
Future Generation Computer Systems 65 (2016) 76–89
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

ActiveSort: Efficient external sorting using active SSDs in the
MapReduce framework
Young-Sik Lee a, Luis Cavazos Quero b, Sang-Hoon Kim a, Jin-Soo Kim b,∗,
Seungryoul Maeng a

a School of Computing, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
b College of Information and Communication Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-gu, Suwon 16419, Republic of Korea

h i g h l i g h t s

• A mechanism of efficient external sorting by on-the-fly data merge inside SSDs.
• Performance of data merge is improved using parallelism of multi-channel inside SSDs.
• Performance of Hadoop is improved by reducing the amount of I/O using active SSDs.
• Lifetime of SSDs in Hadoop is extended by reducing the amount of write.

a r t i c l e i n f o

Article history:
Received 1 July 2015
Received in revised form
18 February 2016
Accepted 4 March 2016
Available online 16 March 2016

Keywords:
Data-intensive computing
MapReduce
External sorting
Solid state drives
In-storage processing

a b s t r a c t

In the last decades, there has been an explosion in the volume of data to be processed by data-intensive
computing applications. As a result, processing I/O operations efficiently has become an important
challenge. SSDs (solid state drives) are an effective solution that not only improves the I/O throughput
but also reduces the amount of I/O transfer by adopting the concept of active SSDs. Active SSDs offload
a part of the data-processing tasks usually performed in the host to the SSD. Offloading data-processing
tasks removes extra data transfer and improves the overall data processing performance.

In this work, we propose ActiveSort, a novel mechanism to improve the external sorting algorithm
using the concept of active SSDs. External sorting is used extensively in the data-intensive computing
frameworks such as Hadoop. By performing merge operations on-the-fly within the SSD, ActiveSort
reduces the amount of I/O transfer and improves the performance of external sorting in Hadoop.
Our evaluation results on a real SSD platform indicate that the Hadoop applications using ActiveSort
outperform the original Hadoop by up to 36.1%. ActiveSort reduces the amount of write by up to 40.4%,
thereby improving the lifetime of the SSD.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Data-intensive computing is a class of applications that process
a large amount of data to extract useful information. The amount
of data to be processed is continuously increasing at a fast rate in
such fields as web search, social networking service, e-commerce,
scientific computing, and log processing. As a result, the efficiency
of computing data in these data-intensive applications becomes
a major concern. Google’s MapReduce [1] provides a famous

∗ Corresponding author.
E-mail addresses: yslee@calab.kaist.ac.kr (Y.-S. Lee), luis@skku.edu (L.C. Quero),

sanghoon@calab.kaist.ac.kr (S.-H. Kim), jinsookim@skku.edu (J.-S. Kim),
maeng@kaist.ac.kr (S. Maeng).

http://dx.doi.org/10.1016/j.future.2016.03.003
0167-739X/© 2016 Elsevier B.V. All rights reserved.
programming model for data-intensive computing, and Apache
Hadoop [2] implements this model as an open source project.

Data-intensive computinghandles a large amount of datawhich
generates a vast amount of I/O. Thus, I/O performance is crucial
to the processing of the ever-increasing volumes of data. Adopting
fast storage devices is one of the simplest, yet most effective ways
to improve the I/O performance [3,4]. Solid state drives (SSDs)
are in the spotlight since they are increasingly being adopted in
data-intensive computing because of their advantages over legacy
hard disk drives (HDDs) such as high performance, low power
consumption, small form factor, lightweight, and shock resistance.

One of the recent trends in the use of SSDs in data-intensive
computing is to revisit the concept of active disks [5]. Instead of
reading and processing data in the host, active disks process data
within the storage device. In this spirit, the so-called active SSDs

http://dx.doi.org/10.1016/j.future.2016.03.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.03.003&domain=pdf
mailto:yslee@calab.kaist.ac.kr
mailto:luis@skku.edu
mailto:sanghoon@calab.kaist.ac.kr
mailto:jinsookim@skku.edu
mailto:maeng@kaist.ac.kr
http://dx.doi.org/10.1016/j.future.2016.03.003

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 77
attempt to offload data processing functions (e.g., min/max, scan,
count, histogram, etc.) to SSDs where the data is already stored
[6–10]. In these active SSDs, the host can read results directly
from the active SSDs without incurring excessive data transfer nor
host-side computation, achieving better performance and energy
saving. Additionally, this approach becomes more promising to
improve the efficiency and scalability in data-intensive computing
as the computing capability of SSDs is becoming more powerful.

However, the previous active SSD studies are limited in terms
of the types of data-processing functions they consider. They
primarily consider simple data filtering or aggregation functions,
which only output a small amount of result after summarizing a
large amount of data. For the other type of data processing function
such as external sorting which has the same size of input/output
data, another approach is required to get the benefits of active
SSDs.

In this work, we propose a novel mechanism called ActiveSort
that accelerates external sorting using the concept of active
SSDs. By adopting the concept of ActiveSort, we improve the
MapReduce framework in the aspects of the performance, energy
efficiency, and lifetime of SSDs. External sorting is one of the core
data-processing algorithms that enables to sort large-scale data
using a limited amount of memory. The MapReduce framework
extensively utilizes external sorting to generate intermediate and
final outputs during the map/reduce phases [1,2]. Additionally,
many query processing algorithms in database management
systems (DBMSes) perform external sorting as one of their key
components [11].

ActiveSort provides an efficient in-storage external sorting
mechanism. The key idea behind ActiveSort is to perform the
merge operation involved in external sorting within the storage
device. In the traditional external sorting approach, the host
produces the final sorted results by reading partially sorted data
from storage and merging them in the host. In contrast, ActiveSort
creates the sorted output on-the-fly within the active SSD when
the host fetches the output data via standard read requests.
Therefore, ActiveSort can eliminate the unnecessary data transfer
incurred by reading the intermediate data and writing back the
sorted data to the storage. ActiveSort significantly reduces the
I/O burden of the host machine in processing large-scale data.
ActiveSort is also designed to utilize the inherent characteristics
of SSDs to optimize its performance.

We have integrated ActiveSort into theMapReduce framework.
Our ActiveSort prototype has been implemented in a real SSD
platform, and Hadoop has been modified to use ActiveSort
whenever external sorting is required. While sorting the data, our
experimental results indicate that ActiveSort reduces the amount
of data written to the SSD by up to 50.0% and improves the elapsed
time by up to 53.1% compared to the original external sorting
scheme. Consequently, Hadoop using ActiveSort reduces the
amount ofwritten data by up to 40.4% and outperforms the original
Hadoop by up to 36.1% while running the HiBench workloads. At
the same time, Hadoop based on ActiveSort decreases the energy
consumption by up to 35.2% compared to the original Hadoop.

The contributions of this work can be summarized as follows.
First, we present ActiveSort, a mechanism to reduce the amount
of I/O during external sorting by offloading the merge operation
to the SSDs. The reduced I/O traffic improves the performance
of external sorting and the lifetime of SSDs significantly. Second,
we show that ActiveSort is very effective in accelerating the
performance of data-intensive applications based on the Hadoop
framework, as the Hadoop framework heavily relies on external
sorting to manipulate a large amount of data that does not fit into
the memory. The fast execution of Hadoop applications enabled
by ActiveSort is essential to support near real-time big data
processing in the cloud environment. Third, we also demonstrate
that ActiveSort is a cost-effective solution to reduce the amount of
energy consumption for running Hadoop applications. As Hadoop
is generally deployed on very large-scale clusters, this also helps to
reduce the operational expenditure (OPEX) in a data center for air
conditioning, ventilation, and other maintenance.

The rest of this work is organized as follows. Section 2
gives the background information on SSD, external sorting, and
Hadoop. The main concept of ActiveSort and how to integrate
it in the Hadoop framework are described in Section 3. The
detailed implementation of ActiveSort and the modified Hadoop
framework is explained in Section 4. Evaluation results are
presented in Section 5. Section 6 overviews the related work.
Finally, we conclude the paper in Section 7.

2. Background

2.1. Solid state drives (SSDs)

Fig. 1 illustrates the general architecture of a typical SSD which
is composed of an SSD controller, DRAM, and an array of NAND
flash memory chips connected to flash controllers by multiple
channels. Unlike HDDs, NAND flash memory has several unique
characteristics. First, in-place update is not supported, hence
previous data should be erased first before any new data is written
into the same area. Second, write operations take a much longer
time to complete than read operations. Third, there is a limit in
the number of erase operations that can be performed on a given
memory cell. This is commonly known as NAND endurance and
impacts the SSD’s operational lifetime.

In order to cope with the aforementioned characteristics of
NAND flash memory, the SSD controller runs a sophisticated
firmware called flash translation layer (FTL). Usually, FTL manages
the physical flash memory space in a log-structured manner and
keeps track of logical-to-physical address mapping information
internally. It also performs wear-leveling to prolong the lifetime of
the SSD.

The functions performed by the FTL are getting more complex
to match the increasing host interface speeds and to exploit
increasing parallelism across a number of NAND flash chips
connected tomultiple channels. Thus, the hardware resources of an
SSD are becoming more powerful; for example, Samsung 850 Pro,
one of the latest high-end SSDs, features ARM-based triple cores
operating at 400 MHz and 1 GB of DRAMwith eight parallel NAND
channels [12].

2.2. External sorting

External sorting [13] is a type of sorting algorithms that handles
large-scale data which does not fit into the memory. As illustrated
in Fig. 2, the traditional external sorting consists of two phases:
Partial sorting and Merge.

During the Partial sorting phase, the input data is divided into
chunks whose size is smaller than the available memory. The data
of each chunk is sorted using an in-memory sorting algorithm and
the sorted data of the chunk is written to the storage (Step 1). In
the Merge phase, the partially sorted chunks are read from the
storage and merged to produce the final sorted data (Step 2). The
final sorted data is written into the storage (Step 3), and usually
sent to the other task later for subsequent data processing (Step 4).

2.3. Hadoop

Hadoop [2] is an open-source framework for processing a large
amount of data in a distributed manner. Hadoop processes the
data with a simple programming model called MapReduce [1].

78 Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89
Fig. 1. The architecture of SSD.
Fig. 2. The process of the traditional external sorting.
The MapReduce programming model consists of map and reduce
functions that process data using structured key/value pairs. After
parsing input data into key/value pairs, the map function takes
the input key/value pairs and creates new intermediate key/value
pairs. The reduce function performs an operation on each group
of intermediate records with the same key and generates output
key/value pairs.

In Hadoop,1 tasks which perform the map/reduce functions
are scheduled and assigned to several computing nodes. While
an application is running on Hadoop, input and output data are
usually stored in distributed file systems such as HDFS (Hadoop
Distributed File System). The intermediate data produced by
map/reduce tasks is stored in the local storage of the computing
node running the task.

Fig. 3 depicts the detailed execution flow of a Hadoop
application. First, the input data on HDFS is divided into splits,
which are contiguous portions of the input data. In theMap phase,
each map task applies the map function to the split and stores
the intermediate data as several temporary files in the local disk.
The map task partitions the temporary data using a user-defined
partition function, sorts the data, and writes to the disk. Each
partition is assigned to one reduce task, so that the number of
reduce tasks is equal to the number of partitions. Next, in the
Shuffle phase, the partition including the intermediate data is
transferred to appropriate reduce tasks. All the intermediate data
with the same key must be processed by the same reduce task.

1 This description is based on the Hadoop version 1.1.2.
The intermediate data from several map tasks is sorted in the Sort
phase to get the records with the same key easily. After the reduce
function is applied in the Reduce phase, the reduce task stores the
final output in HDFS.

2.4. Motivation

External sorting is a core function to execute MapReduce
applications inHadoop. In themap task, the split,which is the input
data of a map task, can be larger than the available memory size. In
this case, the intermediate results produced by applying the map
function to the input data are sorted and then stored in the local
disk as spill files. This procedure corresponds to the Partial sorting
phase in the external sorting. After processing all the input data
of the map task, the spill files are merged to pass the sorted data
to the reduce tasks. This step corresponds to the Merge phase in
the external sorting. The reduce task also executes external sorting
to group the records by key in the reduce function. However for
the reduce task, only the Merge phase of the external sorting is
required since the intermediate data is already sorted by the map
task.

As mentioned in Section 2.2, the external sorting produces
massive I/O requests to generate the sorted output because it stores
the intermediate data into the disk due to the limitation in the
available memory size. Since the external sorting is extensively
used in Hadoop, the large amount of I/O requests from the external
sorting can overload the storage device. Thus, the efficiency of
external sorting is critical to the overall performance of Hadoop
applications.

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 79
Fig. 3. The execution flow of Hadoop.
3. Design

3.1. ActiveSort

We propose a new external sorting mechanism called Ac-
tiveSort which performs data merge inside active SSDs. ActiveSort
follows the conventional wisdom of moving computation where
the data resides. In ActiveSort, the sorted output is synthesized
when the host requires it by merging the partially sorted chunks
stored in SSDs. Since the final sorted output is generated on-the-fly,
the host does not have to read the partially sorted chunks and then
write the sorted output to the storage (cf. Step 2 and 3 in Fig. 2).

Fig. 4 illustrates the overall process of ActiveSort. In ActiveSort,
the Partial sorting phase is the same as that of the traditional
external sorting (Step 1). However, the Merge phase is postponed
until the host issues read requests to the final sorted output. When
a read request to the final output arrives from the host, ActiveSort
merges data on-the-fly inside the active SSD and transfers the
result as the response of the read request (Step 2).

Algorithm 1 Host-side pseudo-code of ActiveSort
Input: unsorted data I
Output: sorted data O
1: S ← {S0, S1, · · · , Sk−1 | Si = split(I)}; ◃ |Si| < the available

memory size
2: for all Si in S do
3: Ci ← sort(Si); ◃ in-memory sort
4: write(Ci);
5: end for ◃ Partial sorting phase
6: while r ← read() ≠ ∅ do ◃ issue read requests to the SSD
7: O← O+ {r};
8: end while

The pseudo-codes of ActiveSort executed in the host and the
SSD are presented in Algorithm 1 and 2, respectively. In the host-
side (Algorithm 1), ActiveSort has a separate Partial sorting phase
for each chunk (lines 2–5) and then generates the requests to the
sorted output to the SSD (line 6). These read requests activate the
on-the-fly data merge inside the SSD.

Before executing the merge operation, the SSD-side of Ac-
tiveSort (Algorithm 2) prepares it by reading the first records of
all the chunks (lines 2–4). When the requests to the sorted data ar-
rive at the SSD (line 5), ActiveSort finds the recordwhose key is the
smallest (line 9) and sends the record to the output (line 10) as the
response of the read request. If there is a next record to process,
ActiveSort reads the record (lines 12–14) and finds the record with
the minimum key again. Note that while reading the records from
the chunks and sending the results to the host, ActiveSort can use
multiple internal buffers to increase the I/O bandwidth. ActiveSort
can also use themin-heap algorithm [14] to find theminimum key
efficiently among the chunks.
Algorithm 2 SSD-side pseudo-code of ActiveSort
Input: C = {Ci | 0 ≤ i < k, k = # of chunks},

partially sorted chunk Ci = {ri,j | 0 ≤ j < ni, ni = # of records in Ci}

Output: record by key order
1: S ← ∅; ◃ S holds candidate records to be merged
2: for i← 0 to k− 1 do
3: S ← S + {ri,0};
4: end for
5: while read requests to the sorted data arrive do
6: if S = ∅ then
7: send_to_host(∅);
8: end if
9: ri,j ← minimum_key(S); ◃ find a record with minimum key in S
10: send_to_host(ri,j);
11: S ← S − {ri,j};
12: if j < (ni − 1) then
13: S ← S + {ri,j+1}; ◃ add the next record in Ci
14: end if
15: end while

As shown in Fig. 4, ActiveSort requires only half of read and
write operations to obtain the final sorted output compared to
the traditional external sorting. Although the read performance
of ActiveSort is slightly degraded due to the run-time data merge
operation, reducing the amount of I/O compensates the overhead
of the on-the-flymerge performed in the SSD. In addition, reducing
the amount of datawritten to the SSD helps to improve the lifetime
of SSDs significantly.

By offloading the merge operation to SSDs, ActiveSort has
the following advantages. First, ActiveSort regards the SSD as
an additional computation entity, so that it enables concurrent
computation in the SSD and in the host. Second, the sorted results
can be delivered to the other devices without involving the host
CPUs if the devices support DMA. Last, ActiveSort processes I/Os
efficiently by exploiting the internal architecture of SSDs, which is
difficult to access from the host.

3.2. Hadoop with ActiveSort

As we mentioned in Section 2.3, Hadoop relies on external
sorting extensively to deal with a large amount of data that does
not fit into the limited memory. This subsection describes how to
integrate ActiveSort with Hadoop.

3.2.1. ActiveSort in map and reduce tasks
Hadoop can benefit from active SSDs by replacing the external

sortingwithActiveSort inmap and reduce tasks. Fig. 5 outlines how
ActiveSort can be used in Hadoop to improve its performance. In
the map task, spill files are written into a local disk after applying
the map and sort functions. This step is similar to the original
Hadoop process. However, the Merge phase is skipped until the
read request for the output of the map task arrives. When the

80 Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89
Fig. 4. The process of ActiveSort.
Fig. 5. The execution flow of Hadoop with ActiveSort.
request comes, ActiveSort merges data internally and responds
to the request with the result. Compared to the original Hadoop,
ActiveSort can reduce the amount of I/O to manipulate the sorted
output by generating the output on-the-fly inside SSDs.

Applying ActiveSort to the reduce task is more complicated. In
the original Hadoop, the output files of map tasks are read into
the host memory for the reduce task. Usually, the reduce task
generates the input data for the reduce function by merging the
entries with the same key. However, if there are too many files, all
the input data cannot be stored in the host memory. Thus, if the
number of files to merge is large, Hadoop uses multi-pass merge
sort which merges a number of files into a single large file in each
pass. This multi-pass merge sort incurs massive I/Os because the
intermediate data of each pass is stored in the disk.

ActiveSort can reduce the amount of I/Os efficiently when the
reduce task uses the multi-pass merge sort. When the multi-
pass merge sort requests the data to merge, ActiveSort produces
the data by performing the merge operation internally. Since
ActiveSort combines several pre-sorted files into fewer files inside
the SSD, it decreases the number of files to merge gracefully. This
not only reduces the number of steps in the multi-pass merge sort,
but also reduces the amount of I/Os.

Algorithm 3 describes the simplified steps of map and reduce
task with ActiveSort. Most of steps remain same as in the original
Hadoop. ActiveSort replaces the merge operations and removes
extra read/write operations in the map and reduce task (lines
11, 21). ActiveSort in the map task starts by the request from
the shuffle phase in the reduce task (line 18). In the reduce task,
ActiveSort is activated by the request from the reduce function
(line 22) if it requires the multi-pass merge sort.

3.2.2. Interface between ActiveSort and Hadoop
To enable the on-the-fly data merge inside SSDs, ActiveSort

needs to know the information about the metadata such as
key length, key type, record length, total sizes and locations
of the input/output files. The identifier of map/reduce tasks for
input/output files are also required since ActiveSort needs to
distinguish them to execute multiple merge operations. These
information can be transferred to the SSD by defining a new
interface [10] or by using the object-based interface [15]. With
Algorithm 3 The steps of map and reduce task with ActiveSort
1: procedureMapTask(split) ◃ split = input split of map task
2: sizes ← size of a spill buffer;
3: i← 0;
4: while B← read_HDFS(split, sizes) ≠ EOF do
5: B′ ← map(B);
6: Si ← sort(B′);
7: write(Si);
8: i← i+ 1;
9: end while
10: if access to the output then
11: M ← run_ActiveSort(S0, S1, · · · , Si−1);
12: send(M); ◃ send the resultM to the reduce task
13: end if
14: end procedure
15: procedure ReduceTask()
16: j← 0;
17: for allmap tasks do
18: Mj ← get_result(); ◃ shuffle, activate ActiveSort in the map task
19: j← j+ 1;
20: end for
21: R← merge(M0,M1, · · · ,Mj−1); ◃ use ActiveSort
22: R′ ← reduce(R);
23: write_HDFS(R′);
24: end procedure

the object-based interface, ActiveSort can acquire the necessary
information easily because the object-based interface allows to
describe objects (or files) with one or more attributes. For this,
the SSD requires additional modules to parse command, store
objects, and index objects, which entails a considerable amount of
engineering effort.

Instead, we used a predefined LBA (logical block address) to
transfer such information. Before running the data merge oper-
ation, Hadoop writes the required information to the designated
LBA and ActiveSort extracts it from the contents of the LBA. It is
difficult to transfer the physical locations of a file with one simple
write command since the amount of information can be enormous.
Therefore, we located each input/output file at the fixed locations
in the file system for fast prototyping. The detailed mechanism is
described in Section 4.2.3.

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 81
3.2.3. Other design issues
When integrating ActiveSort with Hadoop, one important

consideration is to guarantee that the input data is written
completely to the SSD before executing the data merge in
ActiveSort. Since the datamerge is performed inside of the SSD, the
entire input datamust be available before thedatamerge operation
is started. This requires performing an fsync() operation on
intermediate fileswheneverwe initiate the ActiveSortmechanism.
However, while running the Hadoop application using large data
sets, we have observed that ActiveSort spends very short time in
flushing the data to the SSD. This is because the dirty data in the
page cache is frequently written back into the disk due to the
limited memory size. In most cases, the input data was already
available in the disk before starting the on-the-fly data merge.

Another consideration is the record size. As the record size
becomes smaller, the performance of ActiveSort gets worse due
to the computation overhead (such as key comparison) during the
data merge operation. In practice, the computation overhead plays
an important role in the overall performance, since the computing
power of the embedded CPU and the memory bandwidth in the
SSD is limited. For example, when the record size is 128 bytes,
the throughput of ActiveSort is reduced by 84.9% in our prototype
SSD compared to the case when using the record size of 32 kB (cf.
Section 5.2).

To overcome this limitation, we apply ActiveSort to Hadoop
selectively depending on the record size. In the map task,
ActiveSort is enabled if the record size of its input split is large.
In the reduce task, only the part of intermediate data whose
record size exceeds a certain threshold is merged by ActiveSort.
For the data with the small record size, Hadoop uses the original
mechanism to merge the records in the host.

It is not obvious to adopt ActiveSort in the Hadoop environment
where the data is encrypted or compressed. In this case, ActiveSort
cannot obtain the key data to use during merge operation. One
simple solution is to apply encryption or compression only to
the value data. Hadoop already provides this mechanism in the
SequenceFile format to store binary key/value data. Another
approach is to use the order-preserving encryption [16] for the
records, as ActiveSort requires just the ordering information
among the keys, not the contents.

ActiveSort does not require any modification for the fault
tolerance in Hadoop because ActiveSort only manipulates the
intermediate data in the nodes, which is locally stored and can
be generated again upon the fault. If a node running a map task
has a failure, the map task can be restarted on a different node
and generates the spill files to merge again in the relocated node.
Similarly, a failed reduce task will be also relocated to other node
and initialize ActiveSort by collecting the results ofmap tasks again
before starting the merge operation.

4. Implementation

In this section, we present the implementation details of
ActiveSort including the mechanism to exploit the internal
parallelism in SSDs. We also describe the changes in the Hadoop
framework required to use ActiveSort. ActiveSort can be integrated
easily into Hadoop because ActiveSort just replaces the external
sorting phase without altering the existing execution flow of
Hadoop. However, ActiveSort requires an interface to deliver the
data-specific metadata information to the SSD to enable the on-
the-fly data merge inside the SSD.

Fig. 6 depicts the overall architecture of the ActiveSort-enabled
Hadoop framework. The framework consists of ActiveSort front-
end module, ActiveSort file manager, and ActiveSort itself. The
ActiveSort front-end module sends the information such as key
size, key type, record length, and size of input/output data to the
Fig. 6. The overall architecture of the Hadoop framework based on ActiveSort.

SSD, which are required to perform ActiveSort. It also creates an
interface file which is the access point to get the sorted results in
Hadoop. The interface file is allocated logically, but the contents
are served by the on-the-fly data merge process when Hadoop
requests the sorted results. The ActiveSort file manager in the file
system handles the block locations of input and output files, and
notifies ActiveSort of the information.

4.1. ActiveSort

4.1.1. Prototype SSD
To implement ActiveSort, we have developed a prototype SSD

based on the Jasmine OpenSSD platform [17]. It consists of an
87.5MHzARM7TDMI embeddedCPU, 64MBDRAM, and four 32GB
NAND flash memory modules with each connected to a different
flash channel. The NAND flash memory module is configured in
such a way that the size of a flash page is 32 kB and an erase block
occupies 4 MB. The prototype SSD is connected to the host via the
SATA2 interface.

The Jasmine platform is an open-source SSD platform which
enables us to customize its firmware. We have implemented a
page-mapped FTL [18] to service normal read/write requests. The
proposed on-the-fly data merge scheme is implemented in the
read path of the FTL.

4.1.2. On-the-fly data merge
The on-the-fly data merge is activated by read requests for

the sorted output from the host. Initially, ActiveSort arranges a
chunk buffer in the internal DRAM for each partially sorted chunk
and prefetches several records from each chunk to the associated
chunk buffer. Then, ActiveSort compares the keys in the chunk
buffers which come from different chunks. The record with the
minimum key value is copied to the output buffer that handles the
read request. These steps are repeated until the output buffer is
filled, at which point the read result is returned to the host. After
processing one flash page in a chunk buffer, ActiveSort tries to
prefetch subsequent records from the NAND flash memory to the
chunk buffer.

The overhead of comparing keys and the additional memory
copy between the chunk buffer and the output buffer is critical to
the performance of ActiveSort because they should be performed
in the read path. Fortunately, the overhead can be reduced by
overlapping the key comparison and memory copy operation with
reading the data from NAND flash memory to chunk buffers. This
is possible because SSDs have embedded CPUs for running the

82 Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89
FTL while another flash memory controller dedicated to each flash
channel transfers data between DRAM buffers and NAND flash
memory. In practice, ActiveSort allocates more than one flash page
for a chunk buffer to maximize the overlap between computation
on CPUs and data transfer by flash memory controllers.

4.1.3. Exploiting multi-channel parallelism
We can utilize the internal parallelism inherent in SSDs

by activating multiple flash memory chips simultaneously to
maximize the performance of ActiveSort. While writing the
partially sorted chunks in ActiveSort, it is easy to increase
the parallelism by interleaving the data across the available
flash memory channels since each chunk is written sequentially.
However, a more sophisticated mechanism is required to read the
data as there can be a severe channel conflict during the datamerge
operation for the following reasons; (1) Although the records in a
single chunk are interleaved across flash memory channels, one or
more chunks can start from the same channel. In this case, reading
the first record from those chunks should be serialized. (2) Even if
the chunks are fully interleaved, the channel conflict can occur if
the key value is skewed. Thus, when reading data fromNAND flash
memory, it is highly likely that the target channel is busy servicing
the previously issued request from the other chunk buffer.

ActiveSort tries to maximize the utilization of channels by
avoiding the waiting time for the completion of previous requests.
When one flash page in a chunk buffer is copied to the output
buffer entirely, ActiveSort prepares to issue the next read request.
At this point, ActiveSort checks the state of the target channel for
the next read request. Since ActiveSort already knows the location
of each chunk, it is possible to check whether the target channel
is busy or not before issuing the read request. If the target channel
is busy, ActiveSort just skips issuing the request without waiting
for the completion of the current operation in progress. And then,
ActiveSort finds other pages to read whose target channel is idle.

Fig. 7 illustrates an example, assuming there are four chunks
interleaved across four channels. At some point during the data
merge operation, chunk buffers have empty pages to fill if the
speed of data processing is faster than that of data fetching from
NAND flash memory. When ActiveSort tries to fill the last page of
chunk b, b8, we can see that the target channel 1 is already occupied
by the read request for the page a7. In this case, ActiveSort skips the
processing of chunk b and moves to the other chunks, generating
the read requests for a8 (in channel 2), c6 (in channel 3), and c7 (in
channel 4).

In the implementation of our prototype SSD, we allocated 8
flash pages for each chunk buffer. Since the number of channels is
four, ActiveSort uses four pages for computation and another four
pages for data transfer from NAND flash memory. It is useless to
allocate more than 8 flash pages for each chunk buffer because we
cannot issue more than four requests at once.

4.2. Hadoop with ActiveSort

4.2.1. Hadoop support in the prototype SSD
While running the Hadoop application, multiple reduce tasks

simultaneously access the files containing the results of map tasks.
Thus, ActiveSort needs to reserve multiple sets of chunk buffers
to service concurrent on-the-fly data merge on multiple sets of
input/output files. In the prototype SSD, ActiveSort requires only
32 flash pages (1 MB) to get one sorted result if the number of
files to merge is four since the size of one chunk buffer is 8 flash
pages. Although the space of DRAM is limited in the prototype SSD,
ActiveSort can support a sufficient number of concurrent on-the-
fly data merge operations. In addition, we can restrict the number
of concurrent execution of data merge operations by limiting the
Fig. 7. The status of chunk buffers and the layout of NAND flash memory at one
point during the data merge operation.

number of threads that fetch the map output by adjusting the
configurable parameter in Hadoop.

We fixed the sizes of keys and records in ActiveSort for ease
of prototyping, although Hadoop applications use variable-length
keys and records. Inside the SSD, finding the actual location of
the variable-sized record is not difficult because Hadoop leaves
the length information in front of each record while writing the
data. However, supporting the variable-sized records on a real
SSD platform is not obvious for handling buffer management for
the record spanning several flash pages, memory copy smaller
than the unit of internal memcpy(), etc. We believe that we
can support variable-sized records with low overhead if we
implement ActiveSort on the latest commercial SSDs which have
more powerful computing resources.

4.2.2. ActiveSort front-end in Hadoop
We have newly implemented the front-end module of Ac-

tiveSort which replaces the Merger class that performsmerge op-
eration in the original Hadoop. The front-end module sends the
information needed by ActiveSort using a write operation on the
predefined LBA as described in Section 3.2.2.

The front-end module also creates the interface file to access
the sorted results in Hadoop. The interface file is created via the
fallocate() system call which creates an inode and allocates
data blocks in the file system without file contents. The file size
of the interface file is set to the sum of input files to merge.
WhenHadoop accesses the interface file, the file system issues read
requests to the disk and ActiveSort returns the data generated by
the data merge operation in the SSD.

4.2.3. File manager for ActiveSort
We also developed the File Manager to manage the allocation

of data blocks in the file system and notifies the prototype SSD
of its locations. The File Manager uses the predefined location
for the input and output files according to the file name and the
index number of the map/reduce tasks used in Hadoop. ActiveSort
extracts the input data and recognizes the access to the interface
file based on the LBA specified by the File Manager.

We havemodified the ext4 file system tomanage the allocation
of the files. When a file is created, the ext4_create() function
allocates an inode in the ext4 file system. In this function, the File
Manager checks the file name and identifies the type of the current
file. The index number of map/reduce task is delivered via the
ioctl() system call from the front-end module in Hadoop. Then,
the File Manager sets the target location to allocate data blocks for
the file at the predefined LBA.When the ext4 file system places the
data blocks on the LBA space in the ext4_ext_map_blocks()
function, it uses the target location to map the data blocks in the
LBA specified by the File Manager.

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 83
5. Evaluation

5.1. Methodology

We conducted several experiments to evaluate ActiveSort.
Throughout the experiments, we used Dell PowerEdge R420
servers equipped with two Quad-core Intel Xeon E5 2.4 GHz CPUs
and 8 GB of memory, running Debian 7.0 with the Linux kernel
3.2.0. Each server has a Western Digital 500 GB HDD for its root
file system and our prototype SSD based on the Jasmine OpenSSD
platform. For Hadoop applications, we use the HDD as the storage
for HDFS and the prototype SSD as a local disk for the intermediate
files of map and reduce tasks. Both HDD and the prototype SSD are
connected to the host via the SATA2 interface. For the experiments
on multiple nodes, we use 8 servers which are connected via
the Gigabit Ethernet. We also measured the amount of energy
consumed by the server using the YokogawaWT210 digital power
meter. The power meter samples the power consumption in every
0.25 s and provides the sum of the power over the running time.

5.1.1. Sort benchmark
We use the well-known sort benchmark [19] to compare

the performance of ActiveSort with that of two other sorting
algorithms: Merge sort and Quick sort. Merge sort is implemented
using the traditional externalmerge sorting scheme [13] andQuick
sort is the famous in-memory sorting implementation provided by
the Linux library. All files are stored in the ext4 file systemon top of
the prototype SSD. The prototype SSD acts like a normal SSD with
the un-modified page-mapped FTL while running Merge sort and
Quick sort.

For all experiments with the sort benchmark, we generate
a 2 GB data set using the gensort program from the Sort
Benchmark contest site [19]. Each record is set to 4 kB in size
including a 10-byte key generated randomly. The input data is
divided into four chunks by the Partial sorting phase in ActiveSort
and Merge sort. We executed the benchmark with and without
the DIRECT_IO flag, bypassing and using the kernel page cache,
respectively. In order to evaluate the effect of the availablememory
size on the performance, the size of the main memory is varied
from 1 to 8 GB using the Linux kernel boot option. Note that,
when the memory is small, Quick sort generates a huge amount
of swap traffic to sort data larger than the memory size. Thus, for
this experiment only, we use a Samsung 840 Pro SSD as the swap
device to mitigate the overhead of swap.

5.1.2. Hadoop benchmark
We use Hadoop applications to evaluate ActiveSort-enabled

Hadoop on the real machines with the prototype SSD implement-
ing ActiveSort. ActiveSort has a benefit when Hadoop generates a
large amount of intermediate files since ActiveSort can reduce the
amount of I/Os to access those files. Although the number of inter-
mediate files can be minimized by tuning Hadoop parameters, it is
difficult to eliminate all the files if the data set size is larger than
the available memory size.

WeuseHadoop version 1.1.2with the configuration parameters
shown in Table 1. The block size of HDFS is set to 500MB. Usually a
map task uses one HDFS block as its input split. The spill buffer
size (io.sort.mb) is set to 141 MB and the threshold to flush
the spill buffer to make a spill file (io.sort.spill.percent)
is set to 0.9. As a result, each map task handles 500 MB of input
data and generates four spill files as the partially sorted chunks
during the external sorting phase. The number of files to merge
(io.sort.factor) is set to 10 to performmulti-pass merge sort
in the reduce task.

Themaximumnumber of simultaneousmap and reduce tasks is
set to four so that both map and reduce tasks can run concurrently
Table 1
The configuration parameters of Hadoop.

Parameters Value

io.sort.mb 141
io.sort.spill.percent 0.9
io.sort.factor 10
tasktracker.http.threads 3
mapred.tasktracker.map.tasks.maximum 4
mapred.tasktracker.reduce.tasks.maximum 4
mapred.map.tasks.speculative.execution false
mapred.reduce.tasks.speculative.execution false
mapred.child.java.opts -Xmx1024m
dfs.replication 1
dfs.block.size 500 MB

Table 2
The characteristics of HiBench workloads.

Workload Key size
(bytes)

Avg.
record size
(bytes)

of
records

Total
input
size (MB)

Total
output
size (MB)

Sort 10 4096 1,958,864 7697 7,697
TeraSort 10 4096 1,958,864 7641 7,641
Hive-join 10 1645.8 4,840,000 7623 11,777
Nutch 10 2185.5 1,450,000 7632 2,841

on the evaluation platformwhich has 8 CPU cores. The heap size of
themap and reduce task is set to 1 GB to reserve sufficientmemory
space for each task. The number of threads for the HTTP service is
set to three to limit the number of threads to fetch the output of
map task simultaneously as described in Section 4.2.1. For ease of
analysis, we turn off the Hadoop functionalities such as replication,
speculative execution, and compression onHDFS and intermediate
data, which are not related to the proposed scheme.

We use the HiBench-2.2 benchmark suite [20] to evaluate sev-
eralworkloads on theHadoop environment. Among theworkloads,
we select four representative workloads which generate a large
amount of intermediate data: Sort, TeraSort, Hive-join, and Nutch.
Table 2 summarizes the characteristics of HiBench workloads used
in this paper.

Both Sort and TeraSort workloads sort the input data. The
difference is that TeraSort partitions the input data using a
trie-based data structure before running the map function [21].
Therefore, TeraSort can generate the fully sorted data without
merging a number of results from multiple reduce tasks. The key
size of Sort and TeraSortworkloads are 10 bytes and the record size
is 4 kB.

Hive-join executes the sort-join algorithm for two tables using
the Hive library [22]. We create one large table with 10-byte keys
and 4-kB records. The other table is small with 10-byte keys and
variable-sized records whose average size is 143 bytes. For Hive-
join, only themap tasks for the large table use ActiveSort. The other
map tasks for the small table does not make any intermediate files
due to the small size of the input split.

Finally, Nutch indexes web pages and tests the indexing
subsystem in Nutch, a popular open source search engine [23]. The
input data created by the generation tool in HiBench consists of
web pages, the status of crawling, hyperlink, and the metadata of
web pages. In Nutch, we set the size of hashed URL to 10 bytes as
the key and the size of a web page to 4 kB. The map tasks which
handle the text ofwebpages utilizeActiveSort. The othermap tasks
use the Merger class in the original Hadoop because the record
size is small.

While running the HiBench workloads, we perform the
experiments with three different configurations to investigate
the effect of ActiveSort in map and reduce tasks. The Original
configuration is the traditional Hadoop without ActiveSort. The
intermediate files are stored in the prototype SSD using an
un-modified page-mapping FTL. Next, ActiveSort+map is the

84 Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89
Fig. 8. The throughput of ActiveSort varying record size.

configuration where ActiveSort is enabled only in the map tasks
while the reduce tasks use the original merge sort. Finally, in
the ActiveSort+all configuration, both map and reduce tasks use
ActiveSort to get the sorted results.

5.2. Base performance of ActiveSort

Fig. 8 shows the bandwidth of read operations to get the
sorted data using the data merge operation inside the SSD. We
measured the results while running the sort benchmark with
DIRECT_IO flag to access files. We change the key size (4 bytes
or 10 bytes) and the record size in the sort benchmark to evaluate
the performance of ActiveSort with various configurations. The
minimum record size is 128 bytes which is the minimum size
of memcpy() operation that the Jasmine platform supports. The
maximum record size is 32 kB which is the flash page size of the
platform. We also present the raw bandwidth of the normal read
and write operations in Fig. 8 for comparison.

When we use 32 kB record and 4-byte key, the bandwidth
of read with data merge achieves 125.9 MB/s which is slightly
lower than the normal read bandwidth (140.8 MB/s) and
almost two times higher than the normal write bandwidth
(65.1 MB/s). Although the implementation of ActiveSort requires
more optimizations, the performance drop from the raw read
bandwidth is low because of exploiting multi-channel parallelism
and overlapping computation with the access to NAND flash
memory. However, as the record size is reduced and the key size
is increased, the overhead of computation affects the performance
significantly since it takesmore time to process the on-the-fly data
merge. Thus, it is required to enable ActiveSort selectively based on
the record size as mentioned in Section 3.2.3.

5.3. Results of the sort benchmark

Fig. 9 compares the elapsed time of each sorting algorithmwith
variousmemory sizeswhile running the sort benchmark.We break
down the elapsed time to Sorting and Reading. Sorting includes the
time for generating the input data, performing sorting, andwriting
the sorted output. Since the data merge occurs when reading the
output in ActiveSort, we also include the time for reading the final
output after the sorting is completed, which is denoted as Reading.

ActiveSort shows a steady performance independent of the
available memory size. Interestingly, ActiveSort achieves the best
performance when the memory size is smaller than the data set
size. Compared to Merge sort, ActiveSort takes slightly longer time
to read the sorted result since the result is produced on-the-
fly. However, ActiveSort outperforms Merge sort by reducing the
Fig. 9. The results of sort benchmark varying thememory size. AS is ActiveSort,MS
is Merge sort, and QS is Quick sort. B is buffered mode using the page cache and D
is DIRECT_IOmode to access data.

Table 3
The amount of I/O of ActiveSort and Merge sort with 1 GB of memory and buffered
mode to access data.

Method Read (MB) Write (MB)

ActiveSort 2048.3 2048.4
Merge sort 4085.9 4096.7

amount of I/O needed to merge intermediate results. As a result,
ActiveSort reduces the elapsed time by 53.1% compared to Merge
sort when the memory size is 1 GB.

When the available memory is sufficient while performing
Merge sort and Quick sort, the elapsed time for reading results
is very short under the buffered mode due to the page cache. On
the other hand, ActiveSort cannot take the advantage of the page
cache since the sorted results are generated within the SSD when
processing the read request. Nevertheless, ActiveSort has better
performance than Merge sort even when the memory is sufficient.
This is because Merge sort still needs to produce a large amount
of writes to store intermediate data and final output even though
the read request is removed by the page cache. ActiveSort does not
store final output, and the sorted result is generated by reading
fromNAND flashmemory andmerging the results internallywhich
is still faster than the write bandwidth of the disk.

In Fig. 9, we can see that Quick sort suffers from excessive page
swapping when the memory is not enough to contain the input
data. Many I/O requests from the page swapping degrades the
performance of the benchmark. With 1 GB of memory, Quick sort
swaps out 3.5 GB and swaps in 514MBwhile ActiveSort andMerge
sort do not swap at all.

Table 3 shows the amount of I/O handled by the prototype SSD
while running ActiveSort and Merge sort with 1 GB of memory
using the buffered mode to access data. ActiveSort transfers the
same amount of read and write data, which are equal to the size
of the data set. In contrast, Merge sort generates larger amounts of
read and write operations than ActiveSort since the Merge phase
transfers data between the main memory and the disk. Table 3
implies that ActiveSort can almost double the lifetime of SSDs by
reducing the amount of writes by 50%.

5.4. Results of the Hadoop benchmark

5.4.1. HiBench on single node
Fig. 10 illustrates the elapsed times to execute HiBench

workloads including the reading of input data from HDFS, the
running of map/reduce tasks, and the writing of result data to

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 85
Fig. 10. The elapsed time of HiBench workloads. The results are normalized to that
of the original Hadoop. The total elapsed time of the original Hadoop is shown at
the top of each graph in second.

Fig. 11. The amount of I/O of HiBench workloads. AS is the abbreviation of
ActiveSort.

HDFS. The results are normalized to the result of the Hadoop
without ActiveSort for each workload.

For all workloads, ActiveSort improves the performance of
Hadoop applications. Compared to the original Hadoop, ActiveSort
reduces the elapsed time by up to 36.1%. While ActiveSort
decreases the elapsed time of the sort benchmark by up to 50%
(cf. Section 5.3), the improvement in the Hadoop applications is
slightly lower than this, mainly due to the time to get and put the
data from/to HDFS.

The performance improvement using ActiveSort in the reduce
task is smaller than that in the map task. In the reduce task, the
amount of intermediate data for the merge operation is less than
that of the map task. For example, in the Sort workload, the reduce
task generates 3.4 GB of the intermediate data whereas the map
task does 8 GB. Thus, the amount of I/O decreased by ActiveSort in
the reduce task becomes smaller than that in the map task.

For the Nutch workload, the performance improvement is
smaller than the other cases. Nutch has a very complex reduce
function and it spends long time to process the reduce task.
Thus, the advantage of ActiveSort has a less impact on the
overall performance compared to the other workloads. With the
ActiveSort+ all configuration, Nutch takes 2095 s while Sort takes
474 s.

Fig. 11 depicts the amount of I/O received by the prototype SSD
while running the workloads. As seen in the figure, ActiveSort can
reduce the amount of I/Os using the on-the-fly data merge inside
the SSD. The page cache fails to absorb read/write operations for
Fig. 12. The energy consumption results of HiBench workloads. The results are
normalized to the result of the original Hadoop. The energy consumption under
the original Hadoop is shown at the top of each graph in Kilojoules.

the data because the data size is larger than the available memory
size. As a result, ActiveSort can reduce the amount of writes by up
to 40.4% compared to the original Hadoop. Accordingly, ActiveSort
inHadoop also extends the lifetimeof SSDs by reducing the amount
of write.

In Nutch, there is still a large amount of write operations
compared to the other workloads due to the small record size.
Regarding the amount of data, only 74.6% of the input data has
the record size large enough to be processed by ActiveSort. For
the remaining data, the Merger class in the original Hadoop has
better performance than ActiveSort. However, the Merger class
still requires a large amount of I/Os.

Fig. 12 shows the energy consumption while running the
HiBench workloads on a single node. Since energy is a product
of power and time, the trend of the energy consumption results
is similar to the results of the elapsed time shown in Fig. 10.
We can see that ActiveSort achieves energy saving by up to
35.2%. Eliminating extra data transfers by ActiveSort shortens the
elapsed time of Hadoop applications, which also improves the
overall energy consumption. In practice, ActiveSort requires more
power on average thannormal I/O becauseActiveSort utilizesmore
computing resources in SSDs. However, the power overhead of
ActiveSort is negligible, less than 1.8% in our experiments.

Fig. 13 illustrates the execution charts before and after
ActiveSort is applied to the Sort workload. Each bar shows the
start time and end time of the corresponding phase including
Map, Shuffle, Sort, and Reduce while running the workload. In the
comparison of two execution charts, the elapsed times of Map
and Sort phase are gracefully reduced after adopting ActiveSort.
Especially, the Sort phase is completed in a very short time during
the reduce task since it does not include the time to merge data.
The actual data merge occurs during the Reduce phase to produce
the input data of the reduce function.

Fig. 14 depicts the execution charts of the Nutch workload.
Similar to the Sort workload, ActiveSort reduces the elapsed times
of the Map and Sort phases. However, the Reduce phase takes
long time due to the complex reduce function. Thus, the benefit
of ActiveSort is reduced compared to the other workloads.

5.4.2. Sort workload varying the memory size
To examine the benefit of ActiveSort on various memory size,

we run the Sort workload with 2 GB data set. The configuration is
the same as described in Section 5.1.2 except for the total input
size. When applying ActiveSort in Hadoop, only the map task
utilizes ActiveSort to get the sorted results. In the reduce task,
the merge operation does not incur any disk I/O on the local disk

86 Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89
(a) Original. (b) ActiveSort+ all.

Fig. 13. Execution charts of Sort workload.
(a) Original. (b) ActiveSort+ all.

Fig. 14. Execution charts of Nutch workload.
Fig. 15. The elapsed time of Sort workload with 2 GB data set, varying the memory
size.

because the number of files to merge is small enough to execute
the merge operation in the host memory.

Fig. 15 shows the elapsed time of the Sort workload varying
the available memory size. In this experiment, ActiveSort also out-
performs the original Hadoop and shows the steady performance
when the memory size is larger than 2 GB. The elapsed time of
the original Hadoop is comparable to that of ActiveSort with the
sufficient memory size because the page cache can absorb the I/O
requests for the intermediate data. However, as the availablemem-
ory size is reduced, the performance of the original Hadoop drops
significantly.

When the available memory size is 1 GB, the benchmark takes
very long time to complete the experiment. After starting the
Hadoop platform in the machine with 1 GB memory, only 550 MB
of free memory remains since the Hadoop platform has a large
memory footprint. The free memory is not sufficient to execute
four map tasks concurrently, because each task requires 180 MB
to store the spill buffer, Java code, and heap of Java program. Thus,
the page swapping degrades the performance of the benchmark
while running four map tasks.
Fig. 16. The elapsed time of TeraSort workload varying the number of concurrent
reduce tasks.

5.4.3. TeraSort workload varying the number of reduce tasks
We investigate the impact of ActiveSort while changing the

number of concurrent reduce tasks. If many reduce tasks can be
executed concurrently, the performance of Hadoop applications
can be improved due to the high utilization of CPUs. However, the
increased consumption of memory and I/O resources disrupts the
performance improvement. Thus, the results varying the number
of reduce tasks are needed to estimate the performance and decide
the configuration values of Hadoop.

Fig. 16 depicts the elapsed time of the TeraSort workload on a
single node varying the maximum number of reduce tasks and the
number of reduce tasks. ActiveSort has steady performance over
all configurations. This is because the reduce task with ActiveSort
becomes I/O-bound job by offloading the merge operation into
the SSD. For the case of the original Hadoop, it shows the best
performance when the number of concurrent reduce tasks is two
due to the increased concurrency. However, many random I/Os
incurred by multiple threads degrade the performance when the
number of concurrent reduce tasks is four.

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 87
Fig. 17. Processed record per second of TeraSort workload on multiple nodes.

5.4.4. TeraSort workload on multiple nodes
We also perform the experiments using multiple nodes to

examine the behavior of ActiveSort in accordance with the
scalability of Hadoop. For this experiment, we use TeraSort with
the increased data set size according to the number of nodes. For
example, whenwe use 8 nodes, the size of the data set is increased
to about 64 GB so that the input size per node remains the same
as before. In this case, the total number of map and reduce tasks is
also increased to 128 and 8, respectively. The other configuration
parameters are the same as in Section 5.1.2. We use the number of
processed records per second as a performancemetric because the
size of data set and the number of map/reduce tasks are increased
according to the number of nodes.

Fig. 17 illustrates the results of the TeraSort workload on a
various number of nodes. For all the number of nodes evaluated,
the processed records per second using ActiveSort is much higher
than that of the original Hadoop since ActiveSort improves the
performance of Hadoop by reducing the amount of I/Os. In
addition, ActiveSort supports the scalability of Hadoop well when
using multiple number of nodes.

The detailed execution charts using 8 nodes are depicted in
Fig. 18. ActiveSort is efficient to decrease the elapsed times of the
Map and Sort phases even if the number of map/reduce tasks are
large. As a result, the number of processed records per second in
Hadoop is increased by 1.5 times in all experiments using multiple
nodes.

6. Related work

For processing big data in the cloud, several approaches are
proposed. Apache Spark [24] and Microsoft’s Dryad [25] provide
the big-data processing framework as Apache Hadoop [2]. NoSQL
technology [26] introduces new methods to store data. There
are also researches about building services [27] and performance
profiling [28,29]. In this work, we focus on the I/O optimization of
the MapReduce framework by using the concept of active SSDs.

The concept of the active disk has been extensively studied in
the past. The research involves the offloading of data-processing
functions to hard disk drives (HDDs) to improve performance
[5,30–32]. As SSD has been emerged as an alternative storage
device, several studies have been conducted to apply the concept of
the active disk to SSD. Bae et al. [6] present the performancemodel
of the active SSD which processes data for big data mining and
analyze its performance benefits. Kim et al. [9] and Cho et al. [7]
propose an active SSD architecture which executes several data
processing functions not only on the embedded CPU(s) of the SSD
controller but also on flash memory controllers. Kang et al. [8] also
introduce an active SSD model including an interface to transfer
a tasklet into the SSD, which is the unit of application task. In
addition, they show the benefit of the proposed scheme using
Hadoop and a real SATA-based SSD.

Tiwari et al. [10] have studied an approach to utilize active SSDs
in the high performance computing (HPC) environment on large-
scale supercomputers. They analyze the energy and performance
models of active SSDs and discuss how to utilize multiple SSDs
on supercomputers. They present that adopting active SSDs is a
promising approach for improving both performance and energy
efficiency.

The aforementioned studies focus on data processing functions,
whose results are much smaller than the input data. In this
case, the data transfer between the host system and SSDs is
dramatically reduced, hence improving the performance of data
processing is rather straightforward. In this paper, we propose a
new mechanism to accelerate external sorting using active SSDs,
that is one of the core data-processing algorithms in Hadoop. We
have shown that even such applications as external sorting, whose
output size is same as the input size, can benefit from active SSDs.

Many researchers have tried to improve the performance of
sorting in NAND flash memory by exploiting the characteristic
that read operations are faster than write operations. Park and
Shim [33] utilize themax heap to retain theminimumvalueswhile
processing the merge phase. Cossentine et al. [34] manage the
minimum value of regions each of which is the split of input data
to generate the sorted result. However, although these approaches
reduce the amount of write, they require multiple reads to get the
sorted result.

Cavazos et al. [35] build a B+-tree index of keys from the input
data, and fetch the sorted result by traversing the keys in the leaf
node of the B+-tree index. Wu and Huang [36] make a secondary
data structure which contains only keys and extract the sorted
result after sorting the secondary data structure. ActiveSort can
also use these sorting schemeswhenmaking the sorted results on-
the-fly.

Rasmussen et al. [37] propose an efficient MapReduce frame-
work in the aspect of I/O. To avoid spilling data on the disk, they
manage data in all the steps of MapReduce using careful memory
management. They divide the input data into small size chunks to
enable in-memory sorting during the reduce phase. On the other
hand, ActiveSort does not require the massive change of Hadoop
and careful tuning of configuration because ActiveSort just re-
places the existing external sorting in Hadoop.

The main idea of ActiveSort is introduced in our previous
work [38]. Compared to the previous work, we propose a
new enhanced ActiveSort that further improves performance
by exploiting multi-channel parallelism. We also implement a
mechanism to integrate ActiveSort into the Hadoop framework,
andpresent the benefits of ActiveSort inHadoopwith the extensive
experiments.

7. Conclusion

We propose a novel mechanism called ActiveSort which
performs external sorting efficiently using the concept of active
SSDs. We also present a mechanism to enable the integration of
ActiveSort in Hadoop, which utilizes external sorting as one of
the core algorithms. By performing the merge operation on-the-
fly, ActiveSort can eliminate extra data transfer during external
sorting and improve the lifetime of the SSD as well as the
performance. To reduce the overhead of ActiveSort, we exploit
the parallelism of multi-channel architecture by extracting data
from NAND flash memory based on the status of the channel.
Several experimental results with real prototype SSDs show that

88 Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89
(a) Original. (b) ActiveSort+ all.

Fig. 18. Execution charts of TeraSort workload with 8 nodes.
ActiveSort is a promising approach to improve the performance
and energy consumption of the Hadoop application.

The current prototype implementation of ActiveSort has
limitations such as the low performance on small-sized records
and using fixed sizes for keys and records. These drawbacks come
from the much inferior computing resources of our prototype SSD
compared to the latest SSDs in aspects of embedded CPU power
and the speed of DRAM access. We expect that the overhead of
comparing keys and the additional memory copy can be reduced
as the number of CPU cores and its processing power increase.

Acknowledgment

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea Government (MSIP) (No.
2013R1A2A1A01016441).

References

[1] J. Dean, S. Ghemawat,Mapreduce: Simplified data processing on large clusters,
in: Proc. of the 6th Symp. onOperating Syst. Design and Implementation, OSDI,
2004.

[2] Apache hadoop. http://hadoop.apache.org/.
[3] S. Moon, J. Lee, Y.S. Kee, Introducing SSDs to the hadoop mapreduce

framework, in: Proc. of the 7th IEEE Int. Conf. on Cloud Computing, CLOUD,
2014. http://dx.doi.org/10.1109/CLOUD.2014.45.

[4] K. Kambatla, Y. Chen, The truth about mapreduce performance on SSDs, in:
Proc. of the 28th USENIX Conf. on Large Installation System Administration,
LISA, 2014.

[5] A. Acharya, M. Uysal, J. Saltz, Active disks: Programming model, algo-
rithms and evaluation, in: Proc. of the 8th Int. Conf. on Architectural
Support for Programming Languages and Operating Syst., ASPLOS, 1998.
http://dx.doi.org/10.1145/291069.291026.

[6] D.-H. Bae, J.-H. Kim, S.-W. Kim, H. Oh, C. Park, Intelligent SSD: A turbo for big
data mining, in: Proc. of the 22nd ACM Int. Conf. on Inform. & Knowledge
Manage., CIKM, 2013. http://dx.doi.org/10.1145/2505515.2507847.

[7] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, G.R. Ganger, Active disk meets flash: A case
for intelligent SSDs, in: Proc. of the 27th ACM Int. Conf. on Supercomputing,
ICS, 2013. http://dx.doi.org/10.1145/2464996.2465003.

[8] Y. Kang, Y.-S. Kee, E.L. Miller, C. Park, Enabling cost-effective data processing
with smart SSD, in: Proc. of the 29th IEEE Symp. on Mass Storage Syst. and
Technologies, MSST, 2013. http://dx.doi.org/10.1109/MSST.2013.6558444.

[9] S. Kim, H. Oh, C. Park, S. Cho, S.-W. Lee, Fast, energy efficient scan inside flash
memory solid-state drives, in: Proc. of the 2nd Int. Workshop on Accelerating
Data Manage. Syst. Using Modern Processor and Storage Architectures, ADMS,
2011.

[10] D. Tiwari, S. Boboila, S.S. Vazhkudai, Y. Kim, X. Ma, P.J. Desnoyers, Y. Solihin,
Active flash: Towards energy-efficient, in-situ data analytics on extreme-scale
machines, in: Proc. of the 11th USENIX Conf. on File and Storage Technologies,
FAST, 2013.

[11] G. Graefe, Implementing sorting in database systems, ACM Comput. Surv. 38
(3) (2006) 1–37. http://dx.doi.org/10.1145/1132960.1132964.

[12] Samsung SSD 850 pro. http://www.samsung.com/global/business/
semiconductor/minisite/SSD/global/html/ssd850pro/overview.html.

[13] D. Knuth, The Art of Computer Programming, second ed., vol. 3, Addison-
Wesley, 1998.

[14] J. Williams, Algorithm 232: Heapsort, Commun. ACM 7 (6) (1964) 347–348.
[15] Y.-S. Lee, S.-H. Kim, J.-S. Kim, J. Lee, C. Park, S. Maeng, OSSD: A case for

object-based solid state drives, in: Proc. of the 29th IEEE Symp. on Mass
Storage Syst. and Technologies, MSST, 2013. http://dx.doi.org/10.1109/MSST.
2013.6558448.

[16] R. Agrawal, J. Kiernan, R. Srikant, Y. Xu, Order preserving encryption for
numeric data, in: Proc. of the ACM Int. Conf. onManagement of Data, SIGMOD,
2004, pp. 563–574. http://dx.doi.org/10.1145/1007568.1007632.
[17] The openssd project. http://www.openssd-project.org.
[18] M. Wu, W. Zwaenepoel, eNVy: a non-volatile, main memory stor-

age system, in: Proc. of the 6th Int. Conf. on Architectural Sup-
port for Programming Languages and Operating Syst., ASPLOS, 1994.
http://dx.doi.org/10.1145/195473.195506.

[19] Sort benchmark. http://sortbenchmark.org/.
[20] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, The HiBench benchmark suite:

Characterization of the mapreduce-based data analysis, in: Proc. of the 26th
IEEE Int. Conf. on Data Engineering Workshops, ICDEW, 2010, pp. 41–51.
http://dx.doi.org/10.1109/ICDEW.2010.5452747.

[21] O. O’Malley, Terabyte sort on apache hadoop, 2008. http://sortbenchmark.org/
YahooHadoop.pdf.

[22] Apache hive. https://hive.apache.org.
[23] Apache nutch. http://nutch.apache.org.
[24] Apache spark. http://spark.apache.org.
[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel

programs from sequential building blocks, ACM SIGOPS Oper. Syst. Rev. 41 (3)
(2007) 59–72. http://dx.doi.org/10.1145/1272998.1273005.

[26] J. Han, E. Haihong, G. Le, J. Du, Survey on nosql database, in: Proc. of
the 6th Int. Conf. on Pervasive Computing and Applications, ICPCA, 2011.
http://dx.doi.org/10.1109/ICPCA.2011.6106531.

[27] V. Chang, A cybernetics social cloud, J. Syst. Softw. (2015)
http://dx.doi.org/10.1016/j.jss.2015.12.031.

[28] H. Herodotou, S. Babu, Profiling, what-if analysis, and cost-based optimization
of mapreduce programs, Proc. VLDB Endow. 4 (11) (2011) 1111–1122.

[29] V. Chang, G. Wills, A model to compare cloud and non-cloud stor-
age of big data, Future Gener. Comput. Syst. 57 (2016) 56–76.
http://dx.doi.org/10.1016/j.future.2015.10.003.

[30] L. Huston, R. Sukthankar, R.Wickremesinghe, M. Satyanarayanan, G.R. Ganger,
E. Riedel, A. Ailamaki, Diamond: A storage architecture for early discard in
interactive search, in: Proc. of the 3rd USENIX Conf. on File and Storage
Technologies, FAST, 2004.

[31] E. Riedel, C. Faloutsos, G.A. Gibson, D. Nagle, Active disks for large-scale
data processing, Computer 34 (6) (2001) 68–74. http://dx.doi.org/10.1109/2.
928624.

[32] E. Riedel, C. Faloutsos, D. Nagle, Active disk architecture for database, Tech.
Rep. CMU-CS-00-145, Carnegie Mellon University, 2000.

[33] H. Park, K. Shim, FAST: Flash-aware external sorting for mo-
bile database systems, J. Syst. Softw. 82 (8) (2009) 1298–1312.
http://dx.doi.org/10.1016/j.jss.2009.02.028.

[34] T. Cossentine, R. Lawrence, Efficient external sorting on flash
memory embedded devices, Int. J. Database Manag. Syst. 5(1).
http://dx.doi.org/10.5121/ijdms.2013.5101.

[35] L.C. Quero, Y.-S. Lee, J.-S. Kim, Self-sorting SSD: Producing sorted data inside
active SSDs, in: Proc. of the 31st IEEE Symp. on Mass Storage Syst. and
Technologies, MSST, 2015.

[36] C.-H. Wu, K.-Y. Huang, Data sorting in flash memory, Trans. Storage 11 (2)
(2015) 7:1–7:25. http://dx.doi.org/10.1145/2665067.

[37] A. Rasmussen, V.T. Lam, M. Conley, G. Porter, R. Kapoor, A. Vahdat, Themis: an
i/o-efficient mapreduce, in: Proc. of the 3rd ACM Symp. on Cloud Computing,
SoCC, 2012, pp. 13:1–13:14. http://dx.doi.org/10.1145/2391229.2391242.

[38] Y.-S. Lee, L.C. Quero, Y. Lee, J.-S. Kim, S. Maeng, Accelerating external sorting
via on-the-fly data merge in active SSDs, in: Proc. of the 6th USENIX Conf. on
Hot Topics in Storage and File Syst., HotStorage, 2014.

Young-Sik Lee received the B.S. degree in Computer Sci-
ence from Korea Advanced Institute of Science and Tech-
nology (KAIST) in 2006. He is currentlyworking toward his
Ph.D. degree in the School of Computing at KAIST. His re-
search interests include flashmemory, storage system, op-
erating systems, and big data processing.

http://hadoop.apache.org/
http://dx.doi.org/10.1109/CLOUD.2014.45
http://dx.doi.org/10.1145/291069.291026
http://dx.doi.org/10.1145/2505515.2507847
http://dx.doi.org/10.1145/2464996.2465003
http://dx.doi.org/10.1109/MSST.2013.6558444
http://dx.doi.org/10.1145/1132960.1132964
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/global/html/ssd850pro/overview.html
http://refhub.elsevier.com/S0167-739X(16)30047-4/sbref13
http://refhub.elsevier.com/S0167-739X(16)30047-4/sbref14
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1109/MSST.2013.6558448
http://dx.doi.org/10.1145/1007568.1007632
http://www.openssd-project.org
http://dx.doi.org/10.1145/195473.195506
http://sortbenchmark.org/
http://dx.doi.org/10.1109/ICDEW.2010.5452747
http://sortbenchmark.org/YahooHadoop.pdf
http://sortbenchmark.org/YahooHadoop.pdf
http://sortbenchmark.org/YahooHadoop.pdf
http://sortbenchmark.org/YahooHadoop.pdf
http://sortbenchmark.org/YahooHadoop.pdf
https://hive.apache.org
http://nutch.apache.org
http://spark.apache.org
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1109/ICPCA.2011.6106531
http://dx.doi.org/10.1016/j.jss.2015.12.031
http://refhub.elsevier.com/S0167-739X(16)30047-4/sbref28
http://dx.doi.org/10.1016/j.future.2015.10.003
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://dx.doi.org/10.1109/2.928624
http://refhub.elsevier.com/S0167-739X(16)30047-4/sbref32
http://dx.doi.org/10.1016/j.jss.2009.02.028
http://dx.doi.org/10.5121/ijdms.2013.5101
http://dx.doi.org/10.1145/2665067
http://dx.doi.org/10.1145/2391229.2391242

Y.-S. Lee et al. / Future Generation Computer Systems 65 (2016) 76–89 89
Luis Cavazos Quero received the B.S degree in Electronic
and Computer Engineering from the Monterrey Institute
of Technology (ITESM) in 2010, and the M.S. degree in
Electrical and Computer Engineering at Sungkyunkwan
University in 2015. He is pursuing a Ph.D. degree at
Sungkyunkwan University. His research interests include
the design and development of data processing algorithms
and architectures tailored for flash storage systems.

Sang-Hoon Kim received the B.S. degree in computer
science from Korea Advanced Institute of Science and
Technology (KAIST) in 2002. He is currently a Ph.D.
candidate in the School of Computing, KAIST. His research
interests include memory systems, embedded systems,
and operating systems.
Jin-Soo Kim received his B.S., M.S., and Ph.D. degrees in
Computer Engineering from Seoul National University, Re-
public of Korea, in 1991, 1993, and 1999, respectively. He
is currently a professor at Sungkyunkwan University. Be-
fore joining Sungkyunkwan University, he was an asso-
ciate professor at Korea Advanced Institute of Science and
Technology (KAIST) from 2002 to 2008. He was also with
the Electronics and Telecommunications Research Insti-
tute (ETRI) from 1999 to 2002 as a senior member of the
research staff, and with the IBM T.J. Watson Research Cen-
ter as an academic visitor from 1998 to 1999. His research

interests include embedded systems, storage systems, and operating systems.

Seungryoul Maeng received his B.S. degree in Electronics
Engineering from Seoul National University (SNU), Repub-
lic of Korea, in 1977, and M.S. and Ph.D. degrees in Com-
puter Science from Korea Advanced Institute of Science
and Technology (KAIST), in 1979 and 1984, respectively.
Since 1984, he has been a facultymember of the Computer
Science Department at KAIST. His research interests in-
cludemicro-architecture, parallel processing, cluster com-
puting, and embedded systems.

	ActiveSort: Efficient external sorting using active SSDs in the MapReduce framework
	Introduction
	Background
	Solid state drives (SSDs)
	External sorting
	Hadoop
	Motivation

	Design
	ActiveSort
	Hadoop with ActiveSort
	ActiveSort in map and reduce tasks
	Interface between ActiveSort and Hadoop
	Other design issues

	Implementation
	ActiveSort
	Prototype SSD
	On-the-fly data merge
	Exploiting multi-channel parallelism

	Hadoop with ActiveSort
	Hadoop support in the prototype SSD
	ActiveSort front-end in Hadoop
	File manager for ActiveSort

	Evaluation
	Methodology
	Sort benchmark
	Hadoop benchmark

	Base performance of ActiveSort
	Results of the sort benchmark
	Results of the Hadoop benchmark
	HiBench on single node
	Sort workload varying the memory size
	TeraSort workload varying the number of reduce tasks
	TeraSort workload on multiple nodes

	Related work
	Conclusion
	Acknowledgment
	References

