
  

  

Abstract—It is an important issue to reduce the power 
consumption of a hard disk that takes a large amount of 
computer system’s power. As a new trend, an NV cache is used 
to make a disk spin down longer by servicing read/write 
requests instead of the disk. During the spin-down periods, 
write requests can be simply handled by write buffering, but 
read requests are still the main cause of initiating spin-ups 
because of a low hit ratio in the NV cache. Even when there is no 
user activity, read requests can be frequently generated by 
running applications and system services, hindering the 
spin-down. In this paper, we propose new NV cache policies: 
Active Write Caching to reduce or to delay spin-ups caused by 
read misses during spin-down periods and a Read Miss-Based 
Spin-Down Algorithm to extend the spin-down periods, 
exploiting the NV cache effectively. Our policies reduce the 
power consumption of a hard disk by up to 50.1% with a 512MB 
NV cache, compared with preceding approaches.  

I. INTRODUCTION 
Green computing has surfaced recently as a new paradigm 

for the study of using computing resources efficiently. The 
low power consumption of computer systems has been a key 
issue on green computing. Especially, in mobile computer 
systems, it has emerged more seriously as an essential part to 
extend working time under the limited lifetime of a battery. 
Among various devices in a computer system, hard disks are 
the main source of power dissipation. Previous researches 
have shown that a hard disk can occupy 30% or more of the 
power consumed by typical computer systems [1], [2].  

To reduce the power consumption, a disk can be spun 
down when it is not in use. However, it is well-known that 
spinning a disk up consumes much power. If the spin-down 
time is shorter than spin-down cost [3], a disk consumes more 
power than keeping it spinning. The spin-down cost means 
the amount of time it should be spinning to consume as much 
as the power consumed by a spin-up. Therefore, it is a 
challenging problem to determine when a disk should be spun 
down. In the existing spin-down techniques [3], [4], static or 
dynamic time-out value is used to determine when to spin it 
down. When an idle time where there is no request to a disk is 
longer than the time-out value, a disk is spun down. 

 Recently, a new technology employing a non-volatile 
storage cache called NV cache in computer systems has been 
introduced [5], [6]. One of the main purposes of the NV cache 
is to reduce the power consumption of a hard disk by 
eliminating disk activity, ensuring reliability after an 
unexpected power failure. In several previous researches [7], 
[8], [9], [10], [11], [12], [13] it has been demonstrated that the 
NV cache is effective in reducing power consumption by 

eliminating disk activity. 
The NV cache is located at the block level as shown in Fig. 

1, and so existing file systems can be compatibly used [7]. 
The NV cache consists of a read-cache and a write-cache. The 
read/write requests from the file system pass through the 
block level hybrid-layer, which manages where the requests 
are serviced, what requests are prefetched into the NV cache, 
and what cached data are flushed to the disk. 

On a read request, if the requested data is in the NV cache, 
the read request is serviced by the NV cache. Otherwise, the 
request is serviced by the disk. If the read miss occurs during 
spin-down periods, the disk must be spun up. On a write 
request during spin-down periods, it can be simply redirected 
to the NV cache. The disk must be spun up only when there is 
no space for write buffering. 

In this paper, our approach is predicated on the observation 
that read requests can be frequently generated by running 
applications without user activity. In this case, it is difficult to 
maintain and to initiate the spin-down. To address these 
problems, we present two new techniques. First, we propose 
Active Write Caching (AWC) to reduce or to delay spin-ups 
caused by read misses through investigating read requests 
that become the cause of the spin-ups. Second, we propose a 
Read Miss-based spin-down Algorithm (RMA) that makes the 
disk spin down even when read requests frequently arrive, 
which is supported by AWC. The proposed techniques are 
compared with the preceding studies [7], [8] by using 
trace-based simulation. 

The rest of this paper proceeds as follows. Section II 
contains a brief survey of related work. Section III and IV 
describe the two main techniques in detail. Section V explains 
our experimental methodology. Section VI presents on 
simulation results that demonstrate the improvement caused 
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Fig. 1. The architecture of a hard disk with an NV cache
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by the proposed techniques, and Section VII concludes the 
paper. 

II. RELATED WORK 
In NVCache [7], NV cache management policies were 

proposed to extend spin-down periods. In the policies, the 
read-cache is filled with read requests while a disk is active. 
They investigated some read-cache policies, such as Least 
Recently Used (LRU), Least Frequently Used (LFU), and 
their combination. The write-cache accommodates write 
requests during spin-down periods. The data in the 
write-cache are ordered by insertion time and are flushed in a 
FIFO manner. 

Flushing Policies for an NV cache, which decrease the 
overhead of data synchronization, were proposed in [9]. In 
these policies, all the data of a write-cache are flushed to a 
disk only when the disk is spun up by write-cache fullness 
because flushing performance can be more improved by 
sorting and merging techniques. The sorting technique makes 
an array of requests, and the merging technique converts 
multiple requests into a single large request, to reduce disk 
access time.  

III. ACTIVE WRITE CACHING 

A. Background and Motivation 
Fig. 2 shows disk accesses for 12 hours without user 

activity on a Windows XP system. As shown in Fig. 2(a), 
there are few read requests during the period without running 
application. In this case, the spin-down performance can be 
guaranteed by write buffering with an NV cache. Fig. 2(b) 
illustrates the disk activity with four running user applications 
including web browser, e-mail client, messenger, and 
anti-virus program. We observed that read requests are 
frequently generated by the user applications. Unless the NV 
cache accommodates the read requests during spin-down 
periods, spin-ups are inevitable because most spin-ups are 
generated not by the write-cache fullness but by read misses 
[8], [9]. Accordingly, we need to populate the NV cache with 
data likely to be read during spin-down periods to reduce or to 
delay the spin-ups. 

In the previous studies [7], [8], [9] write requests are 
redirected to an NV cache only while a disk is spun down. 
The write request during active periods is defined as active 
write. If the active writes overlap with cached data, the 
overlapped data are removed from the NV cache. When the 
removed data are read during spin-down periods, we cannot 
avoid a read miss and consequently a spin-up. If such a case 
frequently occurs, the performance of a spin-down algorithm 
gets worse. 

We investigate the problem with four block level traces 
shown in Table 1. They are recorded from the desktops using 
Windows XP/Vista, with filter drivers. The Desk trace is 
collected from the desktop used mostly for desktop search, 
audio applications, and file downloads. The Soft trace is from 
the desktop used mostly for online games, electronic mail, 

and web browsing. The Doc trace is from the desktop used 
mostly for document work. The Web trace is from the desktop 
used mostly for web-based applications without user activity. 

We classify a read request into two types of read after read 
and read after write on the same sectors. Fig. 3 presents the 
ratio of read after write to all reads. Without storing the 
preceding write requests, the following read requests can 
bring read misses during spin-down periods. Accordingly, we 
investigated the spin-ups caused by the discarded active 
writes through the simulation based on the existing studies [7], 
[8], of which the implementation details will be explained in 
Section V. We also classify a read miss into two types of read 
miss after read and read miss after write on the same sectors. 
Whenever a read miss occurs during spin-down periods, we 
accumulate the number of read miss after write. As a 
simulation result, Fig. 4 shows the ratio of read miss after 
write to all read misses during spin-down periods according 
to the size of the NV cache. From the results of the Soft and 
Web traces with an NV cache of over 1GB, the ratio is over 
70%. Hence, to reduce read misses caused by the data written 
directly to a disk, or removed from the NV cache due to 
overlap, we need to store the active writes into the NV cache. 

B. Write-Cache Replacement Policy 
In our approach, all active writes are insertion candidates 

for a write-cache. The write-cache is operated as an LFU 
write-back cache because it reduces the amount of insertion 
into the NV cache and performs better than FIFO or LRU [7]. 
In addition, the number of write requests to the disk is 
significantly decreased compared with write-through cache. 
The frequency used in the LFU policy is the read access count 
collected from the history of all read requests.  

When an active write arrives, the overlapped data in the 
NV cache is first removed. Then the frequency of the active 

        
(a) Without a running user application

  
(b) With four running user applications 

 
Fig. 2. The disk accesses of Windows XP system without user activity 

 
Name OS / File System Duration Read / Write (GB)
Desk Win. XP / NTFS 7 days 12.1 / 47 
Soft Win. Vista / NTFS 7 days 53.2 / 45.5 
Doc Win. XP / NTFS 7 days 15.6 / 31.6 
Web Win. XP / NTFS 7 days 15.5 / 14.4 

 
Table 1. The summary of the four block level traces
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write is compared with the average frequency of the requests 
on victim blocks, which means erase blocks, in the 
write-cache. If its frequency is bigger than the victim, the 
victim blocks are flushed to the disk, and then the active write 
is stored into the write-cache. Otherwise, the active write is 
directly stored into the disk. 

C. Spin-Ups caused by Write-Cache Fullness 
In NVCache [7], when a disk is spun up, small empty space 

as much as the average amount of insertion during the recent 
N spin-down periods occupies the write-cache to avoid future 
spin-ups caused by write-cache fullness. To prevent the 
empty space of the write-cache from gradually getting 
smaller, the amount of the data flushed is increased by 25% 
when a spin-up is caused by write-cache fullness. Moreover, 
the empty space can become a bit larger during active periods 
because the write-cache is removed by overlap, decreasing 
the possibility of write-cache fullness.  

However, if active writes are stored into the write-cache, its 
capacity always becomes full up to the limit of the empty 
space, thereby increasing spin-ups caused by write-cache 
fullness. If whole read-cache space is allowed for additional 
write buffering during spin-down periods, the spin-ups will 
be significantly decreased. But the removed data of the 
read-cache can be the cause of read misses during the future 
spin-down periods. Therefore, in our approach, a maximum 
of 10% of the read-cache space is allowed to reduce spin-ups 
caused by write-cache fullness. In addition, to alleviate the 
loss of the removed read-cache, the read-cache data replaced 
by write buffering are selected by the read-cache replacement 
policy. 

D. Limited Lifetime of Flash Memory 
As an NV cache, NAND flash memory [14] is widely used 

since it provides large capacity, non-volatility and low power 
requirement considerably smaller than hard disks. It has, 
however, the limited program/erase cycles from 10K to 100K 
according to the type of NAND flash memory, and the 

lifetime of flash memory varies according to the amount of 
data inserted into the NV cache. In our approach, as the 
amount of insertion into the NV cache increases by storing 
active writes, its lifetime is likely to get shorter than the user’s 
expected lifetime. We need to, therefore, protect the lifetime 
of flash memory. 

The preceding research [8] suggested one method to ensure 
the expected lifetime by keeping the insertion bandwidth 
lower than the maximum bandwidth (MB/sec), which is 
computed by the predefined expected lifetime, e.g., 10 years. 
In our approach, we use the maximum rate of an erase 
operation (erase/sec) because it precisely protects the 
expected lifetime. When the erase rate exceeds 90% of the 
maximum rate, we stop prefetching read/write requests. Over 
the maximum rate, we also stop permitting a disk to spin 
down. 

IV. A READ MISS-BASED SPIN-DOWN ALGORITHM 

A. Background and Motivation 
In the existing spin-down algorithms for conventional 

disks [3], [4], an idle time is computed as current time - last 
access time, regardless of whether a request type is a read or a 
write, because they assume that any I/O is likely to cause a 
spin-up. In a hybrid-disk, through write buffering, write 
requests are not responsible for initiating spin-ups any more. 
Accordingly, in a Hybrid Disk-aware spin-down Algorithm 
(HDA) [8], it is proposed that the idle time should be 
computed as current time – last read access time and reset 
only on a read request.  

With few read requests as shown in Fig. 2(a), the hybrid 
disk-aware spin-down algorithm can perform better than 
traditional algorithms. However, if read requests frequently 
arrive as shown in Fig. 2(b), it is difficult even to initiate the 
spin-down while the interval time between read requests is 
shorter than the time-out value, which is defined as short 
interval duration, considering that the idle time is reset at 
every read request.  

We investigated the short interval duration with four block 
level traces shown in table 1. Fig. 5 represents the ratio of the 
short interval duration relative to total duration according to 
the time-out value. In all the traces, the rate is over 10% even 
when the time-out value is configured as small 5 seconds. 
When configured as 30 or 60 seconds, the ratio considerably 
grows up, and the problem gets worse.  

B. Idle Time Computed by Read Miss 
We propose a new spin-down policy, which is called RMA, 

to make a disk spin down even when read requests frequently 
arrive. In RMA, the idle time is computed as current time - 
last read miss time. This policy makes the disk spin down 
earlier than HDA, and its profit and loss is determined by 
whether the following read requests are hits or not within the 
spin-down cost. For example, Fig. 6(a) shows the case that 
RMA performs better than HDA. Using RMA, the disk is 
spun down after the time-out from the first read miss. In 
addition, the spin-down state is maintained since the 
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Fig. 3. The ratio of read after write to all reads
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following three read requests are all hits. Therefore, the 
earlier-initiated spin-down period is truly profitable. 
Conversely, as shown in Fig. 6(b), if the following read 
requests after spun down are misses, a disk must be spun up 
shortly, thereby consuming more power than keeping the disk 
spinning.  

Thus, if numerous spin-ups are generated by the read 
misses, it is better not to spin it down with respect to the 
spin-down cost. But if the read requests are sufficiently 
satisfied by the NV cache, which is supported by AWC, we 
can point out that we still have opportunities to enhance the 
performance of the spin-down algorithm. In addition, 
although there may be loss caused by using RMA, the amount 
of the loss can be reduced gradually as the read hit ratio 
increases. In Section VI, the profit and the loss are 
investigated in detail. 

V. IMPLEMENTATION 
We implemented a trace-based simulator to measure the 

power consumption of a hard disk and flash memory. As 
summarized in table 2, Hitachi Travelstar 7K200 hard drive 
[15] and Compact Flash Memory Card specifications [16] 
were used. On a read/write request, the power consumption 
was calculated with the disk’s maximum I/O rate, and seek 
power was computed by average seek time when a request is 
not sequential. The expected lifetime of the flash memory 
was configured as 10 years.   

A frequency history for LFU replacement policy is 
collected from all read requests composed of a sector address 
and length. But assigning a read count to each request [7] is 
likely to be incorrect, considering that the sector address and 
length of the request is variable. Hence, in our 
implementation, we assign read count to each sector group, 
which is composed of 8 sectors, and the history information is 
maintained as a hash table for fast access in main memories. 

The time-out value is computed by a dynamic disk 
spin-down technique [3]. The algorithm is based on machine 
learning technique that has excellent performance in practice. 
The algorithm consists of N experts. Each expert has its own 
weight and fixed time-out value evenly spaced between 0 and 
the disk’s spin-down cost, 8.25, which is computed by the 
specification in Table 2. On each idle time, all experts with 
own fixed time-out value decide whether the disk should be 
spun down or not. According to the energy benefits of each 
trial, the expert’s weight is updated. The algorithm uses the 
weighted average of the expert’s fixed time-out value as the 
time-out value.  

VI. EVALUATION 
To evaluate the performance of the proposed ideas, AWC 

and RMA, our techniques are compared with the combination 
of NVCache [7] and HDA [8]. Basically, the NV cache is 
equally divided for a read-cache and a write-cache, of which 
the replacement policy is LFU.  

Fig. 7 shows the average number of read hits satisfied by 
the NV cache per spin-down period with the four block level 
traces previously mentioned, and HDA is used as a spin-down 
algorithm. When AWC is applied, it increases the read hits 
during spin-down periods, and so reduces spin-ups. In our 
approach, the spin-ups caused by write-cache fullness are also 
reduced because up to 10% of the read-cache is available for 
additional write buffering.  

In the results of all traces as shown in Fig.7, the 
improvement enlarges as the NV cache size increases, and 
there are two main reasons. First, the amount of AWC 
restricted for protecting the expected lifetime is reduced as 
the maximum erase rate becomes larger according to the NV 
cache size. Second, the available space for additional write 
buffering becomes larger according to the increment of NV 
cache size, thus considerably decreasing the number of 
spin-ups caused by write-cache fullness. 

Fig. 8 shows the ratio of the spin-down duration relative to 
the total duration according to the NV cache size. Using 
AWC, the extended spin-down periods are caused by the 
reduced number of read misses during the spin-down periods. 
If RMA is additionally applied, the spin-down periods are 
more extended by the earlier-initiated spin-down periods. In 
particular, the significant improvement of the result with the 

 
(a) The case where RMA performs better than HDA 

 

 
(b) The case where RMA performs worse than HDA 

 
Fig. 6. RMA vs. HDA 

 
 2.5 inch Hard drive Compact Flash 

Read / Write 2.3W 0.17 / 0.21W
Seek 2.6W -
Idle 2W 3.3mW

Standby 0.25W 3.3mW
Spin-up (Time) 5.5W (3sec) -

Capacity 80GB – 200GB 512MB – 16GB
 
Table 2. The characteristics of a hard disk (Hitachi Travelstar 7K200 [15]) 
and an NV cache (Compact Flash Memory Card [16]) 
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Desk trace is caused by two interesting characteristics. First, 
it has not only many read after write request patterns shown 
in Fig. 3 but also many write after read request patterns on the 
same sectors, compared with the other traces. Therefore, 
without AWC, the newly stored read requests are likely to be 
removed by the following write requests, thereby generating 
read misses on the sectors. By using AWC, the read hit ratio is 
significantly increased, e.g., from 9.32% to 67.51% with the 
only 256MB NV cache. Second, its short interval duration is 
longer than the other traces at a lower time-out value, as 
shown in Fig. 5. Hence, it has the largest improvement by 
using both RMA and AWC. 

To compare RMA with HDA in terms of the energy benefit, 
we measure the decreased or increased amount of power 
consumption. The decreased power consumption means the 
profit of RMA relative to HDA. Conversely, the increased 
power consumption means the loss of RMA relative to HDA. 
Basically, the simulation is performed with RMA and AWC, 
and the profit/loss is computed and accumulated at every 
spin-up. Table 3 represents P-L, P/L, and the average ratio of 
a read hit. P-L means the profit minus the loss relative to the 
power consumed by using HDA and AWC, and P/L means 

the ratio of the profit to the loss. In most cases, the amount of 
the P-L enlarges as the read hit ratio increases. Although the 
profit is lower than the loss in the Web trace with a 128MB 
and a 256MB NV cache, its degradation is not serious. 

Fig. 9 shows the power consumption relative to the power 
consumed by the disk always spinning. The reduced power 
consumption is up to 50.1% of the power consumed by the 
combination of NVCache [7] and HDA [8] with a 512MB NV 
cache using the Desk trace. The amount of the reduced power 
consumption enlarges as the NV cache size increases because 
both AWC and RMA are more effective with the larger size 
of the NV cache.  

VII. CONCLUSIONS 
Our goal was to reduce the power consumption of a hard 

disk by exploiting NV cache effectively. We investigated the 
two main problems of the existing policies when read 
requests are frequently generated by background system 
services and running applications without user activity. First, 
many spin-ups were caused by read misses on the data of 
discarded active writes. Second, the idle time is reset at every 
read request, and a disk cannot be spun down. 

   
         Fig. 7. The average number of read hits per spin-down period 

 
 

 
 

Fig. 8. The spin-down duration relative to the total duration 
 

NVcache 
Size 

Desk Soft Doc Web 
P-L (%) P/L Hit (%) P-L (%) P/L Hit (%) P-L (%) P/L Hit (%) P-L (%) P/L Hit (%)

128MB 12.8 173.2 35.3 0.2 1.8 15.0 0.0  1.0 9.1 -0.2 0.7 34.2 
256MB 31.8 267.0 67.0 0.2 1.6 18.1 0.3 1.8 14.9 -0.2 0.8 44.6 
512MB 39.6 310.2 79.0 0.3 1.7 22.9 3.4 3.8 24.7 1.0 1.6 61.7 
1GB 41.0 280.5 82.4 0.3  1.6 30.8 14.7 24.4 43.2 2.9 2.4 80.3 
2GB 41.4 235.0 87.6 0.3  1.5 46.5 13.0 21.3 62.4 5.9 3.9 88.6 
4GB 44.5 277.2 91.5 0.5  1.8 69.4 13.4 21.7 74.8 6.7 4.7 92.0 
8GB 45.5 295.3 94.0 0.8  2.3 84.3 11.3 22.6 80.5 7.6 6.5 94.1 

 
Table 3. The comparison of RMA and HDA with respect to the energy profit (P) and loss (L) 
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In this paper, two new NV cache policies were proposed to 
handle the problems. First, an Active Write Caching 
technique was presented to reduce or to delay spin-ups caused 
by read misses. In this technique, active writes are stored into 
the write-cache using the LFU replacement policy, protecting 
the expected lifetime of the NV cache. Second, a Read 
Miss-Based Spin-Down Algorithm that computes the idle time 
from a read miss was proposed to make the disk spin down 
even when read requests frequently arrive. When both 
techniques were applied, the power consumption of the hard 
disk was reduced by up to 50.1% with 512MB NV cache, 
compared with the preceding approaches. 
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Fig. 9. Power consumption relative to the power consumed by a hard disk always spinning 
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