
Transaction Support using Compound Commands in Key-Value SSDs

Sang-Hoon Kim
Ajou University

Jinhong Kim Kisik Jeong
Sungkyunkwan University

Jin-Soo Kim
Seoul National University

Abstract
Recently proposed key-value SSD (KVSSD) provides the

popular and versatile key-value interface at the device level,
promising high performance and simplified storage manage-
ment with the minimal involvement of the host software. How-
ever, its I/O command set over NVMe is defined on a per
key-value pair basis, enforcing the host to post key-value op-
erations to KVSSD independently. This not only incurs high
interfacing overhead for small key-value operations but also
makes it subtle to support transactions in KVSSDs without a
software support.

In this paper, we propose compound commands for
KVSSDs. The compound command allows the host to specify
multiple key-value pairs in a single NVMe operation, thereby
effectively amortizing I/O interfacing overhead. In addition, it
provides an effective way for defining a transaction comprised
of multiple key-value pairs. Our evaluation using a prototype
KVSSD and an in-house KVSSD emulator shows promis-
ing benefits of the compound command, with improving the
performance by up to 55%.

1 Introduction

Recent years have witnessed the drastic changes and evolve-
ment of storage systems. New storage media based on the
state-of-the-art semiconductor technologies have been intro-
duced, and storage devices built with those emerging media
are arriving on the market [10–12, 20]. To fully leverage their
high performance and unique characteristics, it is required to
renovate the storage stack and components. Examples include
bypassing the deep operating system layers [14, 22, 26], fus-
ing main memory with secondary storage [5], making storage
devices smarter [9, 15], and so forth. One of noticeable direc-
tions is to reorganize I/O architecture and improving the host-
device interface. Specifically, NVM Express (NVMe) [18]
allows storage devices to be attached to the host bus via the
PCI Express (PCIe) interface. This approach enables storage
devices to interface with the host at high bandwidth and low
latency which match those of modern storage media.

In the meantime, key-value stores become one of the most
popular software services to build and operate large-scale
data-intensive applications and services [2, 4, 6, 8, 17]. Due
to their simple yet effective interface, many enterprise ser-
vices have been adopting the key-value abstraction in their
systems. For instance, Amazon S3 [2] has been the founda-
tion of many IT services with its scalability, data availability,
security, and performance. Memcached [8] is to accelerate
services by caching operation results via the key-value in-
terface. Motivated by these software key-value stores and
services, key-value SSD (KVSSD hereafter) attempts to pro-
vide the key-value store service at a device level [21]. By
completely replacing deep software stack with off-the-shelf
hardware, KVSSD can directly respond to data requests from
an application with minimal involvement of the host software,
thereby increasing performance and simplifying storage man-
agement [21].

In spite of those promises, we argue that the host-KVSSD
interface is yet to be improved. KVSSD interfaces with the
host through the KVSSD command set which is extended from
the NVMe command standard [27]. The current commands
are defined on a per key-value pair basis. Thus, the host has
to request one key-value operation at a time to KVSSD, and
KVSSD should process each key-value pair individually. This
becomes problematic when the size of keys and values are
small, which is commonly observed from many real key-value
store services [3]. Worse, it is difficult to define a relationship
among multiple key-value pairs since the current commands
lack of handling multiple key-value pairs collectively.

In this paper, we strive to break the limitation of the current
KVSSD interfaces. We propose a compound command that al-
lows multiple key-value operations to be included in a single
NVMe command. This enables multiple small key-value oper-
ations to be coalesced into a single NVMe command, thereby
effectively amortizing interfacing overhead over NVMe. Fur-
thermore, we can intuitively define a sophisticated semantic
on a set of key-value pairs. Examples include transaction
support, group prefetching, and so forth.

We evaluate the performance benefit of compound com-
mands using a prototype KVSSD and an in-house KVSSD
emulator. Evaluation result shows compound commands can
effectively amortize the interfacing overhead, reducing per-
operation latency by up to 55%.

The rest of this paper is organized as follow; Section 2
explains the proposed the compound command and its APIs.
Section 3 compares the benefit of compound commands over
the current per-tuple operations, and Section 4 concludes this
paper.

2 Compound Commands Design

2.1 Motivation
Exchanging multiple small I/O messages incurs higher over-
head than transferring large data between a host and a pe-
ripheral device. Thus, many I/O systems try to amortize the
interfacing overhead by merging small I/O requests into a
single I/O command and transferring the requests in bulk.
For example, the eMMC standard [13] defines the packed
command; instead of exchanging I/O requests and results in-
dividually, the host (more specifically I/O schedulers and/or
device drivers) collects multiple eMMC operations (i.e., writ-
ing data on specified blocks), and builds a packed command
that coalesces multiple operations in a single eMMC com-
mand. When the host posts the packed command, the eMMC
device fetches the data from the host in bulk and then inter-
nally processes each operation in batch. In this way, eMMC
devices can leverage their I/O bandwidth to handle small I/O
requests efficiently.

The same story can be applicable to the KVSSD interface.
The KVSSD command set [27] extended from the standard
NVMe command set supports five primitive key-value opera-
tions which are STORE, RETRIEVE, DELETE, EXIST, and
ITERATE. Specifically, STORE saves a value for a given key.
The stored value can be either accessed with the RETRIEVE
command or deleted with the DELETE command using the
key. The EXIST command is for checking whether KVSSD
stores a value for the given key. The ITERATE command
is for querying key-value tuples having a specified prefix in
keys. All those commands are defined so as to specify one
key or one key-value pair in the NVMe command message.
Thus, even though the NVMe interface standard features low
latency and high bandwidth, KVSSD may not operate at its
full performance but spend considerable execution time on
frequent interfacing with the host. In addition, it is difficult
to support an operation that is defined or has to be applied to
multiple key-value pairs all together; each key-value opera-
tion is carried out independently using those per key-value
commands.

Based on the observation, we propose a compound com-
mand. The compound command complements the current
KVSSD command set by allowing multiple key-value opera-

tions to be encoded in a single NVMe command. Moreover,
we found that using the compound command makes it easy to
define a transaction over multiple key-value operations. The
rest of this Section explains how the current command set is
extended and how the compound command can be used to
support transactions in KVSSD.

2.2 Compound Command Formats

The original KVSSD commands comply the 64-byte NVMe
command format. Key-value operations with small keys are
frequently observed from real workloads [3]. To efficiently
handle this common case, a key can be inlined in the com-
mand (i.e., directly written on the NVMe command) if the
key length is shorter than or equal to 16 bytes. When the key
is longer than 16 bytes, the key is specified in the command
indirectly using two fields each of which contains the mem-
ory location of the key and the key length. When KVSSD
receives a command from a host, it firstly checks whether
the key is inlined. If that is the case, KVSSD accesses the
inlined key directly from the command. Otherwise, KVSSD
fetches the key from the host’s main memory. This memory
access across device boundaries can impose an additional
overhead compared to accessing inlined keys. Unlike keys,
values are always specified in the command indirectly with a
tuple comprised of the memory address of the value and its
length. KVSSD fetches the value from or pushes the value
to the host’s main memory through memory operations like
DMA.

We extended the original KVSSD command set to support
the compound command. Overall, compound commands
use the same NVMe command format of the original KVSSD
commands but use the key and value fields for other meanings.
The fields originally used for holding an inlined key are used
for specifying an optional identification number (ID) of the
key-value operations grouped in the compound command.
The ID is limited to 16-bytes long to be inlined in the NVMe
command, and can be utilized to (but not limited to) specify a
transaction ID or a group ID for the given key-value list.

The fields originally used for specifying the value are now
used for specifying the location of the command payload that
contains multiple key-value pairs in a self-explanatory format.
For key-value operations requiring both key and value (e.g.,
STORE), key-value pairs are represented on a contiguous
memory buffer in (key length, key, value length, value) format
which are preceded by the total number of pairs. For key-value
operations requiring only keys (e.g., RETRIEVE, DELETE,
and EXIST), the keys are listed on a contiguous memory
buffer in (key length, key) format which are preceded by
the total number of keys. Figure 1 illustrates the layout of
the command payload for an extended STORE compound
command which

We opt for this command payload layout to minimize
the number of cross-device memory operations. Building

Figure 1: The layout of a STORE compound command payload which contains three key-value pairs. In the NVMe message for
compound commands, the value field specifies the memory location and the total length of the payload. KVSSD can fetch the
entire command payload with a single memory operation.

a packed command payload involves one memory copy for
each key-value pair. To avoid the memory copy overhead,
one might suggest to use a vector specifying the address
of each key and value. However, to fetch these operands,
KVSSD should perform multiple cross-device memory op-
erations since the memory operation can be performed on
a contiguous memory region but key-value pairs are likely
to be dispersed on the host’s main memory. IOMMU might
provide KVSSD with a virtually contiguous memory region
over the key-value pairs, however, it requires memory map-
ping and unmapping for each key and value, which incurs
non-trivial overhead. This becomes even more problematic
when keys and values are small and the number of key-value
pairs grouped in a compound is huge. On the other hand,
KVSSD can fetch the entire key-value pairs with a single
memory operation by using the packed command payload,
and by which the memory copy overhead can be amortized.

2.3 Transaction Support and User API
The current KVSSD commands are defined to be processed
independently of each other. Thus, even though a set of op-
erations are consecutively requested to KVSSD, they can be
interleaved by other operations. This independency among
operations makes KVSSD unable to guarantee the atomicity
and isolation properties of transaction. Specifically, KVSSD
may hold a partially processed state when the host crashes in
the middle of processing transaction operations. Moreover,
when an operation is interleaved between the transaction op-
erations, it can not only interrupt the ongoing transaction but
also access an intermediate state of the transaction, which vio-
lates the isolation property. In this sense, the current KVSSD
cannot fully realize the ACID properties for transaction with-
out software support, which opposes to the key idea of the
hardware-based key-value store to make I/O path short.

The compound command can complement the current
KVSSD command set to support transaction. The compound
command enables the host to define a transaction over multi-
ple key-value operations easily; the host can collect key-value

operations, compose a compound command with the opera-
tions, mark it as a transaction, and post the compound com-
mand to KVSSD. KVSSD should ensure the ACID properties
while processing the operations in the transaction. To this
end, KVSSD can disallow other operations to be interleaved
between transaction operations. At the same time, KVSSD
leverages traditional write-ahead logging (WAL) techniques
to atomically update multiple key-values; write values, meta-
data updates, and key index updates on a logging area first,
and then atomically update key index and metadata all to-
gether. These approaches allow KVSSD to guarantee the
atomicity and isolation properties of transactions. Also, the
durability property can be easily provided by properly and
safely storing data in KVSSD.

Providing the consistency property in KVSSD is, however,
subtle. For now, KVSSD can provide limited consistency by
using compound commands; KVSSD can check whether each
operation does not violate any consistency restriction of the
system (i.e., the value should not be NULL). KVSSD can
proceed to process the transaction only if all operations satisfy
the conditions. Otherwise (e.g., if a STORE operation tries to
save NULL as the value), KVSSD can reject the transaction.
This level of consistency was sufficient to run Ceph on top
of KVSSD with compound commands as discussed in Sec-
tion 3, and we expect this will be also true for many simple
applications. However, it is not possible to provide compli-
cated consistency that requires read-modify-write operations
since the current compound command design disallows to
merge operations with different types. KVSSD can overcome
the limitation by adopting the similar techniques of Amazon
DynamoDB transaction [1, 23] where a user can specify pre-
conditions for write operations and the write operations are
performed only if all preconditions are met. We leave this as
future work, and please refer to Section 5 for the details of
the extension.

We define user APIs for compound commands considering
the transaction support. Listing 1 shows a sample code for
the user API. Overall, the API is similar to the transaction
operations of RocksDB [7]. A user application can get a

1 int ret;
2 CC_HANDLE *h;
3
4 h = begin_compound(CC_TRANSACTION);
5 ret = retrieve(h, k1, k1_len , v1, &v1_len);
6 ret = retrieve(h, k2, k2_len , v2, &v2_len);
7 ret = commit_compound(h);
8
9 h = begin_compound(CC_TRANSACTION);

10 ret = store(h, k1, k1_len , v1, v1_len);
11 ret = store(h, k2, k2_len , v2, v2_len);
12 ret = commit_compound(h);

Listing 1: User API for compound commands

handle for a compound command as shown in line 4 and 9
of Listing 1. The argument CC_TRANSACTION indicates the
handle is for a transaction rather than for a simple collection
of operations. After getting the handle, the application can
append key-value operations using the handle (line 5-6 and
line 10-11). Once a certain type of operation is appended to
the handle, the application can only append the same type of
operations for the simplicity of implementation and semantic
definition (see Section 5 for extension). The compound com-
mand library handles the operation appending by building the
compound command payload. When the application submits
the command (line 7 and 12), the payload is attached to a
NVMe command, and posted to KVSSD. When the com-
pound command is marked as a transaction, KVSSD should
handle the key-value operations in the compound command
as a transaction as we explained above. Otherwise, KVSSD
may process each operation independently.

3 Evaluation

3.1 Performance Estimation
We may perform a precise evaluation of compound commands
with realistic workload if we had KVSSD that actually un-
derstands the compound commands and properly handles
enclosed operations. However, it requires KVSSD firmware
modification, which was not feasible to us at the time of paper
writing. Alternatively, we estimate the performance implica-
tion of compound commands from other metrics that we can
actually measure from a real KVSSD [21].

Firstly, we measure Tkey, the key handling time of the
KVSSD. We were provided with an alternative firmware
of the KVSSD which changes the KVSSD into an ordinary
SSD operational on the traditional block interface. Using the
block firmware, we compare the time of handling a STORE
operation with 16-byte key and 4 KB value to that of handling
a single 4 KB block write operation (note that 4 KB is the
minimum block size of the device). We find that the key-value
operation takes 46.14 us whereas the block operation takes
13.49 us. Since the two configurations are only different in
key handling, we can suppose the latency difference (i.e.,

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

P
er

-o
p
er

at
io

n
 l

at
en

cy
 (

u
s)

of compounded operations

Store Retrieve

Figure 2: Per-operation latency on various numbers of key-
value pairs in a compound command. We calculated the per-
formance of compound commands from the I/O performance
of a real KVSSD.

32.65 us) as the key handling time. We can observe that key
handling takes a significant fraction (about 70.8%) of the key-
value operation time, which indicates efficient key handling
will be the key technology for enabling high-performance
KVSSDs.

Next, we measure Tvalue, the time to handle values in a com-
pound command. We assume that the compound command-
capable KVSSD fetches the command payload similar to the
values of ordinary key-value operations and then processes
each key-value operation in the payload one after another. We
use a 32-byte key and 1,024-byte value configuration, which
was the average key-value length of KVCeph workload (See
the following subsection for the detail). Thus, a compound
command with three key-value pairs will be equivalent to one
16-byte key and 3,196-byte1 value operation. Since KVSSD
will perform one key handling while processing the given key-
value operation, we compensate the processing by subtracting
Tkey. Dividing the compensated time with the number of pairs
yields the value handling time of the KVSSD.

Figure 2 shows the per-operation time estimated from the
obtained Tkey and Tvalue. Note that ‘1’ is the performance of
the original KVSSD command for one 32-byte key and 1,024-
byte value operation whereas the rest are the performance of
compound commands.

As specified with "Store" and "1", processing one STORE
operation with the original KVSSD command takes about
68.4 us. Since the key is longer than 16 bytes, it cannot be in-
lined in the KVSSD command, and KVSSD should fetch the
key with an additional memory operation to the value fetch.
Thus, this operation involves (at least) two cross-device mem-
ory references, incurring non-trivial overhead. Contrarily,
when more than two key-value pairs are packed in a com-
pound command, KVSSD can fetch the entire key-value pairs
with a single memory operation. As the number of packed

13,196 = (4 for key length + 32 for key + 4 for value length + 1,024 for
value)× 3 + 4 for the number of pairs

pairs is increased, the reduced I/O interfacing overhead pays
back; it takes only 38.5 us per-operation when ten key-value
operations are packed, which is 43.7% latency reduction com-
pared to the original per-operation performance.

RETRIEVE is similarly improved by compound com-
mands. We assume the KVSSD supporting compound com-
mand will return the keys and values in bulk in the command
payload format presented in Figure 1. Since all results are
on a contiguous payload, KVSSD can return the results with
one memory operation. The 92.0 us of RETRIEVE operation
latency can be reduced down to 41.5 us.

The evaluation result clearly shows that the compound com-
mand helps the system to efficiently amortize the interfacing
overhead. We believe the similar results will be observed
from different key-value length configurations. Also, it is
noteworthy that we conservatively imposed the key indexing
overhead for each key-value operation. We believe the key
indexing overhead can be amortized in practice by batching
index update, and if that is the case, compound commands
can improve the performance further.

3.2 KVCeph Performance

To evaluate the benefit of the proposed compound command
on real workloads, we implemented the compound command
on top of our key-value SSD emulator called KVEMU [25].
KVEMU provides a virtual key-value SSD device to a guest
OS in a QEMU-provided virtualized environment, similar
to FEUM [16]. The guest OS can access a virtual KVSSD
using real key-value commands through a virtualized NVMe
interface. In addition to providing the functional features of
KVSSD, KVEMU emulates the performance characteristics
of real KVSSDs. We used the estimated latency explained
above to simulate the performance of compound command-
capable KVSSD with transaction support (i.e., imposed the
per-key handling overhead assuming a strongly conservative
processing model).

On top of KVEMU, we setup KVCeph benchmark which
is provided as an example of the KVSSD software stack [24].
KVCeph is a variant of Ceph [19] that utilizes the hardware
KVSSD in place of its original software key-value store of
Ceph. Since KVEMU supports the entire KVSSD command
set, we can replace KVSSD with KVEMU without a signifi-
cant modification.

We attempted to apply the compound command to handle
transactions in KVCeph. However, it turned out that the cur-
rent KVCeph does not handle transaction properly; key-value
operations are collected with Ceph transaction APIs, but each
key-value operation is processed independently using an indi-
vidual NVMe command. Thus, transaction properties cannot
be guaranteed by the current KVCeph implementation. We
believe this case explains the difficulty of defining transaction
over multiple independent key-value operations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Software TX Hardware TX
(Compound command)

B
an

d
w

id
th

 (
M

B
/s

)

Figure 3: KVCeph bandwidth on different level of transaction
support. Software TX indicates the bandwidth when the
system lacks of hardware transaction support. Hardware TX
indicates the performance when the hardware is aware of
transactions with the compound commands.

To properly evaluate software-based transaction perfor-
mance, we modified the KVCeph implementation to emu-
late write-ahead-logging (WAL). Entire key-value pairs for
a transaction is written to a designated key (simulating the
WAL writing) and the operation is followed by individual
key-value operations. As shown in Figure 3, KVCeph gives
9.2 MB/s of storage bandwidth in this setting. If the hardware
supports the transaction (i.e., using KVEMU with compound
command support), we can omit the WAL writing and de-
liver the key-value operations using the compound command.
In this case, KVCeph runs at 14.8 MB/s, which is 60.9 %
of bandwidth improvement. We believe this result demon-
strates the benefit of hardware transaction support enabled by
compound commands.

4 Conclusion

We propose the compound command to amortize interfacing
overhead between KVSSD and the host over NVMe. We
made the case of the compound command by extending the
current KVSSD command set, and demonstrated its benefit
from a realistic workload. We are planning to implement the
compound command in the real KVSSD and to evaluate its
performance to verify the claims.

Acknowledgements

This work was supported by the National Research Foun-
dation of Korea(NRF) grants funded by the Korea gov-
ernment(MSIT) (No. 2016R1A2A1A05005494 and No.
2018R1C1B5085902). Also, the ICT at Seoul National Uni-
versity provides research facilities for this study.

5 Discussion

Supporting complicated consistency As we discussed
in Section 2.3, the current KVSSD can only provide limited
consistency, but the limitation can be relaxed by adopting the
techniques used by Amazon DynamoDB [1, 23]. Specifically,
DynamoDB APIs allow user applications to specify precondi-
tions for updating operations, and DyanmoDB performs the
operations only if all preconditions are met. For an exam-
ple, when an application wants to atomically increase a value
by 20, it can read the value, increases the original value by
20, and write back the result with a precondition specifying
the original value. If the stored value and the precondition
values are the same, the update can be safely applied, and
otherwise,the transaction is aborted. By adopting the idea, we
can define a transaction over split compound commands with
preconditions appended. To realize the idea, the KVSSD com-
mand payload should be extended to express preconditions,
and user APIs should be also revised accordingly. We are
working on finding the best way to incorporate these features
into the KVSSD command set and compound commands.

Mixed operation types in a transaction The current
compound command can only merge the operations with
the same type in a transaction. It was sufficient to run Ceph,
and we also believe many applications only need this type
of transaction. Nevertheless, this limitation can be relaxed
by adding a field for each enclosed key-value pair specifying
its operation type. In such a case, KVSSD should carefully
check during the operation admission so that it does not make
conflicts between operations in the same transaction.

Leveraging grouped key-value operations In this paper
we focused on utilizing compound commands for support-
ing transactions, however, compound commands can be also
leveraged for accelerate key-value access. Let assume that
compound commands allow to define a prefetch group to
notify KVSSD of the temporal locality of key-value pairs;
when one of the grouped key-value pairs is accessed, KVSSD
can prefetch other key-value pairs in advance expecting their
access in a near future.

Quantitative analysis of memory copy and memory map-
ping Building compound commands in the packed com-
mand layout involves a number of memory copy and memory
buffer allocation, and its overhead can outweigh the amortized
interfacing overhead. However, compound commands are
targeting for small key-value operations, and memory copy
overhead will be small or comparable at the scale compared
to building a scatter-gather list and to access each key-value
pair via separate DMA. Nevertheless, we are working on
quantitatively analyzing the overhead on real hardware.

Returning results of multiple operations When the com-
pound command is used for simply collecting multiple opera-
tions, each operation might have different result. In this sense,

KVSSD should have an interface to efficiently return the re-
sult of each operation. We currently assume that KVSSD
generates a list of results and returns it to the host. And then
the device driver on the host can parse the list and return each
result accordingly.

References

[1] Amazon. Amazon DynamoDB transactions.
https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/transactions.html.

[2] Amazon. Amazon S3. https://aws.amazon.com/
s3.

[3] David G. Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A fast array of wimpy nodes. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, October 2009. ACM
SIGOPS.

[4] Apache Foundation. Apache Cassandra. https://
cassandra.apache.org.

[5] Jeremy Condit, Edmund B. Nightingale, Christoper
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better i/o through byte-addressable,
persistent memory. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP),
Big Sky, MT, October 2009. ACM SIGOPS.

[6] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store, October 2007.

[7] Facebook. RocksDB transactions. https://github.
com/facebook/rocksdb/wiki/Transactions.

[8] Brad Fitzpatrick. Distributed caching with memcached.
Linux Journal, 2004, August 2004.

[9] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework for
near-data processing of big data workloads. In Proceed-
ings of the 43rd International Symposium on Computer
Architecture, pages 153–165, Seoul, South Korea, June
2016.

[10] Intel. Intel 3D NAND technology trans-
forms the economics of storage. https:
//www.intel.com/content/www/us/en/products/
docs/memory-storage/solid-state-drives/
3d-nand-technology-animation.html.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://cassandra.apache.org
https://cassandra.apache.org
https://github.com/facebook/rocksdb/wiki/Transactions
https://github.com/facebook/rocksdb/wiki/Transactions
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/3d-nand-technology-animation.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/3d-nand-technology-animation.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/3d-nand-technology-animation.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/3d-nand-technology-animation.html

[11] Intel. Intel Optane DC persistent mem-
ory. https://www.intel.com/content/
www/us/en/architecture-and-technology/
optane-dc-persistent-memory.html.

[12] Intel. Intel Optane technology: Revolutionizing mem-
ory and storage. https://www.intel.com/content/
www/us/en/architecture-and-technology/
intel-optane-technology.html.

[13] JEDEC Solid State Technology Association. Embed-
ded multi-media card (eMMC) electrical standard (4.5
device), June 2011.

[14] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim.
NVMeDirect: A user-space i/o framework for
application-specific optimization on NVMe SSDs. In
Proceedings of the 8th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage), Denver, CO,
June 2016.

[15] Young-Sik Lee, Luis Cavazos Quero, Sang-Hoon Kim,
and Jin-Soo Kim. Activesort: Efficient external sorting
using active ssds in the mapreduce framework. Future
Generation Computing Systems, December 2016.

[16] Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminathan Sundararaman, Matias Bjørling, and
Haryadi S. Gunawi. The CASE of FEMU: Cheap,
accurate, scalable and extensible flash emulator. In Pro-
ceedings of the 16th USENIX Conference on File and
Storage Technologies (FAST), pages 83–90, Oakland,
California, USA, February 2018.

[17] Inc. MongoDB. MongoDB: The most popular database
for modern apps. https://www.mongodb.com.

[18] NVM Express, Inc. NVM Express. https://
nvmexpress.org.

[19] Red Hat, Inc. Ceph. https://ceph.com.

[20] Samsung. Samsung V-NAND technology. https://
www.samsung.com/us/business/oem-solutions/
pdfs/V-NAND_technology_WP.pdf.

[21] Co Samsung Electronics. Samsung key value SSD
enables high performance scaling.

[22] Woong Shin, Qichen Chen, Myoungwon Oh, Hyeon-
sang Eom, and Heon Y. Yeom. OS I/O path optimiza-
tions for flash solid-state drives". In Proceedings of
the 2014 USENIX Annual Technical Conference (ATC),
Philadelphia, PA, June 2014.

[23] Doug Terry. Transactions and scalability in cloud
databases—can’t we have both? In Proceedings of
the 17th USENIX Conference on File and Storage Tech-
nologies (FAST), Boston, MA, February 2019. USENIX
Association, USENIX Association.

[24] Unknown. Open memory platform development kit.
http://github.com/OpenMPDK, 2018.

[25] USENIX Association. A Blackbox Approach to Per-
formance Modeling of KVSSDs, Boston, MA, February
2019.

[26] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu,
C. Chang, G. Cao, J. Stern, V. Verma, and L. E. Paul.
SPDK: A development kit to build high performance
storage applications. In Proceedings of the 2017 IEEE
International Conference on Cloud Computing Technol-
ogy and Science (CloudCom), pages 154–161, Decem-
ber 2017.

[27] Sang yong Oh. KV SSD firmware introduction.
https://github.com/OpenMPDK/KVSSD/wiki/
presentation/kvssd_seminar_2018/kvssd_

seminar_2018_fw_introduction.pdf.

https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.mongodb.com
https://nvmexpress.org
https://nvmexpress.org
https://ceph.com
https://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf
https://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf
https://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf
http://github.com/OpenMPDK
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf

	Introduction
	Compound Commands Design
	Motivation
	Compound Command Formats
	Transaction Support and User API

	Evaluation
	Performance Estimation
	KVCeph Performance

	Conclusion
	Discussion

