
vStream: Virtual Stream Management for Multi-streamed SSDs

Hwanjin Yong§†, Kisik Jeong†, Joonwon Lee†, and Jin-Soo Kim‡

§Samsung Electronics Co., South Korea
†Sungkyunkwan University, South Korea
‡Seoul National University, South Korea

Abstract
Recently, multi-streamed SSDs have been proposed to
reduce the cost of garbage collection in NAND flash-
based SSDs. In multi-stream SSDs, application develop-
ers can control data placement within the SSD by speci-
fying a stream ID along with the WRITE command. How-
ever, commercial SSDs support only a small number of
streams due to the device’s limitation in hardware re-
sources. This makes it difficult to fully utilize the benefit
of the multi-streamed SSDs.

In this paper, we propose a new concept of vir-
tual streams (vStreams) for the multi-streamed SSDs.
vStreams allow application developers to manage a suf-
ficient number of streams regardless of the physical
streams supported by the device. We also present novel
mechanisms to monitor the lifetime of each stream with
a negligible memory overhead and to map one or more
vStreams into a physical stream at run time. Our eval-
uations with RocksDB show that the proposed vStream
SSD improves the throughput by 70% compared to the
legacy SSD with no stream support.

1 Introduction
NAND flash-based solid-state drives (SSDs) are becom-
ing increasingly popular within enterprise data centers
due to high performance and low power consumption.
NAND flash memory, however, does not support in-place
update and has limited P/E (Program and Erase) cycles.
Typically, SSDs employ a software layer called flash
translation layer (FTL) that manages all the operations
on the flash memory and provides the traditional block
device interface by redirecting new write requests to un-
programmed pages. In addition, FTLs perform garbage
collection (GC) to reclaim free space when the available
free space becomes low. This is done by copying valid
data in a victim block to a new flash block and then eras-
ing the victim block. Therefore, the GC processing sig-
nificantly decreases not only SSD’s performance but also
its lifespan.

Recently, multi-streamed SSDs [13] have been pro-
posed to reduce the cost of GC and improve its perfor-
mance by grouping the data having the same stream ID
in the same flash block. The host, thereby, can control
data placement in the flash media by tagging a stream
ID along with each write request. The multi-stream in-
terface presents new opportunities for system designers
to place the data in an effective way to mitigate the cost
of GC. Because of its benefits, multi-stream support has
been standardized in the SCSI/SAS [19] and the NVMe
(NVM Express) [17] specifications. Both specifications
allow up to 65535 streams per device. However, the ac-
tual number of streams supported by the device (we call
these physical streams) is restricted to 4 ∼ 16 [13,22,23]
in commercial SSDs. This is because it is difficult for
the SSD to support a large number of streams due to the
device’s limitation in hardware resources. Increasing the
number of physical streams cannot be achieved without
extra hardware cost and/or a loss in performance.

When SSDs support only a limited number of phys-
ical streams, application developers are forced to care-
fully assign a specific stream ID according to the hot-
ness of the data. However, this is possible only when ap-
plication developers have detailed knowledge about the
characteristics (i.e., lifetime) of their data. It gets more
complicated when the characteristics of the data dynam-
ically change over time. Furthermore, when the under-
lying SSDs are either replaced with or upgraded to other
SSDs having a different number of physical streams, the
host applications have to be modified to match the new
physical stream count. This leads to severe degradation
of portability and compatibility from an application de-
velopment point of view. Consequently, the limited num-
ber of physical streams, which is also different from de-
vice to device, is a big obstacle to full utilization of the
benefit of multi-streamed SSDs.

To address these limitations, we propose a new con-
cept of virtual streams (vStreams) that are independent of
the physical streams available in the device. The goal of



this paper is to provide a large number of virtual streams
to application developers without adding any extra hard-
ware resource nor performance degradation.

The experimental results with RocksDB workloads
show that the vStream SSD can not only improve the
throughput by 70% but also reduce the cost of GC by
18% compared to the legacy SSD with no stream sup-
port. The remainder of the paper is organized as follows.
Section 2 presents the background. Section 3 presents
the related work. Section 4 describes the design of vir-
tual stream management in detail, Section 5 shows the
evaluation of vStream SSD, and Section 6 concludes the
paper.

2 Background
NAND Flash Memory: A NAND flash memory pack-
age is composed of multiple dies and each die has mul-
tiple planes. Typically, NAND flash memories support
multi-plane operation, which performs a read, program,
or erase operation on multiple planes in a parallel man-
ner to improve internal flash parallelism [12]. Each plane
is composed of multiple blocks and each flash block,
in turn, contains multiple rows (i.e., wordlines) of flash
cells. In addition, each cell is capable of storing multiple
bits of data due to the multi-level cell technology. For
example, the least significant bit, the central significant
bit, and the most significant bit of each cell are grouped
to form an LSB, CSB, and MSB page, respectively, in
TLC NAND flash memory.

Recently, the page size of NAND flash memory has
continuously been increased for high capacity and high
I/O bandwidth [4, 15]. Furthermore, 3D NAND (such
as Samsung’s VNAND) technology has been proposed
to provide an even higher storage capacity, performance,
and endurance. A traditional 2D NAND flash has to sep-
arate the program steps within the LSB, CSB, and MSB
page in order to mitigate the program interference on
neighbor cells [1, 2]. On the contrary, 3D NAND flash is
capable of programming the multiple bits at once via the
one-shot programming technique [11, 14] due to the vir-
tually coupling-free structure which reduces the cell-to-
cell program interference. Thanks to one-shot program-
ming, the multiple pages (LSB, CSB, and MSB) can be
programmed simultaneously. Thus, programming speed
is enhanced and power consumption is reduced.
Multi-streamed SSD: Figure 1 shows a simplified ex-
ample of how a multi-streamed SSD operates. The
legacy SSD (i.e., SSD without stream support) simply
places data in their original request order.

In contrast, multi-streamed SSDs place data into flash
blocks according to the stream ID, instead of the request
order. If the host can assign data with similar lifetime
to the same stream ID, then those data will be stored in
the same flash block. This helps to significantly reduce

or eliminate the GC activity because all of the data be-
longing to those blocks are likely to be invalidated at the
same time.

Legacy SSD

Multi-streamed 
SSD

Request data

Time

Erase Block 0
(Stream 0)

Erase Block1
(Stream 1)

Erase Block 2
(Stream 2)

10 10 20 21 22 2010 10010

: Invalid

: Valid

Write
LBA 10
(stream 0)

Write
LBA 20
(stream 1)

Write
LBA100
(stream 2)

Write
LBA 21
(stream 1)

Write
LBA 10
(stream 0)

Write
LBA 22
(stream 1)

Write
LBA 10
(stream 0)

Write
LBA 20
(stream 1)

Write
LBA 10
(stream 0)

Erase Block1 Erase Block 2Erase Block 0

10 20 100 21 10 22 10 20 10

Figure 1: Comparison of data placement with or without
the multi-stream support.

RocksDB: RocksDB is a popular NoSQL database based
on log-structured merge trees (LSM-trees) [6, 9]. In
RocksDB, new data are inserted into a sorted structure
in the main memory called MemTable, which maintains
the most recently updated key-value data. At the same
time, the data are optionally appended to a write-ahead
log (WAL) for recovery purposes. When the MemTable
exceeds its size limit, the current MemTable becomes im-
mutable, and the contents of MemTable is flushed into
the storage device as a static sorted table file format,
called SSTable.

Since SSTables are immutable, the compaction pro-
cess needs to be conducted periodically when the to-
tal size of each level exceeds the predefined threshold.
During the compaction processing, redundant or invalid
key-value data are removed to minimize space ampli-
fication and valid data from the Leveli SSTables are
moved to the Leveli+1 SSTables. Therefore, the data
lifetime on the Leveli+1 SSTables is much longer than
those on the Leveli SSTables because the Leveli SSTa-
bles are compacted more frequently. Previous work with
RocksDB [22] showed that the multi-streamed SSDs re-
duce the overhead of GC significantly by assigning dif-
ferent stream IDs to the data depending on the type of
files and the level of SSTables.

3 Related Work
Much work has been done to reduce the cost of GC by
classifying data according to their hotness. Specifically,
DAC (Dynamic dAta Clustering) [5] maintains a num-
ber of logical regions and assigns a specific region num-
ber to each data so that data with similar temperatures
are stored in the same flash block. In DAC, the region
number associated with the data changes dynamically; if
some data are overwritten, they are migrated to the upper
region, while the data copied to other flash blocks during
GC are moved down to the lower region. Yang et al. pre-
sented AutoStream [23], an automatic stream detection
mechanism based on data temperature. AutoStream au-



tomatically assigns a stream ID by monitoring the update
frequency of the incoming data.

All the previous researchers have worked at the logi-
cal page level; their goal is to find a set of logical pages
that have the similar update frequency and group them
together in the same flash block. However, our approach
works at the stream level; we leverage the virtual stream
ID assigned by application developers and focus on iden-
tifying a set of virtual streams that have similar lifetime.
Compared with previous works, our approach is more ef-
fective with much less overhead.

4 Virtual Stream Management

4.1 vStream (Virtual Stream)
In NVMe SSDs, there is a limitation in the maximum
number of concurrently open streams. If the host tries
to use a new stream beyond this limitation, an arbitrary
stream is released to free the stream resources associ-
ated with that stream ID for the new stream. Also, when
all the stream resources are allocated for exclusive use
for specific namespaces [16], the subsequent write com-
mands are treated as normal write commands that do not
specify a stream ID [17]. On the contrary, SAS SSDs
return error responses when receiving an open stream re-
quest beyond the limitation [19]. Therefore, the host sys-
tem should explicitly close one or more open streams in
SAS SSDs when the available streams are exhausted to
process new stream requests.

In any case, the small number of physical streams
leads to a situation where the data which have differ-
ent lifetimes are mixed together in a flash block due to
frequent release and reuse of stream IDs. For this rea-
son, application developers want SSD manufacturers to
support a large number of physical streams, but it is
not easy because of the device’s restricted hardware re-
sources such as limited over-provisioning area [20] and
durable write buffer size [21] to process concurrent I/O
requests from multiple streams.

Our approach is to provide a large number of virtual
streams (vStreams) by virtualizing the notion of streams,
instead of increasing the number of physical streams. It
is motivated by the observation that if the data belonging
to different stream IDs have similar lifetimes, then we
can group those stream data to share the same physical
stream resources because they are very likely to be in-
validated together. This allows application developers to
manage a sufficient number of streams regardless of the
amount of device’s hardware resources, making storage
applications more portable and easier to be interoperable
among different SSDs from different vendors.

Figure 2 depicts the overall architecture for virtual
stream management. The vStream lifetime identifier
calculates the lifetime of each virtual stream and the

vStream clustering manager maps one or more vStreams
to a physical stream according to their lifetimes. The role
of each component is explained in more detail in the fol-
lowing subsections.

Flash

Stream 0

Flash Flash

Stream 1 Stream n

Host System

Virtual Stream Manager

vStream Clustering Manager

(Virtual Stream ID from 1 to 65535)

Flash

Stream n-1

vStream Lifetime Identifier

Figure 2: vStream Architecture with n physical streams

4.2 Identifying vStream Lifetime
In order to determine the lifetime of each vStream, we
need to monitor all the WRITE requests to the logical
pages in the vStream. However, it is impractical to col-
lect information for every logical page belonging to a
vStream. To minimize computation cost and memory
overhead, we focus on dead logical pages (dead pages)
instead of live logical pages (live pages) in each vStream.
The lifetime of a dead page can be simply calculated by
measuring the time when the page is written and the time
it is overwritten by the WRITE command or invalidated
by the DISCARD (or TRIM [18]) command. We define
the average lifetime of dead pages as the sum of the life-
times of all the individual dead pages divided by the total
number of dead pages. To reduce the computation cost
further, we calculate the average lifetime of dead pages
lazily; we update the sum of the lifetimes of dead pages
and the number of dead pages only when a logical page
is invalidated.

To calculate the lifetime of a dead page, we need to
keep track of the written time for each logical page which
requires a huge amount of memory. For example, a 1TB
SSD based on the full 4KB page-mapping has 256M log-
ical pages. If we use a 4-byte timestamp per logical page,
approximately 1GB of memory is required to maintain
the time when a logical page is written.

In order to reduce the memory overhead, we use a
novel scheme which leverages the following character-
istics of modern SSD architecture. First, the basic unit
of NAND flash program operation is the flash page size
which is larger than the logical page size. Second, mul-
tiple flash pages are programmed simultaneously due to
one-shot programming. Third, two or more planes can



be programmed at the same time by using a multi-plane
operation. Finally, modern SSDs exploit channel-level,
chip-level, and die-level parallelism to achieve higher
throughput [3,10,12]. As a large number of logical pages
are written into the NAND flash memory at once in mod-
ern SSDs, we can make them share a single timestamp
for the written time.

We assume a realistic organization of a 1TB SSD
based on TLC NAND flash memory where the number
of channels is four (c = 4) and a channel is composed of
4 chips (w= 4). Each chip internally has two dies (d = 2)
and flash blocks in each die are organized as two planes
(b = 2). A flash block is composed of 256 wordlines and
each wordline holds the data for LSB, CSB, and MSB
pages (p = 3). Finally, the flash page size is 16KB that
can contain the data of four 4KB logical pages (l = 4). In
this case, we can reduce the memory overhead by a factor
of 768 (= c∗w∗d ∗b∗ p∗ l) by sharing the same times-
tamp among the logical pages written together, requiring
only 1.3MB of memory to maintain the written time for
all logical pages. Thus, we can support a large number
of vStreams with a reasonable resource overhead.

4.3 Clustering vStreams
To classify vStreams according to their lifetimes, we use
the K-means clustering algorithm [8] which is one of the
most widely used data clustering algorithms. We let K
represent the number of physical streams supported by
the SSD. Our statistical classification scheme measures
the Euclidean distance between the average lifetime of
each vStream and the median lifetime of a certain phys-
ical stream to map vStreams closer to one of physical
streams with the similar lifetime. Moreover, we period-
ically (e.g., every 10 minutes in our evaluation) updates
the mapping from vStreams to physical streams in order
to adapt to new stream requests and/or the changes in the
workloads’ access patterns.

5 Evaluation
5.1 Experimental Setup
The proposed virtual stream management scheme has
been implemented on an open-source SATA SSD simula-
tor called DROLL [7] after extending it to support multi-
stream interface with up to four physical streams. We
configured the DROLL simulator to emulate 128Gb TLC
3D NAND flash memory [11] providing the total capac-
ity of 128GB with a 7% over-provisioning area. The sim-
ulator runs a full page-mapping FTL where the logical
page size is set to 4KB.

The block traces of RocksDB are obtained by running
RocksDB on the Ext4 file system with enabling the DIS-
CARD command. We use db bench to generate over-
write workload which overwrites randomly generated
key-value pairs in RocksDB. For RocksDB, compression

is disabled and the size of SSTable is set to 128MB. Also,
the max bytes for the compaction threshold of Level-1 is
configured to 256MB and the size multiplier of the next-
level compaction threshold is set to 4x, which results in
the maximum of 6-level SSTables on a 128GB SSD.

In our evaluation with RocksDB, we use the total 10
virtual streams by assigning different virtual stream IDs
to each level of SSTables, write-ahead log file (WAL),
the manifest file, RocksDB temporary files, and system
data generated by the Ext4 file system. We modified the
Linux kernel (4.10.0) and RocksDB (5.8.0) source codes
in the same way as the previous studies [13, 22] to pass
the (virtual) stream ID down to the SSD. In addition, we
modified them to pass stream ID along with each DIS-
CARD command for calculating the lifetime of stream
data.

We compare the proposed scheme (vStream-SSD)
with other alternatives: Legacy-SSD, DAC-SSD, Auto-
SSD, and Manual-SSD. Legacy-SSD represents the tra-
ditional page-mapping FTL with no multi-stream sup-
port. DAC-SSD implements the DAC algorithm [5]
which dynamically places the data into one of four log-
ical regions. Auto-SSD indicates the FTL which auto-
matically assigns a stream ID to each logical page based
on the AutoStream technique [23]. In Auto-SSD and
DAC-SSD, when the storage device receives informa-
tion that some logical pages have been invalidated via
the discard command, the update frequency or the log-
ical region number associated with those pages will be
reset. Finally, Manual-SSD shows an example of what a
RocksDB developer can do manually to map ten virtual
streams into four physical streams. For Manual-SSD, we
consider the static stream ID assignment as shown in Ta-
ble 1.

Table 1: Static stream ID assignment in Manual-SSD
Stream ID 1 2 3 4

File Type
or

Level of SSTable

System data
WAL
Manifest
Temporary

Level-0
Level-1

Level-2
Level-3

Level-4
Level-5

5.2 Synthetic Benchmark
To evaluate the performance of various schemes in a
controlled environment, we have developed a synthetic
benchmark which is similar to the one used in the pre-
vious study [23]. We divide the total 120GB of storage
capacity into 8 partitions: four hot partitions (each 6GB
in size), two warm partitions (each 14GB in size), and
two cold partitions (each 34GB in size). We loop over
the 8 partitions one by one, issuing a single 128KB write
request at a time in each partition. Within a partition,
each 128KB region is written sequentially to the end of
the partition and then the write starts over from the be-



ginning again. Since the size of the hot partition is much
smaller than that of the cold partition, logical pages in a
hot partition will receive the overwrite more frequently.
In this experiment, we assign a different virtual stream
ID to each partition and see if vStream-SSD can cluster
those hot, warm, and cold streams effectively.

0

1

2

3

4

5

6

7

8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
os

t 
of

 G
C 

 

Figure 3: Comparison of normalized throughput and cost
of GC with synthetic benchmark

Figure 3 illustrates the throughput and cost of GC in
Legacy-SSD, DAC-SSD, Auto-SSD, and vStream-SSD.
We measure the cost of GC as the number of valid pages
copied during GC. All the results are normalized to those
of Legacy-SSD for comparison. First, we observe that
the multi-stream support is very effective; it improves the
performance by 3x∼7x compared to Legacy-SSD which
has no streams. Second, Auto-SSD achieves much lower
performance than DAC-SSD. This is because Auto-SSD
maintains the update frequency based on the large chunk
unit (1MB in size by default) to reduce the monitor-
ing cost and classifies logical pages according to their
update frequencies in logarithmic scale. In compari-
son, DAC-SSD utilizes much more fine-grained informa-
tion at each logical page level. Finally, Figure 3 shows
that vStream-SSD performs best among the evaluated
schemes. When comparing to Legacy-SSD, vStream-
SSD improves the throughput by 7x and reduces the cost
of GC by 51%. The reason is that the lifetime of vStream
does not change dynamically in this workload. There-
fore, vStream-SSD can continuously separate the data
according to the lifetime of vStream after the initial clus-
tering is completed.

5.3 RocksDB
Figure 4 compares the throughput and the cost of GC in
Legacy-SSD, DAC-SSD, Auto-SSD, Manual-SSD, and
vStream-SSD for our experiment with RocksDB. As in
Figure 3, the results are normalized to those of Legacy-
SSD. Overall, we can see that the proposed vStream-
SSD outperforms other approaches. When comparing to
Legacy-SSD, vStream improves the throughput by 70%
while reducing the cost of GC by 18%.

Note that vStream-SSD achieves a significantly higher
throughput than Manual-SSD which models the situa-
tion where application developers are forced to com-
bine several streams statically due to the limited num-

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 C
os

t 
of

 G
C 

 

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Figure 4: Comparison of normalized throughput and cost
of GC with RocksDB

ber of physical streams. This means that the manual and
static approach used in Manual-SSD cannot cope well
with the dynamic changes in application’s characteris-
tics over time. On the contrary, vStream-SSD is capable
of updating the virtual-to-physical stream mapping at run
time according to the changes in the lifetimes of virtual
streams.

Another interesting result is that DAC-SSD and Auto-
SSD perform worse even than Legacy-SSD which does
not support multiple streams. The main reason is that
both DAC and AutoStream techniques estimate the hot-
ness of a logical page based on the frequency of over-
write to the logical page. However, this approach has a
limitation in modern data-intensive applications such as
RocksDB, where SSTables are sequentially written and
then deleted after compaction. The deleted logical pages
are eventually allocated to a new file, but the new file
may have a different lifetime characteristic from the old
file. Hence, the accumulated information on those logi-
cal pages becomes useless for new files. Figure 4 shows
that vStream-SSD can handle this situation better as it
gathers lifetime information not on the logical page level,
but on the stream level.

6 Conclusion
We present a virtual stream management scheme to re-
move the restriction on the number of physical streams
in the existing multi-streamed SSDs. Our vStream pro-
vides the host system with a sufficient number of virtual
streams so that they can take full advantage of multi-
streamed SSDs regardless of the amount of device’s
hardware resources. Experimental results with RocksDB
show that our vStream improves the overall throughput
by 70% and reduces the cost of GC by 18% compared
to a legacy SSD. As future work, we plan to develop a
more dynamic vStream clustering algorithm and imple-
ment the proposed scheme on a real multi-streamed SSD.

7 ACKNOWLEDGMENT
This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea Gov-
ernment (MSIP) (No. NRF2016R1A2A1A05005494).
The ICT at Seoul National University provides research
facilities for this study.



References
[1] CAI, Y., GHOSE, S., HARATSCH, E. F., LUO, Y., AND MUTLU,

O. Errors in flash-memory-based solid-state drives: Analy-
sis, mitigation, and recovery. arXiv preprint arXiv:1711.11427
(2017).

[2] CAI, Y., GHOSE, S., LUO, Y., MAI, K., MUTLU, O., AND
HARATSCH, E. F. Vulnerabilities in mlc nand flash memory pro-
gramming: experimental analysis, exploits, and mitigation tech-
niques. In High Performance Computer Architecture (HPCA),
2017 IEEE International Symposium on (2017), IEEE, pp. 49–
60.

[3] CHEN, F., LEE, R., AND ZHANG, X. Essential roles of exploit-
ing internal parallelism of flash memory based solid state drives
in high-speed data processing. In High Performance Computer
Architecture (HPCA), 2011 IEEE 17th International Symposium
on (2011), IEEE, pp. 266–277.

[4] CHEN, T.-Y., CHANG, Y.-H., HO, C.-C., AND CHEN, S.-H.
Enabling sub-blocks erase management to boost the performance
of 3d nand flash memory. In Proceedings of the 53rd Annual
Design Automation Conference (2016), ACM, p. 92.

[5] CHIANG, M.-L., LEE, P. C., CHANG, R.-C., ET AL. Using
data clustering to improve cleaning performance for flash mem-
ory. Software-Practice & Experience 29, 3 (1999), 267–290.

[6] DONG, S., CALLAGHAN, M., GALANIS, L., BORTHAKUR, D.,
SAVOR, T., AND STRUM, M. Optimizing space amplification in
rocksdb. In CIDR (2017).

[7] DROLL. Open Source SATA SSD Simulator. https://github.
com/essencloud/droll.

[8] HARTIGAN, J. A., AND WONG, M. A. Algorithm as 136: A
k-means clustering algorithm. Journal of the Royal Statistical
Society. Series C (Applied Statistics) 28, 1 (1979), 100–108.

[9] HE, J., KANNAN, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. The unwritten contract of solid state drives. In
EuroSys (2017), pp. 127–144.

[10] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO, H., AND
ZHANG, S. Performance impact and interplay of ssd parallelism
through advanced commands, allocation strategy and data granu-
larity. In Proceedings of the international conference on Super-
computing (2011), ACM, pp. 96–107.

[11] IM, J.-W., JEONG, W.-P., KIM, D.-H., NAM, S.-W., SHIM,
D.-K., CHOI, M.-H., YOON, H.-J., KIM, D.-H., KIM, Y.-S.,
PARK, H.-W., ET AL. 7.2 a 128gb 3b/cell v-nand flash memory
with 1gb/s i/o rate. In Solid-State Circuits Conference-(ISSCC),
2015 IEEE International (2015), IEEE, pp. 1–3.

[12] JUNG, M. Exploring parallel data access methods in emerging
non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems 28, 3 (2017), 746–759.

[13] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-
streamed solid-state drive. In HotStorage (2014).

[14] KIM, C., CHO, J.-H., JEONG, W., PARK, I.-H., PARK, H.-
W., KIM, D.-H., KANG, D., LEE, S., LEE, J.-S., KIM, W.,
ET AL. 11.4 a 512gb 3b/cell 64-stacked wl 3d v-nand flash mem-
ory. In Solid-State Circuits Conference (ISSCC), 2017 IEEE In-
ternational (2017), IEEE, pp. 202–203.

[15] KIM, M., LEE, J., LEE, S., PARK, J., AND KIM, J. Improving
performance and lifetime of large-page nand storages using erase-
free subpage programming. In Proceedings of the 54th Annual
Design Automation Conference 2017 (2017), ACM, p. 24.

[16] MARKS, K. An nvm express tutorial. Flash Memory Summit,
Santa Clara, CA 92 (2013).

[17] NVM EXPRESS WORKGROUP. NVM Express Revision
1.3. http://nvmexpress.org/wp-content/uploads/NVM_
Express_Revision_1.3.pdf, 2017.

[18] SMITH, K. Garbage collection. SandForce, Flash Memory Sum-
mit, Santa Clara, CA (2011), 1–9.

[19] T10. SCSI Block Commands-4(SBC-4). http://www.t10.

org/cgi-bin/ac.pl?t=f&f=sbc4r15.pdf, 2017.

[20] YADGAR, G., AND GABEL, M. Avoiding the streetlight effect:
I/o workload analysis with ssds in mind. In HotStorage (2016).

[21] YAN, S., LI, H., HAO, M., TONG, M. H., SUNDARARAMAN,
S., CHIEN, A. A., AND GUNAWI, H. S. Tiny-tail flash: Near-
perfect elimination of garbage collection tail latencies in nand
ssds. In FAST (2017), pp. 15–28.

[22] YANG, F., DOU, K., CHEN, S., HOU, M., KANG, J.-U., AND
CHO, S. Optimizing nosql db on flash: A case study of rocksdb.
In Ubiquitous Intelligence and Computing and 2015 IEEE 12th
Intl Conf on Autonomic and Trusted Computing and 2015 IEEE
15th Intl Conf on Scalable Computing and Communications and
Its Associated Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th
Intl Conf on (2015), IEEE, pp. 1062–1069.

[23] YANG, J., PANDURANGAN, R., CHOI, C., AND BALAKRISH-
NAN, V. Autostream: automatic stream management for multi-
streamed ssds. In Proceedings of the 10th ACM International
Systems and Storage Conference (2017), ACM, p. 3.


