The time-out value is computed by a dynamic disk
spin-down technique [3]. The algorithm is based on machine
learning technique that has excellent performance in practice.
The algorithm consists of N experts. Each expert has its own
weight and fixed time-out value evenly spaced between 0 and
the disk’s spin-down cost, 8.25, which is computed by the
specification in Table 2. On each idle time, all experts with
own fixed time-out value decide whether the disk should be
spun down or not. According to the energy benefits of each
trial, the expert’s weight is updated. The algorithm uses the
weighted average of the expert’s fixed time-out value as the
time-out value.

VI. EVALUATION
To evaluate the performance of the proposed ideas, AWC

and RMA, our techniques are compared with the combination
of NVCache [7] and HDA [8]. Basically, the NV cache is
equally divided for a read-cache and a write-cache, of which
the replacement policy is LFU.

Fig. 7 shows the average number of read hits satisfied by
the NV cache per spin-down period with the four block level
traces previously mentioned, and HDA is used as a spin-down
algorithm. When AWC is applied, it increases the read hits
during spin-down periods, and so reduces spin-ups. In our
approach, the spin-ups caused by write-cache fullness are also
reduced because up to 10% of the read-cache is available for
additional write buffering.

In the results of all traces as shown in Fig.7, the
improvement enlarges as the NV cache size increases, and
there are two main reasons. First, the amount of AWC
restricted for protecting the expected lifetime is reduced as
the maximum erase rate becomes larger according to the NV
cache size. Second, the available space for additional write
buffering becomes larger according to the increment of NV
cache size, thus considerably decreasing the number of
spin-ups caused by write-cache fullness.

Fig. 8 shows the ratio of the spin-down duration relative to
the total duration according to the NV cache size. Using
AWC, the extended spin-down periods are caused by the
reduced number of read misses during the spin-down periods.
If RMA is additionally applied, the spin-down periods are
more extended by the earlier-initiated spin-down periods. In
particular, the significant improvement of the result with the

(a) The case where RMA performs better than HDA

(b) The case where RMA performs worse than HDA

Fig. 6. RMA vs. HDA

 2.5 inch Hard drive Compact Flash

Read / Write 2.3W 0.17 / 0.21W
Seek 2.6W -
Idle 2W 3.3mW

Standby 0.25W 3.3mW
Spin-up (Time) 5.5W (3sec) -

Capacity 80GB – 200GB 512MB – 16GB

Table 2. The characteristics of a hard disk (Hitachi Travelstar 7K200 [15])
and an NV cache (Compact Flash Memory Card [16])

0

20

40

60

80

Desk Soft Doc Web

5 30 60

R
at

io
 (

%
) Time-out (sec)

Fig. 5. The rate of short interval duration to total duration

523

Desk trace is caused by two interesting characteristics. First,
it has not only many read after write request patterns shown
in Fig. 3 but also many write after read request patterns on the
same sectors, compared with the other traces. Therefore,
without AWC, the newly stored read requests are likely to be
removed by the following write requests, thereby generating
read misses on the sectors. By using AWC, the read hit ratio is
significantly increased, e.g., from 9.32% to 67.51% with the
only 256MB NV cache. Second, its short interval duration is
longer than the other traces at a lower time-out value, as
shown in Fig. 5. Hence, it has the largest improvement by
using both RMA and AWC.

To compare RMA with HDA in terms of the energy benefit,
we measure the decreased or increased amount of power
consumption. The decreased power consumption means the
profit of RMA relative to HDA. Conversely, the increased
power consumption means the loss of RMA relative to HDA.
Basically, the simulation is performed with RMA and AWC,
and the profit/loss is computed and accumulated at every
spin-up. Table 3 represents P-L, P/L, and the average ratio of
a read hit. P-L means the profit minus the loss relative to the
power consumed by using HDA and AWC, and P/L means

the ratio of the profit to the loss. In most cases, the amount of
the P-L enlarges as the read hit ratio increases. Although the
profit is lower than the loss in the Web trace with a 128MB
and a 256MB NV cache, its degradation is not serious.

Fig. 9 shows the power consumption relative to the power
consumed by the disk always spinning. The reduced power
consumption is up to 50.1% of the power consumed by the
combination of NVCache [7] and HDA [8] with a 512MB NV
cache using the Desk trace. The amount of the reduced power
consumption enlarges as the NV cache size increases because
both AWC and RMA are more effective with the larger size
of the NV cache.

VII. CONCLUSIONS
Our goal was to reduce the power consumption of a hard

disk by exploiting NV cache effectively. We investigated the
two main problems of the existing policies when read
requests are frequently generated by background system
services and running applications without user activity. First,
many spin-ups were caused by read misses on the data of
discarded active writes. Second, the idle time is reset at every
read request, and a disk cannot be spun down.

 Fig. 7. The average number of read hits per spin-down period

Fig. 8. The spin-down duration relative to the total duration

NVcache
Size

Desk Soft Doc Web
P-L (%) P/L Hit (%) P-L (%) P/L Hit (%) P-L (%) P/L Hit (%) P-L (%) P/L Hit (%)

128MB 12.8 173.2 35.3 0.2 1.8 15.0 0.0 1.0 9.1 -0.2 0.7 34.2
256MB 31.8 267.0 67.0 0.2 1.6 18.1 0.3 1.8 14.9 -0.2 0.8 44.6
512MB 39.6 310.2 79.0 0.3 1.7 22.9 3.4 3.8 24.7 1.0 1.6 61.7
1GB 41.0 280.5 82.4 0.3 1.6 30.8 14.7 24.4 43.2 2.9 2.4 80.3
2GB 41.4 235.0 87.6 0.3 1.5 46.5 13.0 21.3 62.4 5.9 3.9 88.6
4GB 44.5 277.2 91.5 0.5 1.8 69.4 13.4 21.7 74.8 6.7 4.7 92.0
8GB 45.5 295.3 94.0 0.8 2.3 84.3 11.3 22.6 80.5 7.6 6.5 94.1

Table 3. The comparison of RMA and HDA with respect to the energy profit (P) and loss (L)

0
20
40
60
80

100
No AWC

AWC

NV Cache Size
(a) Desk

Av
g.

 R
ea

d
hi

ts

0
5

10
15
20
25
30

No AWC

AWC

NV Cache Size
(b) Soft

Av
g.

 R
ea

d
hi

ts

0
20
40
60
80

100
120
140

No AWC

AWC

NV Cache Size
(c) Doc

Av
g.

 R
ea

d
hi

ts

0

100

200

300

400
No AWC

AWC

NV Cache Size

Av
g.

 R
ea

d
hi

ts

(d) Web

40
50
60
70
80
90

100

NV Cache Size

Sp
in

-D
ow

n
Ti

m
e

(%
)

(a) Desk

70
75
80
85
90
95

100

NV Cache Size

Sp
in

-D
ow

n
Ti

m
e

(%
)

(b) Soft

70
75
80
85
90
95

100

NV Cache Size

Sp
in

-D
ow

n
Ti

m
e

(%
)

(c) Doc

70
75
80
85
90
95

100

NV Cache Size

Sp
in

-D
ow

n
Ti

m
e

(%
)

(d) Web

524

In this paper, two new NV cache policies were proposed to
handle the problems. First, an Active Write Caching
technique was presented to reduce or to delay spin-ups caused
by read misses. In this technique, active writes are stored into
the write-cache using the LFU replacement policy, protecting
the expected lifetime of the NV cache. Second, a Read
Miss-Based Spin-Down Algorithm that computes the idle time
from a read miss was proposed to make the disk spin down
even when read requests frequently arrive. When both
techniques were applied, the power consumption of the hard
disk was reduced by up to 50.1% with 512MB NV cache,
compared with the preceding approaches.

ACKNOWLEDGMENT
This research was supported by the MKE (Ministry of

Knowledge Economy), Korea, under the ITRC (Information
Technology Research Center) support program supervised by
the IITA (Institute for Information Technology Advancement)
(IITA-2008-C1090-0801-0045).

This work was supported by the Korea Science and
Engineering Foundation (KOSEF) grant funded by the Korea
government (MOST) (No. R01-2006-000-10724-0).

REFERENCES
[1] F. Douglis, P.Krishnan, and B. Marsh, “Thwarting the power-hungry

disk,” in Proc. of the USENIX Winter Conference, pp. 292-306, San
Francisco, CA, USA, Jan. 1994.

[2] P. Greenawalt, “Modeling power management for hard disks,” in Proc.
of the 2nd International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (IEEE
MASCOTS), pp. 62-66, Durham, NC, USA, Jan. 1994.

[3] D. P. Helmbold, D. D. E. Long, and B. Sherrod, “A dynamic disk
spin-down technique for mobile computing,” in Proc. of the 2th
International Conference on Mobile Computing and Networking(ACM
MobiCom), pp. 130-142, Rye, NY, USA, Nov. 1996.

[4] P. Krishnam, P.M. Long, J. S. Vitter, “Adaptive disk spin-down via
optimal rent-to-buy in probabilistic environments,” in Proc. of the 12th

Annual International Conference on Machine Learning (ICML), pp.
322–330, Tahoe City, CA, USA, Jul. 1995.

[5] HM080HHI / HM12HII / HM16HJI Hybrid HDD Product Data Sheet
Rev0.1, Samsung Electronics, Available:
http://www.cmsproducts.com/pdf/hybrid/
MH80_Hybrid_Product_Spec_Sheet.pdf, 2006.

[6] Intel® Turbo Memory article, “Overcoming disk drive access
bottlenecks with Intel® Turbo Memory,” Available:
http://download.intel.com/design/flash/nand/turbomemory/article.pdf,
2007.

[7] T. Bisson, S. Brandt, and D. D. E. Long, “NVCache: Increasing the
effectiveness of disk spin-down algorithms with caching,” in Proc. of
the 14th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (IEEE
MASCOTS), pp. 422-432, Monterey, CA, USA, Sep. 2006.

[8] T. Bisson, S. A. Brandt, and D. D. E. Long, “A hybrid disk-aware
spin-down algorithm with I/O subsystem support,” in Proc. of the
International Performance, Computing, and Communications
Conference (IEEE IPCCC), pp. 236-245, New Orleans, LA, USA, Apr.
2007.

[9] T. Bisson and S. A. Brandt, “Flushing polices for NVCache enabled
hard disks,” in Proc. of the 15th NASA / 24th Conference on Mass
Storage Systems and Technologies (IEEE MSST), pp. 299-304, San
Diego, CA, USA, Sep. 2007.

[10] Y.-J. Kim, K.-T. Kwon, and J. Kim, “Energy-Efficient File Placement
Techniques for Heterogeneous Mobile Storage Systems,” in Proc. of
the 6th International Conference on Embedded Software (ACM
EMSOFT), pp 171-177, Seoul, Korea, Oct. 2006.

[11] J. Matthews, S. Trika, D. Hensgen, and R. Coulson, “Intel® Turbo
Memory: Nonvolatile Disk Caches in the Storage Hierarchy of
Mainstream Computer Systems,” in ACM Transactions on Storage
(ACM TOS), vol. 4, no. 2, article 4, May 2008.

[12] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash Based
Disk Caches,” in Proc. of the 35th International Symposium on
Computer Architecture (ISCA), pp. 327-338, Beijing, China, Jun. 2008.

[13] N. Agrawal, V. Prabhakaran, and T. Wobber, “Design Tradeoffs for
SSD Performance,” in Proc. of the USENIX Annual Technical
Conference, pp. 57-70, Boston, MA, USA, Jun. 2008.

[14] 1G x 8Bit / 2G x 8Bit / 4G x 8Bit NAND Flash Memory
(K9WAG08U1M), Samsung Electronics, 2005.

[15] Hitachi Travelstar 7K200 2.5 inch SATA hard disk drive specification,
Hitachi Global Strorage Technologies, May. 2007.

[16] Sandisk CompactFlash Memory Card OEM Product Manual Version
12.0, Sandisk Corporation, Feb. 2007.

Fig. 9. Power consumption relative to the power consumed by a hard disk always spinning

0

10

20

30

40

50

60

70

128M 256M 512M 1G 2G 4G 8G

No AWC + HDA
AWC + HDA
AWC + RMA

NV Cache Size

Po
w

er
 C

on
su

m
pt

io
n

(%
)

(a) Desk

0

10

20

30

40

50

128M 256M 512M 1G 2G 4G 8G

No AWC + HDA
AWC + HDA
AWC + RMA

NV Cache Size

Po
w

er
 C

on
su

m
pt

io
n

(%
)

(b) Soft

0
5

10
15
20
25
30
35
40
45

128M 256M 512M 1G 2G 4G 8G

No AWC + HDA
AWC + HDA
AWC + RMA

NV Cache Size

Po
w

er
 C

on
su

m
pt

io
n

(%
)

(c) Doc

0
5

10
15
20
25
30
35
40

128M 256M 512M 1G 2G 4G 8G

No AWC + HDA
AWC + HDA
AWC + RMA

NV Cache Size

Po
w

er
 C

on
su

m
pt

io
n

(%
)

(d) Web

525

