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Abstract 

It becomes more and more interesting to construct mul- 
tithreaded parallel machines using stock processors due to 
their high pe@ormance/price ratio. Howevel; no quantita- 
tive analysis has been reported on the effectiveness of var- 
ious node conjgurations and its impact on the overall per- 
formance. In this papel; we explore three different node 
conjigurations in detail and compare their dynamic char- 
acteristics through the instruction-level simulation with six 
benchmark programs. Our experiments show that employ- 
ing a dedicated processor for communication and synchro- 
nization is a reasonable approach because it can almost 
double the performance. Several factors that limit the over- 
all speedup are also presented. 

1. Introduction 

Large-scale parallel computers are expected to have 
communication latencies of several tens to hundreds of pro- 
cessor cycles. The latency becomes a problem if the proces- 
sor spends a large fraction of computation time sitting idle 
waiting for remote operations to complete. Multithreading 
has been proposed as a basic mechanism for future parallel 
systems due to its inherent ability to tolerate communica- 
tion latency. Multithreading allows a processor to hide la- 
tency by switching from one thread to another when a long 
latency operation is encountered. 

Traditionally, multithreaded architecture efforts tried to 
redesign substantial part of the processing unit in order to 
take full advantage of the multithreaded execution model 
and to minimize overheads. However, microprocessor per- 
formance is advancing at a rate of 50 to 100% per year [3] 

*This work was supported in part by the Korea Science and Engineering 
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and this trend still appears to be possible for the next few 
years. Because microprocessors are produced in very high 
volumes, their development costs can be easily amortized. 
Better performance/price ratio of such microprocessors al- 
ready led Intel, Thinking Machines, Meiko, Convex, IBM 
and even Cray Research to use stock microprocessors in 
their new parallel machines. Therefore, it becomes more 
and more interesting to construct multithreaded parallel ma- 
chines using stock processors that can tolerate latency. 

As stock processors are not tuned for either parallel pro- 
cessing nor multithreading in general, they sometimes lack 
desirable features which should be added outside of the pro- 
cessor. Support for fast communication is a good example. 
It is essential in fine-grain multithreading to handle a large 
number of messages in an efficient way so that computa- 
tion and communication could be overlapped. For this rea- 
son, some approaches are using a dedicated communication 
processor, separate from the main processor. However, no 
quantitative analysis has been reported on the effectiveness 
of employing the communication processor and its impact 
on the overall performance. In this paper, we explore three 
different node configurations in detail and compare their dy- 
namic characteristics through the instruction-level simula- 
tion with six benchmark programs. 

This paper is organized as follows. Section 2 introduces 
TAM, the multithreading model that this paper is based on. 
Section 3 shows our experimental methodologies and sec- 
tion 4 presents the results of the experiments. Section 5 
concludes the paper. 

2. Fine-grain Multithreading on Stock Proces- 
sors 

Our work is largely based on the TAM (Threaded Ab- 
stract Machine) model [4]. The TAM model allows us to 
construct multithreaded architectures using stock proces- 
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(a) S-CFG 

fib 20 361 
qs 500 2773 

"t44 100.0 3964 
paraffins 17 10324 

(b) D-CFG 

373 1.88 
2984 16.65 
4547 25.93 
11580 66.90 

I- I 

speech 
dtw 

(c) C-CFG 

1024030 6766 7523 45.98 
100.0 3500 3878 24.62 

Figure 1. Node configurations under consideration 

sors because it does not assume any hardware support for 
multithreading. In the TAM model, all synchronization, 
scheduling and storage management are explicit in the ma- 
chine language and under compiler control. 

A TAM program consists of a collection of code blocks, 
which typically represents functions or loop bodies. A code 
block is compiled into a set of inlets and threads. Inlets are 
short message handlers that receive arguments and threads 
are sequences of code corresponding to the body of the 
code block. When a code block is invoked, a frame is al- 
located for storage of arguments, local variables, and a list 
of ready threads associated with the frame. When an inlet is 
executed, it typically writes the incoming value(s) into the 
frame and posts a dependent thread. 

When a frame is activated, the list of ready threads is re- 
garded as the local continuation vector (LCV). Any thread 
that forks other threads within the code block does so by 
placing them in the LCV. Threads are fetched and executed 
from the LCV until none remain, after which frame switch- 
ing is performed. The set of threads executed in a single 
frame activation is called a quantum. The original TAM 
model provides special enter and leave threads that are in- 
tended to take advantage of the locality among multiple 
threads in a scheduling quantum, but the optimization has 
not been implemented in the TAM compiler. 

Global data structures in TAM are based on I- 
structure [2] semantic, which provides synchronization on 
a per-element basis. Accesses to the data structures are 
split-phase and are performed via special instructions such 
as i f e t c h a n d  istore. 

There have been already many research projects to im- 
plement fine-grain multithreaded architectures using stock 
processors such as MTA(EARTH) [7 ] ,  DAVRTD i61, and 
*T-NG [l]. All those architectures were based on the exe- 
cution model which is very similar to the TAM. 

In this paper, we consider three node configurations as 
shown in figure 1. In S-CFG, each node consists of a data 
processor(DP), memory(M), and a network interface(I/F), 
while there is an additional synchronization processor(SP) 
in D-CFG. SP is a dedicated processor for the handling of 

incoming and outgoing messages and synchronizations. In 
S-CFG, both communication and synchronization tasks are 
handled by DP. Also if the load of SP is sufficiently low, 
it would be possible to associate two DPs with one SP, as 
shown in figure l(c). Detailed simulation results will be 
presented in section 4. 

3. Methodology 

We have constructed an instruction-level simulator to 
evaluate the efficiency of three node configurations. The 
simulator was originally based on SPIM [8], an instruction- 
level simulator for MIPS instruction set, and was extended 
to parallel and multithreaded environments using a com- 
mercial event-driven simulator, SEUWorkbench [ 101. Our 
simulator accepts a program written in MIPS assembly lan- 
guage, and all the events generated during execution of the 
program are scheduled using SESWorkbench. The power- 
ful graphical user-interface of SESrWorkbench allows us to 
build and change architecture models in a relatively short 
time. The simulator can be used for parallel machines con- 
sisting of up to 256 nodes. 

Table 1. Benchmark programs 

Assembly Code size 1 Benchmarks I Arguments I TLOlines I lines I (KB) I 

Table 1 shows arguments and program sizes of six 
benchmark programs used in the experiments. f i b  com- 
putes the Fibonacci numbers using recursions. qs is a sim- 
ple quick-sort program using accumulation lists. mmt 44  
multiplies two matrices of floating-point numbers and sums 
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Table 2. Dynamic scheduling characteristics for 4 nodes in S-CFG and D-CFG. 

Frames 
TF S F  Q Benchmarks Conf. 

S 21892 47100 2.15 
D 21892 73666 3.36 
S 3005 38739 12.89 

qs D 3005 45121 15.01 
S 58 45162 778.66 
D 58 72886 1256.66 

fib 

"t44 

Threads Inlets 
TT QT LT TI LI 

291215 6.18 17.28 109456 21.95 
344350 4.67 14.89 109456 23.20 
224160 ,579 19.78 54447 19.10 
236927 5.25 18.18 54447 20.00 
165529 3.67 199.14 508381 12.06 
220980 3.03 151.52 508381 12.44 

S 
D 
S 
D 
S 
D 

paraffins 

speech 

dtw 

all elements of the product matrix. paraffins enumer- 
ates the distinct isomers of paraffins. speech determines 
cepstral coefficients for speech processing. And d t w  im- 
plements a dynamic time warp algorithm used in discrete 
word speech recognition. These applications are originally 
written in Id, and compiled to TLO programs by the TAM 
group'. TLO is an intermediate language defined in the 
TAM model. 

TLO programs are first converted to MIPS assembly 
codes by a translator. The generated code consists of MIPS 
instructions, assembly directives and several system calls. 
System calls are used to transfer the control to the run-time 
system for some multithreading primitives. Previous ap- 
proaches [5, 111 translated TLO programs to C programs 
and ran them on commercial parallel machines such as CM- 
5. The proposed approach differs in that we have translated 
TLO programs to native CPU instructions for the evaluation 
of fine-grain multithreading. 

In our experiments, we assume users can access the net- 
work interface directly in memory-mapped style for low- 
overhead communication. The network has a uniform com- 
munication latency of 100 cycles. I-structures are dis- 
tributed over nodes and LCV is implemented as a stack. 
Also polling mechanism is assumed instead of interrupt to 
accept messages when there is no SP. 

1810 178090 98.39 1541545 8.66 32.63 496358 14.87 
1810 343062 189.54 1871492 5.46 27.28 496358 17.49 
3619 323438 89.37 1153479 3.57 63.76 1602582 13.39 
3619 432557 119.52 1371720 3.17 51.48 1602582 13.85 ' 

801 779782 973.51 2740761 3.51 41.13 2068601 15.15 
801 1026785 1281.88 3234770 3.15 34.00 2068601 15.98 

4. Results 

Figure 2 shows overall speedup for the benchmark pro- 
grams from 1 to 32 nodes with respect to the total execution 
time of a single node in S-CFG. We see that C-CFG has very 

'They are freely available by anonymous ftp at f tp : / / f tp . cs . 
berkeley.edu/ucb/TAM/idtam-O.3.tar.Z 

little benefit compared with D-CFG, while D-CFG almost 
doubles the performance of S-CFG in unsaturated region. 

The speedup is closely related to the processor utiliza- 
tion, which is shown in figure 3. The average utilization 
of DPs decreases as the number of nodes increases, mean- 
ing that processor idle time increases because there are not 
enough threads to cover communication latencies. In fig- 
ure 3, we can observe that the utilization of SP in C-CFG is 
roughly the same with that of SP in D-CFG except for fib 
and gs. This means that SPs in both configurations have 
almost the same loads playing as a bottleneck. Therefore, 
it is natural that the utilization of DP in C-CFG be almost 
half of that of DP in D-CFG, because two DPs are attached 
to one SP in C-CFG. Although the utilization of S-CFG is 
slightly higher than those of DP and SP in D-CFG, it does 
not necessarily imply S-CFG is more efficient than D-CFG 
because parts of processor cycles are spent to poll the net- 
work interface at the end of every thread in S-CFG. 

Table 2 shows the dynamic characteristics of the bench- 
mark programs for 4 nodes in S-CFG and D-CFG. TF,  TT, 
and TI in the table mean the total number of frames, threads 
and inlets, respectively. SF stands for the total number of 
scheduled frames. The ratio of SF and TF means the av- 
erage number of quanta in a frame, which is represented as 
Q. QT is the average number of threads in a quantum and 
LT and LI are the average length of a thread and that of an 
inlet in cycles, respectively. 

The total number of frame scheduling is increased by 
about 48% in D-CFG by employing an SP. In S-CFG, a 
thread posted from an inlet can be put into LCV, if it be- 
longs to the current frame. However it is impossible in D- 
CFG, because we assume LCV is not shared between DP 
and SP. Instead, thread continuations posted from inlets are 
recorded into the frame memory, which explains the slight 
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Messa! le Ratio 

fib qs SP 

not be a bottleneck to each other. 
In the experiments, the utilization of SP has been higher 

than or comparable to that of DP in D-CFG. Although our 
experiments assume the same power of DP and SP, there is 
an approach to use ASIC chips for the functionality of SP 
instead of stand-alone processors [7]. For such an approach 
to remain viable, the number of messages should be signif- 
icantly reduced. The experimental results also suggest that 
we should pay special attention to the I-structure accesses, 
which tend to decide the total number of messages. It is also 
desirable to share LCV between DP and SP for D-CFG to 
reduce the frame scheduling overheads. But this would re- 
quire complex hardwares due to the atomicity problem [9]. dtw 

Figure 4. Classification of message traffics References 

increment of LI  in D-CFG. The increment in TT is due to 
enter and leave threads, which are executed at the beginning 
and at the end of each frame activation. 

We can take the ratio of the utilization of DP and SP 
in D-CFG as the ratio of computation and communication 
for the corresponding benchmark program. Higher utiliza- 
tion of DP (SP) means that the application is computation 
(communication)-bounded. From figure 3, fib and qs are 
examples of computation-bounded applications and the oth- 
ers of communication-bounded ones. This insight is appar- 
ent from table 2 where the number of messages (= T I )  of 
fib and qs is relatively small compared with other pro- 
grams. 

Figure 4 shows the classification of message traffics in 
each program. Messages used for allocating new frames, 
sending arguments or results, and accessing I-structures are 
labeled as FALLOC, User, and I-struct, respectively. 
In figure 4, it is clear that the large number of messages in 
mmt44, paraffins, speech, and dtw comes from I- 
structure accesses. Therefore we conjecture that I-structure 
accesses occupy a large fraction of total messages in most 
applications, and this communication intensiveness is a ma- 
jor factor that limits the overall speedup. 

5. Concluding Remarks 

In this paper, we have evaluated three different node con- 
figurations for fine-grain multithreading on stock proces- 
sors. Our experiments have shown that attaching more than 
one DP to an SP as is done in C-CFG does not improve 
performance because SP becomes a bottleneck. However it 
seems reasonable to have a dedicated processor for handling 
communication and synchronization since such a configura- 
tion almost doubles the performance. It is important to bal- 
ance computation and communication so that one should 
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