
Evaluation of Various Node Configurations
for Fine-grain Multithreading on Stock Processors*

Jin-Soo Kim Soonhoi Ha Chu Shik Jhon

Seoul National University
Department of Computer Engineering

Seoul 15 1-742, KOREA
{jinsoo, sha, csjhon} @comp.snu.ac.kr

Abstract

It becomes more and more interesting to construct mul-
tithreaded parallel machines using stock processors due to
their high pe@ormance/price ratio. Howevel; no quantita-
tive analysis has been reported on the effectiveness of var-
ious node conjgurations and its impact on the overall per-
formance. In this papel; we explore three different node
conjigurations in detail and compare their dynamic char-
acteristics through the instruction-level simulation with six
benchmark programs. Our experiments show that employ-
ing a dedicated processor for communication and synchro-
nization is a reasonable approach because it can almost
double the performance. Several factors that limit the over-
all speedup are also presented.

1. Introduction

Large-scale parallel computers are expected to have
communication latencies of several tens to hundreds of pro-
cessor cycles. The latency becomes a problem if the proces-
sor spends a large fraction of computation time sitting idle
waiting for remote operations to complete. Multithreading
has been proposed as a basic mechanism for future parallel
systems due to its inherent ability to tolerate communica-
tion latency. Multithreading allows a processor to hide la-
tency by switching from one thread to another when a long
latency operation is encountered.

Traditionally, multithreaded architecture efforts tried to
redesign substantial part of the processing unit in order to
take full advantage of the multithreaded execution model
and to minimize overheads. However, microprocessor per-
formance is advancing at a rate of 50 to 100% per year [3]

*This work was supported in part by the Korea Science and Engineering
Foundation (KOSEF) under contract No. 951-091C126-2.

and this trend still appears to be possible for the next few
years. Because microprocessors are produced in very high
volumes, their development costs can be easily amortized.
Better performance/price ratio of such microprocessors al-
ready led Intel, Thinking Machines, Meiko, Convex, IBM
and even Cray Research to use stock microprocessors in
their new parallel machines. Therefore, it becomes more
and more interesting to construct multithreaded parallel ma-
chines using stock processors that can tolerate latency.

As stock processors are not tuned for either parallel pro-
cessing nor multithreading in general, they sometimes lack
desirable features which should be added outside of the pro-
cessor. Support for fast communication is a good example.
It is essential in fine-grain multithreading to handle a large
number of messages in an efficient way so that computa-
tion and communication could be overlapped. For this rea-
son, some approaches are using a dedicated communication
processor, separate from the main processor. However, no
quantitative analysis has been reported on the effectiveness
of employing the communication processor and its impact
on the overall performance. In this paper, we explore three
different node configurations in detail and compare their dy-
namic characteristics through the instruction-level simula-
tion with six benchmark programs.

This paper is organized as follows. Section 2 introduces
TAM, the multithreading model that this paper is based on.
Section 3 shows our experimental methodologies and sec-
tion 4 presents the results of the experiments. Section 5
concludes the paper.

2. Fine-grain Multithreading on Stock Proces-
sors

Our work is largely based on the TAM (Threaded Ab-
stract Machine) model [4]. The TAM model allows us to
construct multithreaded architectures using stock proces-

0-8186-7901-8197 $10.00 0 1997 IEEE
349

(a) S-CFG

fib 20 361
qs 500 2773

"t44 100.0 3964
paraffins 17 10324

(b) D-CFG

373 1.88
2984 16.65
4547 25.93
11580 66.90

I- I

speech
dtw

(c) C-CFG

1024030 6766 7523 45.98
100.0 3500 3878 24.62

Figure 1. Node configurations under consideration

sors because it does not assume any hardware support for
multithreading. In the TAM model, all synchronization,
scheduling and storage management are explicit in the ma-
chine language and under compiler control.

A TAM program consists of a collection of code blocks,
which typically represents functions or loop bodies. A code
block is compiled into a set of inlets and threads. Inlets are
short message handlers that receive arguments and threads
are sequences of code corresponding to the body of the
code block. When a code block is invoked, a frame is al-
located for storage of arguments, local variables, and a list
of ready threads associated with the frame. When an inlet is
executed, it typically writes the incoming value(s) into the
frame and posts a dependent thread.

When a frame is activated, the list of ready threads is re-
garded as the local continuation vector (LCV). Any thread
that forks other threads within the code block does so by
placing them in the LCV. Threads are fetched and executed
from the LCV until none remain, after which frame switch-
ing is performed. The set of threads executed in a single
frame activation is called a quantum. The original TAM
model provides special enter and leave threads that are in-
tended to take advantage of the locality among multiple
threads in a scheduling quantum, but the optimization has
not been implemented in the TAM compiler.

Global data structures in TAM are based on I-
structure [2] semantic, which provides synchronization on
a per-element basis. Accesses to the data structures are
split-phase and are performed via special instructions such
as i f e t c h a n d istore.

There have been already many research projects to im-
plement fine-grain multithreaded architectures using stock
processors such as MTA(EARTH) [7] , DAVRTD i61, and
*T-NG [l]. All those architectures were based on the exe-
cution model which is very similar to the TAM.

In this paper, we consider three node configurations as
shown in figure 1. In S-CFG, each node consists of a data
processor(DP), memory(M), and a network interface(I/F),
while there is an additional synchronization processor(SP)
in D-CFG. SP is a dedicated processor for the handling of

incoming and outgoing messages and synchronizations. In
S-CFG, both communication and synchronization tasks are
handled by DP. Also if the load of SP is sufficiently low,
it would be possible to associate two DPs with one SP, as
shown in figure l(c). Detailed simulation results will be
presented in section 4.

3. Methodology

We have constructed an instruction-level simulator to
evaluate the efficiency of three node configurations. The
simulator was originally based on SPIM [8], an instruction-
level simulator for MIPS instruction set, and was extended
to parallel and multithreaded environments using a com-
mercial event-driven simulator, SEUWorkbench [101. Our
simulator accepts a program written in MIPS assembly lan-
guage, and all the events generated during execution of the
program are scheduled using SESWorkbench. The power-
ful graphical user-interface of SESrWorkbench allows us to
build and change architecture models in a relatively short
time. The simulator can be used for parallel machines con-
sisting of up to 256 nodes.

Table 1. Benchmark programs

Assembly Code size 1 Benchmarks I Arguments I TLOlines I lines I (KB) I

Table 1 shows arguments and program sizes of six
benchmark programs used in the experiments. f i b com-
putes the Fibonacci numbers using recursions. qs is a sim-
ple quick-sort program using accumulation lists. mmt 44
multiplies two matrices of floating-point numbers and sums

350

Table 2. Dynamic scheduling characteristics for 4 nodes in S-CFG and D-CFG.

Frames
TF S F Q Benchmarks Conf.

S 21892 47100 2.15
D 21892 73666 3.36
S 3005 38739 12.89

qs D 3005 45121 15.01
S 58 45162 778.66
D 58 72886 1256.66

fib

"t44

Threads Inlets
TT QT LT TI LI

291215 6.18 17.28 109456 21.95
344350 4.67 14.89 109456 23.20
224160 ,579 19.78 54447 19.10
236927 5.25 18.18 54447 20.00
165529 3.67 199.14 508381 12.06
220980 3.03 151.52 508381 12.44

S
D
S
D
S
D

paraffins

speech

dtw

all elements of the product matrix. paraffins enumer-
ates the distinct isomers of paraffins. speech determines
cepstral coefficients for speech processing. And d t w im-
plements a dynamic time warp algorithm used in discrete
word speech recognition. These applications are originally
written in Id, and compiled to TLO programs by the TAM
group'. TLO is an intermediate language defined in the
TAM model.

TLO programs are first converted to MIPS assembly
codes by a translator. The generated code consists of MIPS
instructions, assembly directives and several system calls.
System calls are used to transfer the control to the run-time
system for some multithreading primitives. Previous ap-
proaches [5, 111 translated TLO programs to C programs
and ran them on commercial parallel machines such as CM-
5. The proposed approach differs in that we have translated
TLO programs to native CPU instructions for the evaluation
of fine-grain multithreading.

In our experiments, we assume users can access the net-
work interface directly in memory-mapped style for low-
overhead communication. The network has a uniform com-
munication latency of 100 cycles. I-structures are dis-
tributed over nodes and LCV is implemented as a stack.
Also polling mechanism is assumed instead of interrupt to
accept messages when there is no SP.

1810 178090 98.39 1541545 8.66 32.63 496358 14.87
1810 343062 189.54 1871492 5.46 27.28 496358 17.49
3619 323438 89.37 1153479 3.57 63.76 1602582 13.39
3619 432557 119.52 1371720 3.17 51.48 1602582 13.85 '

801 779782 973.51 2740761 3.51 41.13 2068601 15.15
801 1026785 1281.88 3234770 3.15 34.00 2068601 15.98

4. Results

Figure 2 shows overall speedup for the benchmark pro-
grams from 1 to 32 nodes with respect to the total execution
time of a single node in S-CFG. We see that C-CFG has very

'They are freely available by anonymous ftp at f tp : / / f tp . cs .
berkeley.edu/ucb/TAM/idtam-O.3.tar.Z

little benefit compared with D-CFG, while D-CFG almost
doubles the performance of S-CFG in unsaturated region.

The speedup is closely related to the processor utiliza-
tion, which is shown in figure 3. The average utilization
of DPs decreases as the number of nodes increases, mean-
ing that processor idle time increases because there are not
enough threads to cover communication latencies. In fig-
ure 3, we can observe that the utilization of SP in C-CFG is
roughly the same with that of SP in D-CFG except for fib
and gs. This means that SPs in both configurations have
almost the same loads playing as a bottleneck. Therefore,
it is natural that the utilization of DP in C-CFG be almost
half of that of DP in D-CFG, because two DPs are attached
to one SP in C-CFG. Although the utilization of S-CFG is
slightly higher than those of DP and SP in D-CFG, it does
not necessarily imply S-CFG is more efficient than D-CFG
because parts of processor cycles are spent to poll the net-
work interface at the end of every thread in S-CFG.

Table 2 shows the dynamic characteristics of the bench-
mark programs for 4 nodes in S-CFG and D-CFG. TF, TT,
and TI in the table mean the total number of frames, threads
and inlets, respectively. SF stands for the total number of
scheduled frames. The ratio of SF and TF means the av-
erage number of quanta in a frame, which is represented as
Q. QT is the average number of threads in a quantum and
LT and LI are the average length of a thread and that of an
inlet in cycles, respectively.

The total number of frame scheduling is increased by
about 48% in D-CFG by employing an SP. In S-CFG, a
thread posted from an inlet can be put into LCV, if it be-
longs to the current frame. However it is impossible in D-
CFG, because we assume LCV is not shared between DP
and SP. Instead, thread continuations posted from inlets are
recorded into the frame memory, which explains the slight

351

64

32

16
n
U
1 8
a In

4

2

1

Speedup (fib 20)
32

16

n 8

m 4

U

0 n

2

1

Speedup (qs 500)

Speedup (mmt44 100.0)

Number of Nodes

Figure 2. Speedup

352

Processor Utilization (fib 20)
1

08

06

S-GFG +
DGFG (DP) -t-
D-CFG(SP 0
C-CFG(DP1 x
GCFG(SP) 6- I

0' I 4

1 2 4 6 16 32
Number of Nodes

Processor Utilization (mmt44 100.0)

Processor Utilization (speech 10240 30)
1

0.8

0.6

0.4

0.2

0

0' , I I I

1 2 4 8 16 32
Number of Nodes

1

0.8

0.6

0.4

0.2

0

Processor Utilization (

... .

I I I
1 2 4

Number of Nc

raffins 17)

S-CFG +
D-CPG (DP) -+-
C-CFG{DPJ D-CFG SP t3 x

C-CFG(SP) -9

\, . ---
... ,. .

. x-

I I
16 32

S

Processor Utilization (dtw 100.0)

Number of Nodes

Figure 3. Processor utilization

353

Messa! le Ratio

fib qs SP

not be a bottleneck to each other.
In the experiments, the utilization of SP has been higher

than or comparable to that of DP in D-CFG. Although our
experiments assume the same power of DP and SP, there is
an approach to use ASIC chips for the functionality of SP
instead of stand-alone processors [7]. For such an approach
to remain viable, the number of messages should be signif-
icantly reduced. The experimental results also suggest that
we should pay special attention to the I-structure accesses,
which tend to decide the total number of messages. It is also
desirable to share LCV between DP and SP for D-CFG to
reduce the frame scheduling overheads. But this would re-
quire complex hardwares due to the atomicity problem [9]. dtw

Figure 4. Classification of message traffics References

increment of LI in D-CFG. The increment in TT is due to
enter and leave threads, which are executed at the beginning
and at the end of each frame activation.

We can take the ratio of the utilization of DP and SP
in D-CFG as the ratio of computation and communication
for the corresponding benchmark program. Higher utiliza-
tion of DP (SP) means that the application is computation
(communication)-bounded. From figure 3, fib and qs are
examples of computation-bounded applications and the oth-
ers of communication-bounded ones. This insight is appar-
ent from table 2 where the number of messages (= T I) of
fib and qs is relatively small compared with other pro-
grams.

Figure 4 shows the classification of message traffics in
each program. Messages used for allocating new frames,
sending arguments or results, and accessing I-structures are
labeled as FALLOC, User, and I-struct, respectively.
In figure 4, it is clear that the large number of messages in
mmt44, paraffins, speech, and dtw comes from I-
structure accesses. Therefore we conjecture that I-structure
accesses occupy a large fraction of total messages in most
applications, and this communication intensiveness is a ma-
jor factor that limits the overall speedup.

5. Concluding Remarks

In this paper, we have evaluated three different node con-
figurations for fine-grain multithreading on stock proces-
sors. Our experiments have shown that attaching more than
one DP to an SP as is done in C-CFG does not improve
performance because SP becomes a bottleneck. However it
seems reasonable to have a dedicated processor for handling
communication and synchronization since such a configura-
tion almost doubles the performance. It is important to bal-
ance computation and communication so that one should

[l] B. S. Ang, Arvind, and D. Chiou. StarT the Next Genera-
tion: Integrating Global Caches and Dataflow Architectures.
Technical Report CSG Memo 354, MIT, Feb. 1994.

[2] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data
Structures for Parallel Computing. Technical Report CSG
Memo 269, MIT, Feb. 1987.

[3] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP: To-
wards a Realistic Model of Parallel Computation. In Proc.
4th ACM SIGPLAN Symp. on Principles & Practices of Par-
allel Programming, pages 1-12, 1993.

[4] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von
Eicken. TAM - A Compiler Controlled Threaded Abstract
Machine. J. of Parallel and Distributed Computing, pages
347-370, Jun. 1993.

[5] S. C. Goldstein. The Implemenation of a Threaded Abstract
Machine. Technical Report UCBKSD 94-818, University
of California at Berkeley, May 1994.

[6] S. Ha, J. Kim, E. Rho, Y. Nah, S. Cho, D. Hwang, and
S. Han. A Massively Parallel Multithreaded Architecture:
DAVRID. In Proc. Int'l Con$ on Computer Design, pages
70-74, 1994.

[7] H. H. J. Hum, K. B. Theobald, and G. R. Gao. Building
Multithreaded Architectures with Off-the-shelf Micropro-
cessors. In Proc. 8th Int ' 1 Parallel Processing Symposium,
pages 288-297, 1994.

[SI J. R. Larus. SPIM S20: A MIPS R2000 Simulator. Technical
Report H66, University of Wisconsin-Madison, 1990.

[9] D. Metz and B. Lee. Analyzing the Benefits of a Separate
Processor to Handle Messages for Fine-grain Multithread-
ing. In Proc. 7th IEEE Symp. on Parallel and Distributed
Processing, 1995.

[101 Scientific and Engineering Software Inc. SESNorkbench
3.0 User's Manuals. 1995.

[l 13 E. Spertus and W. J. Dally. Evaluating the Locality Benefits
of Active Messages. In Proc. Fijth ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, 1995.

354

