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ABSTRACT

Storage devices use write buffers to improve performance,
where multiple write requests are processed in parallel and
completed in a random order. This may result in data loss in
the event of a sudden failure. Therefore, Linux filesystems
provide the fsync() system call to prevent data loss and ensure
write order. However, the fsync() system call in F2FS, one of
the most popular filesystems, is inefficient and insufficient
for guaranteeing data consistency.

We propose a new technique called Order-Preserving Re-
covery with Write pointer (OPRW) to ensure data consis-
tency during the filesystem recovery. OPRW utilizes the
write pointer in Zoned NameSpace (ZNS) SSDs to efficiently
determine the persistence of data without the need for I/O
operations. This approach allows OPRW to provide a higher
level of consistency and performance improvement for fsync(),
while minimizing the impact on recovery time. As a result,
our solution improves performance by up to 1.2x on realistic
workloads.
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1 INTRODUCTION

Modern storage devices use a buffering technique for write
commands that is essential for achieving high performance.
After the host makes a write request to the storage device,
it does not check to see if the writing is actually complete
on the non-volatile media; instead, the device completes the
write in a random order at a random point in time. In doing
so, the device processes multiple write requests in parallel
and handles them in a more efficient order to improve system
performance. However, this policy may lead to data loss in
the event of a sudden failure, so hosts need an additional
mechanism to protect critical data.

Linux filesystems provide the fsync() system call to pre-
serve critical data and guarantee write order. When fsync() is
called for a specific file, the filesystem blocks the return until
the data and metadata for that file are written to the physical
media. Once this process is complete, the user can expect
that the file has been physically written to the device and is
safe from sudden power loss. Because the fsync() system call
is called so frequently, filesystems must both provide data
persistence and minimize response time.

We found that the persistence support of the fsync() sys-
tem call in F2FS, one of the most popular filesystems, is
insufficient and/or inefficient. Specifically, F2FS completes
fsync() after writing the changed data block and then its asso-
ciated node block, without writing any additional metadata.
However, just writing two blocks one after the other cannot
prevent reordering. Therefore, in F2FS, there is a risk of data
corruption if a crash occurs during fsync().

The F2FS community has raised this issue and tried to
solve it by offering the strict mode that uses atomic writes.
However, in the strict mode, performance degradation is
inevitable as it needs to check whether the block is written
to the physical media frequently to preserve the write order.

We have designed a new solution to this problem in one
of the next-generation storage devices, Zoned NameSpace
(ZNS) SSDs [9]. Compared to the traditional SSDs, ZNS SSDs
divide the whole disk space into fixed-size zones and only
sequential writes are permitted within a zone. The device
maintains a special write pointer to track the next position to
be written for each zone. We find that this write pointer can
actually provide useful information to the host in situations
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where recovery from a sudden power down is required. As a
result, we show that the performance can be improved up to
1.2x when fsync() occurs periodically, while providing better
data persistence.

The rest of the paper is organized as follows. In Section
2, we describe the background of our work. In Section 3
and 4, we present the problems in the current F2FS filesys-
tem and the propose solution, respectively. Section 5 shows
evaluation results and Section 6 concludes the paper.

2 BACKGROUND
2.1 fsync() system call

In a POSIX-compliant filesystem, fsync() is used to ensure
two things: the order of write commands and the persistence
of data. Performing fsync() is an expensive operation because
it reveals the media’s write response time during processing,
which is, hence, known to be a performance bottleneck in
many workloads [3, 14, 18].

Some devices, such as enterprise SSDs with built-in backup
battery or mobile devices with a non-removable battery, pro-
vide hardware protection against sudden power loss. This
feature, called Power-Loss Protection (PLP), ensures persis-
tence for all data once the DMA transfer is complete. With
these devices, some filesystems are trying to increase the
performance of fsync() operations by providing a nobarrier
mode. In this mode, the filesystem does not wait for media
write times but users can still guarantee the persistence of
data through fsync().

2.2 F2FS Filesystem

F2FS [13] is a Linux filesystem for flash storage. It is based on
the log-structured filesystem (LFS), but manages filesystem
metadata in a random write fashion to achieve high perfor-
mance without cascaded metadata updates. F2FS is being
widely used in Android-based mobile systems.

F2FS performs periodic checkpointing to ensure the filesys-
tem consistency. Checkpoints preserve the logical structure
of each file along with the states of nodes and segments
at that point in time. In the event of a power failure, F2FS
simplifies the recovery process by rolling back to the most
recent checkpoint. For performance reasons, F2FS does not
trigger a checkpoint for each fsync() call. Instead, F2FS just
writes data blocks and their associated direct node blocks
only on fsync(). Nodes that are written during fsync() are
marked with a special flag, and after rollback, there is an
additional process of sequentially recovering nodes that are
flagged but still unrecovered, called roll-forward. During this
process, the data blocks referenced by the target node are
marked as valid, and the old blocks are invalidated. These
changes are updated in the Segment Information Table (SIT).
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Figure 1: fsync() in F2FS

Figure 1a illustrates the handling of fsync() in F2FS. When
performing fsync(), a node block (denoted as N) is written
after the DMA transfer of the associated data block (denoted
as D) is finished. After all DMA transfers are completed, the
normal POSIX mode uses the flush command to ensure
durability [6], whereas the nobarrier mode returns imme-
diately.

2.3 Zoned NameSpace SSDs

ZNS SSDs organize multiple blocks into a zone and rely on
the host to determine the write order for each zone and when
to erase zones. This allows the device to provide predictable
response times by eliminating its own data placement and
garbage collection operations. On the other hand, the host
system requires a new software stack for the new zone in-
terface.

Each zone of a ZNS SSD can only be written sequentially.
As a result, it is necessary to maintain the last written loca-
tion for each zone, and to do so, the device manages a write
pointer and shares it with the host [2, 9]. In the event of a
sudden power loss, ZNS SSDs perform their internal recov-
ery mechanism to locate the last written position. Therefore,
when the device is powered on, the host can know that LBAs
smaller than the write pointer are already written persis-
tently, while larger LBAs are unwritten. When the write
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pointer reaches the end of a zone, the zone is closed and no
further write operations are allowed until being reset.

Since F2FS is based on LFS, it was easy to adapt to ZNS,
and a version of F2FS that works on ZNS SSD is publicly
available. In order to comply with the ZNS specification,
the DMA order of writes to the same zone must be ensured,
which is currently handled by I/O schedulers such as MQ-
Deadline [8].

3 PROBLEM & MOTIVATION
3.1 Data Corruption in F2FS

F2FS has a potential risk of user data corruption when a
crash occurs during fsync() [19]. Figure 1a shows the situa-
tion where a user data D and the associated node N should
be written in that order. However, even if the DMAs are pro-
cessed in order, there is a possibility that the two requests are
written out of order inside the SSD; figure 1a shows the case
that the NAND write operation for node is performed before
the data because, for example, the NAND die 1 on which the
data will be written is busy. If a crash occurs when the node
block becomes durable before the data block, the node will
point to invalid data, resulting in the loss of existing data.
This is a violation of the data consistency requirement [4, 5].

We have confirmed through experiments that actual data
corruption occurs in F2FS. According to our experiments,
F2FS could not recover data in 3% of the tested cases (cf.
Section 5.2 for details). Storage devices with PLP do not
suffer from this consistency issue as the completion of DMA
transfers guarantees durability. However, we show that the
fsync() performance can be improved further even when the
storage is equipped with PLP.

The original F2FS attempted to address this issue by pro-
viding the strict mode [19]. Figure 1b illustrates the process
of the strict-mode fsync(). In the strict mode, F2FS in-
serts a flush command before the last node block, which
ensures that the last node is not written until all the pre-
ceding blocks have been persisted. If the last node is not
persisted, the remaining node blocks are not recovered, pre-
venting the reversal of the persistence order between data
and node blocks. However, this approach requires additional
flush operations and sacrifices performance to ensure data
consistency.

3.2 Persistence Check by Write Pointer

The aforementioned difficulties with fsync() come from the
limited information provided by the block interface. For the
storage devices based on the block interface, all blocks can
be overwritten at any point in time and in any order, so
there is no way to find out the temporal ordering among
write operations. It is also assumed that there is always data
in every block, and there is no way to determine which
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blocks contain valid data. Since this information is essential
to implement a consistent filesystem, traditional filesystems
use additional metadata such as allocation bitmaps combined
with journaling or checkpointing. However, these techniques
incur internal I/O and introduce space overhead.

In ZNS SSDs, in contrast, the write pointer can be used
to determine durability. Since the write pointer is always
increased sequentially, it is possible to determine the per-
sistence of a series of blocks using a simple comparison
operation without any additional I/Os. By utilizing this prop-
erty of the write pointer, we aim to determine the ordering
among write requests and resolve data consistency issues.

4 DESIGN

4.1 Recovery for Data Consistency

In order to avoid data corruption mentioned in Section 3.1, a
naive solution is to enforce the written order between data
blocks and node blocks during the fsync() process. With this
eager and pessimistic approach, the node will be written after
the data become durable, ensuring that the new data pointed
to by the node is always valid. However, this approach is
impractical because it will significantly increase the time to
perform fsync(). Another solution to address this problem is
to recover data consistently during the file system recovery
process when an actual crash occurs. This lazy and optimistic
approach can simplify the fsync() process, but it leads to
a long recovery time due to additional I/O operations to
determine the validity of data blocks.

We propose a new Order-Preserving Recovery by Write
pointer (OPRW) technique to accelerate the fsync() perfor-
mance while maintaining data consistency on ZNS SSDs.
OPRW is based on the aforementioned optimistic approach
and addresses the issue of long recovery time by leveraging
the write pointer of ZNS SSDs. Figure 2 shows the overall
process of OPRW in a situation where the filesystem is cor-
rupted due to a power failure during the fsync() operation.
The problem is the nodes recorded after the last completed
checkpoint. As mentioned, the updated data blocks in these
nodes may not be valid. In the roll-forward process, each
time a node is recovered sequentially, it is first checked for
data consistency.

The key idea is to utilize the write pointer to quickly iden-
tify the persistence of data and detect any reversal of the
written order, without the need for I/O operations. Specifi-
cally, we check whether the data blocks pointed to by the
node are located before the write pointer. Even when one of
data blocks is located after the write pointer, it means that
the consistency of the node’s data has been compromised
and the node should be discarded. In this case, the data con-
sistency can be preserved because the existing nodes and
data will remain intact. Also, since node blocks are written
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sequentially, the subsequent node blocks belonging to the
broken files should be also discarded to guarantee the data
consistency semantics.

The specific process for checking data consistency during
roll-forward is described in Algorithm 1. First, each entry
in the node block is examined. If the address pointed to by
the entry is smaller than the write pointer of the zone that
contains it, it is considered to be a valid pointer. If it is equal
to or greater than the write pointer, it is considered to be
pointing to invalid data. If there exists an entry pointing to
invalid data block, the data consistency of the corresponding
node is corrupted and it is excluded from the recovery target.
Also, the inode of the corrupted node is added to the skip_list,
so that subsequent nodes belonging to the same inode can
be excluded from the recovery target. During this process,
the entire write pointer table can be loaded into memory
through a single zone management receive command [9],
which allows the recovery process to be repeated without
additional I/O.

Euidong Lee, lkjoon Son, and Jin-Soo Kim

Algorithm 1 Data Consistency Check

1: skip_list < 0
2: for each node € roll forward target do

3: inode «— find_inode(node)

4 if inode € skip_list then

5 discard(node)

6 continue

7: end if

8 fori=0,1,...,Npys — 1 do

9: wp «— WP_Table[zone(pointer[i])]

10: if pointer[i] < wp then > Valid
11: continue

12: else > Invalid
13: skip_list « skip_list U {inode}

14: discard(node)

15: break

16: end if

17: end for

18: end for

4.2 Performance of fsync() modes

POSIX mode with non-PLP devices. In the POSIX mode,
F2FS performs two DMA operations and one flush oper-
ation sequentially for the purpose of data consistency and
persistence, as shown in Figure 1a. Although performing
DMA transfers in order cannot guarantee the written or-
der in the storage, now we are able to find out whether the
written order has been reversed using the OPRW technique.
Therefore, the write order of the data and node blocks need
not be guaranteed. In other words, as shown in Figure 3a,
it is possible to immediately send a write request for the
node block without waiting for the completion of the DMA
transfer of the data. As a result, the proposed technique can
not only ensure consistency but also improve performance.

nobarrier mode with PLP devices. For PLP devices,
OPRW can eliminate the unnecessary waiting for the DMA
transfer of data blocks during the fsync() operation, similar
to the POSIX mode. Without flush, the DMA transfer time
in the nobarrier mode takes up a large portion of the fsync()
execution time. As a result, the operations of host and storage
can be overlapped and performed simultaneously, as shown
in Figure 3b. This allows for increased I/Os to the storage and,
in turn, more efficient utilization of the storage’s internal
parallelism.

5 EVALUATION
5.1 Evaluation Setup

The evaluation was performed on a server with two Intel
Xeon Silver 4116 2.10 GHz processors and 32 GiB of mem-
ory, with a kernel version of 5.14.4. For storage, we use
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Total | Failed
F2FS-posix | 1000 30
F2FS-strict 1000 0

OPRW-posix | 1000 0

Table 1: Data Consistency Test

a ZN540 [7] 4TB ZNS SSD from Western Digital. ZN540
supports PLP to ensure data persistence once it has been
transferred. In addition, we use the NVMeVirt [11] emulator
to evaluate non-PLP ZNS SSDs. The timing parameters of
NVMeVirt were adjusted so that its performance is equiv-
alent to ZN540, but flush latency was added based on the
write time of NAND flash to emulate a ZN540 without PLP.

We have noticed that F2FS in the latest Linux kernel 6.3.3,
does not insert an additional pre-flush before the node block
even in the strict mode when running on ZNS devices. It
is known that this change is made to avoid violating ZNS
specifications due to command reordering [10]. Without
performing pre-flush, however, the data consistency issue
still remains. In order to measure the correct performance,
we added a pre-flush after the DMA transfer of the data for
the strict mode.

5.2 Data Consistency Test

First, we perform data consistency tests on NVMeVirt which
emulates a ZN540 device without PLP. The sequence for
verifying data consistency is as follows; a file is filled with
a specific pattern, then a write request is made to the file
with the same pattern, and a crash occurs at a random point
in time. When the filesystem recovers, it reads the file and
checks if the pattern matches.

Table 1 shows the results of the data consistency tests. In
the POSIX mode, F2FS fails in 3% of the tested cases which
means that performing in-order DMAs is not enough in the
traditional fsync() implementation. On the other hand, the
proposed OPRW scheme and F2FS with the strict mode
recover all the data correctly after the roll-forward process.

5.3 Micro Benchmark

Figure 4 shows the performance improvement of the OPRW
technique using FIO [1]. We measure the throughput of ran-
dom writes followed by fsync() with one thread while vary-
ing the payload size.

The performance of fsync() is extremely slow on the PLP-
disabled NVMeVirt. This is because both F2FS and OPRW
need to perform the costly flush command at the end of
fsync() to ensure data persistence. The existing solution,
strict mode, performs 44% worse than the POSIX mode,
showing that the cost of the additional flush command to
preserve data consistency is very high. OPRW does not show
a significant performance improvement over the original
F2FS. This is because the DMA operations and software
overhead are a very small fraction of the fsync() execution
time compared to flush operations. However, OPRW has
a benefit of ensuring full data consistency in the event of a
power failure, without compromising performance.

The performance difference is larger on PLP-enabled SSDs
with the nobarrier mode, because they do not suffer from
flush operations. As a result, OPRW outperforms the origi-
nal F2FS by 18% ~ 42%. This indicates that the delay in writ-
ing node blocks is causing a performance bottleneck. There
is a software overhead for checking DMA responses and
sending write requests for blocks, and hiding this overhead
while maintaining data consistency leads to a performance
improvement.

5.4 Macro Benchmark

We evaluate the proposed scheme using varmail [16] and
OLTP-Insert [12] workloads, with a single thread. Figure 5a
and 5b show that the performance improvement of OPRW is
also significant in realistic workloads. For varmail and OLTP-
Insert, OPRW outperforms F2FS by 1.2x and 1.1x respectively,
when running on ZN540 with PLP. The performance gains
are particularly high for varmail, which relies more heavily
on fsync() than OLTP-Insert [17].
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# of scanned nodes | 40791 | 50962 | 57500
F2FS (ms) 4177 | 7307 | 9751

OPRW (ms) 4380 | 7584 | 10093
Difference (ms) 203 277 342

Table 2: Recovery Time

In figure 6, we evaluate the performance scalability by
varying the number of threads in the varmail workload. With
a small number of threads, OPRW outperforms the original
F2FS significantly. However, the performance improvement
is getting smaller as the number of threads increases. This
is due to the inherent scalability problem of F2FS where
multiple threads contend for a lock while they are writing
data to a single log sequentially [15]. As the scalability of
F2FS improves, we expect that OPRW will be more effective
in the multi-threaded environment.

5.5 Recovery Time

Table 2 shows the filesystem recovery time depending on the
amount of nodes recovered during roll-forward in NVMeVirt.
We measured the duration of the roll-forward after a crash oc-
curred during the execution of the varmail workload. As the
number of scanned nodes increases, the time for roll-forward
also increases. If the proposed data consistency checks are
included in the roll-forward, it increases the recovery time
by about 203ms ~ 342ms, but this is relatively insignificant
compared to a full filesystem recovery time of several sec-
onds or more. This is possible because OPRW only performs
computations and memory accesses without performing any
I/O operation. In addition, under the normal circumstances,
the number of nodes to be scanned during the system re-
covery is limited due to periodic checkpointing. Therefore,
data consistency checks using write pointers can improve
the filesystem consistency with negligible impact on the
recovery time.
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6 CONCLUSION

In this paper, we point out that the fsync() operation of F2FS
is not sufficient to maintain data consistency by reproduc-
ing the issue through experiments. To solve this problem,
we leverage the write pointers provided by the ZNS SSD
interface, and propose a method to recover the filesystem’s
consistency with minimal overhead while ensuring data con-
sistency. We also remove the synchronization actions pre-
viously used to insufficiently guarantee consistency. As a
result, we show up to 1.2x improvement in the write perfor-
mance on realistic workloads.
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