Future Generation Computer Systems 36 (2014) 66-79

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

Large-scale incremental processing with MapReduce

Daewoo Lee**, Jin-Soo KimP, Seungryoul Maeng?

—

@ CrossMark

@ Computer Science Department, Korea Advanced Institute of Science and Technology, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
b College of Information and Communication Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746,

Republic of Korea

HIGHLIGHTS

o Revealing the ineffectiveness of task-level memoization for incremental processing.
e An algorithm to detect changes in large datasets efficiently in Hadoop clusters.
e An efficient implementation to compute the updated result in Hadoop clusters.

ARTICLE INFO

Article history:

Received 20 December 2012
Received in revised form

14 August 2013

Accepted 5 September 2013
Available online 19 September 2013

Keywords:

Big data processing
Incremental processing
MapReduce

Hadoop

Data deduplication

ABSTRACT

An important property of today’s big data processing is that the same computation is often repeated on
datasets evolving over time, such as web and social network data. While repeating full computation of
the entire datasets is feasible with distributed computing frameworks such as Hadoop, it is obviously
inefficient and wastes resources. In this paper, we present HadUP (Hadoop with Update Processing),
a modified Hadoop architecture tailored to large-scale incremental processing with conventional
MapReduce algorithms. Several approaches have been proposed to achieve a similar goal using task-
level memoization. However, task-level memoization detects the change of datasets at a coarse-grained
level, which often makes such approaches ineffective. Instead, HadUP detects and computes the change
of datasets at a fine-grained level using a deduplication-based snapshot differential algorithm (D-SD) and
update propagation. As a result, it provides high performance, especially in an environment where task-
level memoization has no benefit. HadUP requires only a small amount of extra programming cost because
it can reuse the code for the map and reduce functions of Hadoop. Therefore, the development of HadUP

applications is quite easy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

As many industries and organizations handle increasing
amounts of data, big data processing is being considered as a
promising technology. Extracting meaningful and valuable infor-
mation from huge datasets is important for providing attractive
new services as well as improving the quality of existing services,
such as web-data analysis, log processing, and click analysis. Ana-
lyzing large amounts of data collected from various sources poses
great challenges to the fields of science, especially those involving
massive-scale simulations and sensor networks.

Currently, distributed computing frameworks [1-9] are being
widely used for big data processing. These systems allow the user
to write applications using a set of high-level operations, and au-
tomatically handle the complex aspects of distributed computing,

* Corresponding author. Tel.: +82 42 350 7719.
E-mail addresses: dwlee@calab.kaist.ac.kr (D. Lee), jinsookim@skku.edu
(J.-S. Kim), maeng@kaist.ac.kr (S. Maeng).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.09.010

such as scheduling and fault tolerance. Among them, Hadoop [1],
an open-source MapReduce implementation designed for large
clusters, has emerged as a de facto standard for big data processing
in both industry and academia.

An important property of today’s big data processing is that
the same computation is often repeated on datasets evolving over
time, such as web and social network data. To keep a web index
up-to-date, for example, a search engine repeatedly crawls a part
of the web, merges it with the previously crawled pages, and
performs several computations over all the crawled pages. Since
the updated data between runs is typically much smaller than
the entire datasets [10-13], we can improve the overall efficiency
dramatically by performing the computation incrementally.

However, most of the current distributed computing frame-
works lack support for incremental processing. While their highly
scalable performance makes it feasible to repeat full computation
of the entire datasets [12,13], doing so is obviously inefficient and
wastes resources. Recently, a few systems have been designed for
efficient incremental processing [12,13], but they require applica-
tions to be totally rewritten with new programming languages and

http://dx.doi.org/10.1016/j.future.2013.09.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.09.010&domain=pdf
mailto:dwlee@calab.kaist.ac.kr
mailto:jinsookim@skku.edu
mailto:maeng@kaist.ac.kr
http://dx.doi.org/10.1016/j.future.2013.09.010

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 67

dynamic algorithms. Moreover, implementing dynamic algorithms
is known to be very difficult, even for problems that are simple with
static input data [10].

Our goal is to enable large-scale incremental processing with
conventional MapReduce algorithms. Some approaches have been
proposed to achieve a similar goal using task-level memoization
[10,11,14,15]. They reuse the previous results of a task (or a set
of tasks) when the same computation on the same task input is
needed again. When most of the task inputs are unchanged, there-
fore, task-level memoization produces a large benefit. However,
when many tasks repeat the same computation just due to a few
changes on their input data, the computation delay and overhead
can become considerably important. This can be illustrated by
the following two observations: First, the unit of change is much
smaller than a task input. Since a task is typically assigned to tens
or hundreds of megabytes of data containing millions of records,
many task inputs can be changed by a small change in the dataset.
Second, a many-to-many communication pattern called shuffle is
commonly used in big data processing; in the MapReduce context,
it always appears in the data transfer between the map and reduce
stages. Even with only a few changes in the task outputs of the
preceding stage, shuffle can change almost all the task inputs of
the following stage. As a result, task-level memoization can suffer
from unnecessary computation and data transfer even when the
application handles an incrementally augmented dataset such as
log data.

In this paper, we present HadUP (Hadoop with Update Pro-
cessing), a modified Hadoop architecture tailored to large-scale in-
cremental processing. For efficient incremental processing, HadUP
detects and computes the change of datasets at a fine-grained
level. To reduce the granularity, we propose two techniques: a
deduplication-based snapshot differential algorithm (D-SD) and up-
date propagation.

When the application starts to run, HadUP detects the change
of its input as the first step of incremental processing. Given the
old and new snapshots of a dataset, we can figure out how the
dataset changes by ignoring all duplicated data between them.
Data deduplication, which is mainly used to eliminate duplicate
copies of repeating data, is a viable technique to accomplish this
efficiently. However, traditional data deduplication techniques are
inefficient in handling big data because they are not designed
for large-scale distributed systems. To improve the efficiency, we
extend a technique called sparse indexing [16] to a large-scale
Hadoop cluster. By exploiting the power of distributed computing,
D-SD can perform well with big data.

The performance benefit of HadUP mainly comes from the next
step, called update propagation, which is initiated with the result
of D-SD. Update propagation is a style of computation that enables
incremental processing with conventional algorithms for today’s
big data processing. Many applications for big data processing
consist of data parallel operations, where an operation transforms
one or more input datasets into one output dataset. For each
operation, the same computation is concurrently applied to a
single input record or a group of input records. The independence
between these executions allows us to compute the records to be
inserted into or deleted from the output dataset, if those records
inserted into or deleted from the input datasets are explicitly
given. In this way, HadUP computes the updated result without full
recomputation. Furthermore, we implement HadUP to reuse the
code for the map and reduce functions of Hadoop, targeting easy
development of HadUP applications.

Evaluation shows that HadUP provides high performance, up to
2.5x speedup over Hadoop, while requiring only a small amount
of extra programming cost. Since we assigned each task to a
few hundred megabytes of data, we can suppose that task-level
memoization performs similarly to (or worse than) Hadoop in our

environment. HadUP incurs a penalty in the first run as it cannot
take advantage of incremental processing, but it is just a one-time
cost.

The rest of this paper is organized as follows. Section 2 reviews
the MapReduce programming model and the Hadoop framework,
and discusses the motivation of our work. Section 3 provides a brief
description of HadUP’s incremental processing. Sections 4 and 5
discuss how HadUP works in detail; D-SD in Section 4 and update
propagation in Section 5. Section 6 evaluates HadUP and shows its
benefit from incremental processing. We present related work in
Section 7, and conclude in Section 8.

2. Background

2.1. MapReduce programming model

A MapReduce application consists of a workflow of jobs that
process data structured in key/value pairs. Each job performs two
user-specified functions: map and reduce. The map function is
applied to each input record (i.e., key/value pair) and produces a
list of intermediate records. The reduce function is applied to each
group of intermediate records with the same key, and produces
a list of output records. Inherently, the execution of the map and
reduce functions can be parallelized. Within a job, however, the
reduce execution is allowed to start after the map execution is
finished. Optionally, the combiner function can be used to reduce
the amount of intermediate data by aggregating a portion of the
values associated with each intermediate key. It is effective in
reducing network utilization between the map and reduce stages.

2.2. Hadoop

Hadoop is an open-source MapReduce implementation de-
signed for large clusters. It consists of a single master node called
the JobTracker and many slave nodes called the TaskTrackers. The
JobTracker is responsible for parallelizing job execution across
nodes and ensuring fault tolerance. The TaskTracker manages the
execution of the tasks currently scheduled on its corresponding
node and the inter-node communication between map and reduce
tasks.

When a job is submitted, the JobTracker first schedules the job’s
map tasks. Each map task independently processes a split, a con-
tiguous portion of the job’s input data (64 MB by default). The task
applies the map function to its split, and stores the intermediate
data temporarily into a local disk. The JobTracker starts schedul-
ing the job’s reduce tasks after some of its map tasks are finished.
To satisfy the semantics of the reduce function, all intermediate
records with the same key should be processed by the same reduce
task. This causes a many-to-many communication called shuffle be-
tween the map and reduce stages, which is likely to result in a
large fraction of the job execution time. When storing intermediate
records, a map task sorts them by key and partitions them using the
user-specified partitioner function. Each partition is assigned to a
reduce task. The task fetches its partition from all map outputs, and
processes the data in increasing key order. Its output data is typi-
cally stored as a file in the Hadoop Distributed File System (HDFS).

2.3. Motivation

Task-level memoization [10,11,14,15] enables incremental
processing by reusing the previous results of a task (or a set of
tasks) when the same computation on the same task input is
needed again. The underlying assumption of this approach is that,
if the total amount of changed data is sufficiently small, most task
inputs are unchanged. We argue that this situation is rare because
of the following two reasons:

68 D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79

-& Wikipedia article dataset - Derived dataset

1.0

Duplicate ratio

0.0 1+

T T T T T T |
128 256 512 1K 2K 4K 8K 16K

Average chunk size (byte)

Fig. 1. Effectiveness of task-level memoization.

1. The unit of change (i.e., record) is much smaller than a task
input;

2. Shuffle can change almost all of the task inputs in the following
stage even though only a few task outputs are changed in the
preceding stage.

To confirm our speculation, we estimated the effectiveness of
task-level memoization using real datasets. We supposed that the
input data is split using content-based chunking and each map task
is assigned to a chunk.' By doing so with two snapshots of a dataset,
we can measure how many task inputs are unchanged if the dataset
is used as input. We measured the duplicate ratio, which is the ratio
of the size of duplicate chunks to the size of the older snapshot, and
considered this as a metric to evaluate the effectiveness of task-
level memoization.

First of all, we performed the measurement with two snapshots
of the Wikipedia English article dataset,? which were taken on Dec.
2011 and Jan. 2012, respectively; the newer snapshot is about 1%
larger than the older one in size. Using our customized input parser
for this dataset (Section 6.1), each record is about 100 byte in size.
As shown in Fig. 1 (i.e., labeled “Wikipedia article dataset”), we find
that although over 90% of data remain unchanged, most of the task
inputs are changed even if a task input is only 16 KB in size. Since a
task is typically assigned to tens or hundreds of megabytes of data
containing millions of records, task-level memoization is obviously
ineffective for such datasets.

Next, we investigated the impact of shuffle on task-level mem-
oization. We first ran a MapReduce job on the Wikipedia English
log dataset,® and performed the above measurement with the de-
rived dataset (i.e., the job’s result). We also used two snapshots
taken on Dec. 2011 and Jan. 2012, respectively. Since the new data
is always appended to this dataset, most of the map task inputs
are unchanged. The result for the derived dataset, however, shows
the same tendency as that of the first experiment, as shown in
Fig. 1 (i.e., labeled “Derived dataset”). This means that, even with
only few changes in the task outputs of the preceding stage, shuffle
can change almost all the task inputs of the following stage. Many
algorithms are known to be hard to implement with a single
MapReduce job [17], so that multi-job applications are common in
practice. Therefore, task-level memoization is inefficient for many
real applications.

1 This input assignment scheme, which is actually used by Incoop [10], maximizes
the effectiveness of task-level memoization. If the input data is split into fixed-sized
chunks as done in Hadoop, insertion and deletion of a single record can change most
of the split points.

2 http://dumps.wikimedia.org/enwiki/.

3 The Wikipedia English log dataset contains the log of actions performed on the
Wikipedia English articles since Dec. 2004, and this job computes the statistics of
the user actions for each month.

To conclude, we have found that task-level memoization is
not the right direction toward efficient incremental processing.
This motivates us to investigate a new approach that detects and
computes the change of datasets at a fine-grained level.

3. HadUP overview

We develop a modified Hadoop architecture called HadUP
(Hadoop with Update Processing). Fig. 2 illustrates the HadUP ar-
chitecture. A map task runs similarly to the original map task of
Hadoop, but performs a deduplication-based snapshot differential
algorithm (D-SD) if it is assigned to the application input. A reduce
task manages its partition of the intermediate dataset via caching
and indexing for update propagation. During job execution, the
JobTracker is responsible for task scheduling to guarantee the cor-
rectness of D-SD and update propagation (UP). After the applica-
tion finishes, the user can get the updated result via the internal
redirection mechanism in the HadUP client library.

3.1. Data representation

Throughout this paper, we consider that every dataset changes
over time. If a dataset is produced by a computation, it is con-
sidered to change whenever the computation is applied to the
changed input. Let D denote a dataset, then D; denotes the snap-
shot of D processed (or produced) in the ith run. We view D; as a
multiset of records.

The update of a dataset represents the records required to trans-
form its old snapshot into the new one. If the update of a dataset D
can be used to transform D;_; into D;, we denote it by AD;. AD; is
defined as a pair of multisets of records, (AD;", AD;"), such that

(Di—1 U AD]") — AD; = D;

where AD;" and AD; represent the records inserted into and re-
moved from D;_q, respectively. A record change is modeled as a
deletion of the original record and an insertion of the new one. Note
that AD; is not unique for given snapshots D;_; and D;. It can be any
pair of multisets of records as long as the above condition is satis-
fied.

For convenience, we assign a type to each record belonging to
AD; in order to represent its membership: (4) to that in AD,-+ and
(—) tothatin AD; . Simply, we represent a record in AD; as 3-tuple,
(key, value, type).

3.2. Incremental processing in HadUP

This section provides a brief description of update propaga-
tion, the core of HadUP’s incremental processing. Consider a job
that produces a list of web pages with their indegrees. For a link
source — target in the input documents, the map function emits
an inverted link (i.e., (target, source)), and then the reduce func-
tion counts the number of distinct links to each target page (i.e.,
(target, #sources)). We denote the input, intermediate, and output
dataset of this job as I, M, and R, respectively. Assume that I; con-
tains two links to page a, namely b — aand ¢ — a, and one link to
page b, namely d — b. Assume that I, is identical to I; except that
d — bischanged tod — a.Thatis, A, = {{d, a, +), (d, b, —)}.

Fig. 3 illustrates the computations by Hadoop and HadUP*
where (source, target) inI; denotes a link source — target in the in-
put documents. In the second run, Hadoop recomputes I, although

4 The computation by HadUP in the first run is the same as that by Hadoop, thus
we omit it. HadUP does not take advantage of incremental processing in the first
run.

http://dumps.wikimedia.org/enwiki/

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 69

Fetching the updated results

HadUP
I I
Application JobTracker
PP Job ﬁ TaskTracker
submission
HadUP Client Library & Task Scheduler ! !
monitoring [[[[
Map Task Reduce Task
D-SD/UP
et Cachin
Redirection Coordination D-SD A indexigg
A
Y. A v
:I NameNode |<—>| DataNode ﬂ
%
HDFS

Fig. 2. HadUP architecture. The shaded area represents the modified part in each component.

<a, 3, +> gog
<d, a, +> . <a, d, +> @2 — ea <a, 3>
<d, b, —> <b, d, —> "
<b, 1, —> :
Alz AM; ARZ R2
<b,.a> <a,‘b> a'2 <b,'a> <a,.b> : <a, b> <a, 2>
<C, a> ===p <@, C> ==p <b’ 1> <C,a> ==p <@, C> ==p <a, 3> <a, c> <b, 1>
<d, b> <b, d> < ’ > <d, a> <a, d> : <b, d> :
: : : : H : R
I M, R, L M, M, '
(a) Hadoop (1st run). (b) Hadoop (2nd run). (c) HadUP (2nd run).

Fig. 3. A comparison between the computations by Hadoop and HadUP.

only one link has been changed. This recomputation is obviously
inefficient and wastes resources. In contrast, HadUP performs up-
date propagation, avoiding full recomputation. Given Al,, HadUP
derives AM, and AR, using the unmodified map and reduce func-
tion, and provides a view of R,, the updated result, using R; and
AR;. Note that in Fig. 3(c), we assume that Al is already com-
puted; D-SD is used to compute Al, efficiently when I; and I, are
given.

3.2.1. Map

Since the map function is applied to each input record, the in-
sertion of (d, a) into I; does not affect any record in M. It causes
the result of applying the map function to (d, a), namely (a, d),
is inserted into M;. In a similar way, we can find that the dele-
tion of (d, b) from I; results in that of (b, d) from M;. As a re-
sult, update propagation with the map function produces AM,
(= {{a,d, +), (b, d, —)}).

3.2.2. Reduce

Unlike the map function, the reduce function is applied to a
group of intermediate records with the same key. To derive AR,,
therefore, we should translate AM, into the change of those record
groups in My. The insertion of (a, d) into M; affects the group
of records with key a in My, namely {(a, b), {(a, c)}. This group is
changed into {{a, b), {a, c), {(a, d)}, which is the group of records
with key a in M. By applying the reduce function to these groups,
we can find that (a, 2) in R; is changed into (a, 3) in R,. This is
represented as (a, 3, +) and (a, 2, —) in AR,. In a similar way,
the deletion of (b, d) results in that of (b, 1) from Ry; it causes no
record insertion because there is no group with key b in M,. As a
result, update propagation with the reduce function produces AR,
(={{a,3,+),(a,2, =), (b, 1, =)}).

3.3. Writing HadUP applications

It is easy to write HadUP applications because the code for map
and reduce functions is compatible with Hadoop. For incremental
processing, however, HadUP requires additional information that
is unnecessary for Hadoop. For example, to perform the update
propagation described in Section 3.2, HadUP requires the ID of the
job executed in the first run. To describe such information, the user
should add a new code to the driver program that initializes jobs
and instructs Hadoop to execute them. In most applications, how-
ever, it is sufficient to add a few lines of code per job. Fig. 4 shows
the driver program for running the example job of Section 3.2 on
HadUP. It is almost the same as the driver program for Hadoop, ex-
cept for some extra code added in lines 12-14.

4. Deduplication-based snapshot differential algorithm (D-SD)

To begin update propagation in the ith run, HadUP needs
AD; where D is the application input. The goal of the snapshot
differential algorithm is to compute AD; with D;_; and D;. A naive
method is to run a job comparing the multiplicity of each record in
D;_ and D;. Unfortunately, it requires gathering the same records
into a task, which causes a large data transfer; almost all of D;_;
and D; will be shuffled.

To reduce the amount of transferred data, data deduplication
is a viable technique, which is mainly used to eliminate duplicate

5 setBaseJobID specifies the ID of the job executed in the last run, and
setInputRecordTypeSelectorClass specifies the type of input records that
each map task processes.

~
o

Job j = new Job(new Configuration(), "Example");
j.setJarByClass (ExampleJob.class);
.setMapperClass (ExampleMapper.class);
.setReducerClass (ExampleReducer.class);
.setOutputKeyClass (Text.class);
.setOutputValueClass (IntWritable.class);
j.setInputFormatClass (TextInputFormat.class);
FileInputFormat.addInputPath(j, "/input");

9 FileOutputFormat.setOutputPath(j, "/output");

0~ O UL = W N~

11 // New interfaces for HadUP

12 j.setBaseJobID("job_201305141650_0001");
13 j.setInputRecordTypeSelectorClass (

14 FileNameSuffixBasedSelector.class);

16 j.waitForCompletion(true);

Fig. 4. An example of the driver program for HadUP.

copies of repeating data. It divides data into multiple chunks and
ignores all chunks with the same content as the others processed
earlier. To identify each chunk efficiently, the chunk fingerprint is
used, which is typically a 20-byte SHA-1 hash of the chunk content.
That is, two chunks with the same fingerprint are assumed to
have the same content. Using data deduplication, we can ignore
most of the unchanged data between D;_; and D; without record-
by-record comparison. The remaining data can still be used as
ADj; ADi+ is from D;, and AD; is from D;_;. Note that only the
chunk information (i.e., the ID and the fingerprint of each chunk)
of both snapshots is transferred, and there is a trade-off between
effectiveness (i.e., the amount of unchanged data to be detected)
and efficiency (i.e., the amount of transferred data).

Simply, we can design D-SD as a centralized algorithm. A cen-
tralized node such as the JobTracker can perform data deduplica-
tion after gathering all the chunk information of both snapshots.
Although simple in design, this method is very inefficient in large-
scale distributed systems such as Hadoop clusters. To detect a large
amount of unchanged data, the chunk size should be sufficiently
small (i.e., at most 1 KB), as discussed in Section 2.3. Then, the
amount of chunk information is not small enough to be handled
efficiently in a single node.

To overcome this problem, we extend a technique called sparse
indexing [16] to large-scale Hadoop clusters. Sparse indexing is
a technique that exploits the inherent locality within backup
streams. According to [16], if the last time we encountered chunk
a, it was surrounded by chunks b, ¢, and d, then the next time we
encounter a (even in a different backup) it is likely that we will also
encounter b, c, or d nearby. This tendency is called chunk locality.
Based on this observation, [16] proposed a deduplication system
that breaks up an incoming stream into relatively large segments,
and deduplicates each segment against only a few of the most
similar previous segments. The reasons for which we adopt the
principle of sparse indexing in our work are as follows:

e Chunk locality between D;_; and D; is magnificent if AD; is
sufficiently small;

e Segmentation is well-suited to HDFS-like distributed file
systems [18,19], where each file is stored as multiple fixed-size
blocks distributed to nodes.

Like sparse indexing, D-SD divides D;_; and D; into segments
(16 MB by default), and assigns a task to each segment to get a por-
tion of AD; from the segment. In HadUP, a map task takes charge of
this task. Since a segment is typically smaller than a split (i.e., the
input data of a map task), a map task often handles multiple seg-
ments. HadUP creates the map tasks on both D;_; and D;. These
tasks find AD; and apply the map function directly to AD; for up-
date propagation.

If a task is assigned to segment s of D;_; (or D;), it requires the
chunk information of a few segments of D; (or D;_1). In this case,

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79

Base | Reference Base | Reference
Uy U1, U2 U1 Uy
Us Vg, Ug Uy Uy, U
us V3 V3 U2, Uz, Uy
Uyg U3 Uy -

(a) Reference
segments of D;_1.

(b) Reference
segments of D;.

Fig. 5. An example of choosing reference segments.

we call s the base segment, and the chosen segments the reference
segments of s. In the rest of this section, we first describe the two
main operations of D-SD: (1) choosing the reference segments of
each base segment, and (2) getting a portion of AD; from the base
segment. After that, we describe the overall procedure of D-SD in
HadUP.

4.1. Choosing reference segments

To choose proper reference segments of each base segment, we
should consider the following two properties.

e Similarity: A base segment should share as many chunks as
possible with its reference segments. Otherwise, D-SD fails to
detect a sufficient amount of unchanged data among segments.

e Symmetry: For two segments s; and s,, s; must be the reference
segment of s, if and only if s, is the reference segment of s.
Assume that chunk x appears once in each snapshot, once in
s1 C Dij_q and once in s, C D;. If the task assigned to s; applies
any operation on x, it is obvious that the task assigned to s,
needs to apply the same operation on x. This can be guaranteed
only by the symmetry property.

For the similarity property, D-SD uses the sampling-based
method for identifying similar segments in [16]. It chooses a small
portion of the chunks in each segment as samples,® and considers
two segments to be similar if they share many samples. Definitely,
this method also relies on chunk locality. Assume that all sample
fingerprints of D;_; and D; have already been computed. For each
base segment, D-SD chooses its reference segments one at a time
until the maximum allowable number of its reference segments are
chosen, or when no remaining segment shares at least 1% of sam-
ples with it. At each time, D-SD chooses the segment containing
the most samples that the base segment contains and the previous
reference segments (of the same base segment) do not contain.

This sampling-based method, however, does not guarantee that
the symmetry property is satisfied. Therefore, D-SD uses it only
for one snapshot, and inverts the partial result to determine the
reference segments of the remaining base segments (of the other
snapshot). Fig. 5 illustrates an example where reference segments
are chosen, under the assumption that D;_; is divided into four
segments, {u1, Uy, Us, Ug},and D; is divided into {v1, v, v3, v4}. We
can derive the result in Fig. 5(b) by inverting that in Fig. 5(a), and
vice versa.

Our approach for choosing reference segments is not costly be-
cause it needs only sample fingerprints. In our evaluation with
about 30 GB of the Wikipedia article dataset, at most 4 MB of sam-
ple fingerprints are sufficient to choose proper reference segments.

4.2. Getting the update from base segments

In traditional data deduplication techniques (including [16]), a
chunk is ignored if the same chunk has been already processed.

6 A chunk is chosen as a sample if its fingerprint matches a certain pattern
(e.g., first n bits are zero).

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 71

(a) Schedule the map tasks on D,

Job
Tracker

Map l (b) Chunking | |
Task & & sampling

(c) Choose
ref. segments | (g)

[

E (d) Apply the map
l—— functiontothe |~@

result of D-SD

(f) Determine (9) Schedule the map tasks on Dy
ref. segments l v
Map (h) Apply the map
Task @+ functiontothe @
result of D-SD

Il 2 phase 1

L 1stphase

Fig. 6. Overall procedure of D-SD in the second run.

Algorithm 1 Handling base segment sg with its reference segments

1: procedure DEDUPBASEDSNAPSHOTDIFF(Sg, Sg)

2 if sp C D; then

3 for all chunk x € sz do

4: if p(x, sp) > p(x, Sg) then

5: p(x, AD") < p(x, AD]) + [p(x, s) — p(x, Sp)]
6: else if p(x, sp) < p(x, Sg) then

7 IO(X! ADI_) (_p(x’ ADI_)—F[,O(X,SR)—,O(X,SB)]
8

9

end if

end for
10: else >Ssg C Dj_4
11: for all chunk x € sz do
12: n < the number of the segments in Sg containing x
13: if n = 0 then
14: p(x, AD;") <= p(x, AD;") + p(x, sp)
15: elseif n > 1then
16: p(x, ADI) < p(x, AD]) + (n — 1) - p(x, sp)
17: end if
18: end for
19: end if

20: end procedure

However, this ignorance leads D-SD to an incorrect result because
a snapshot is modeled as a multiset of records. For a chunk x in D;_{
or D;, D-SD should satisfy the following equation:

lo(xa ADf)_p(Xv AD:) :p(vai)_p(Xa Dl’*l) (1)

where p(x, S) denotes the multiplicity of chunk x in a multiset
of records S. If a task is assigned to a base segment containing
x, D-SD allows it to increase either p(x, AD,-*) or p(x, AD;).7
Since each task performs independently, however, satisfying (1) is
challenging.

Algorithm 1 describes how D-SD satisfies (1) for all chunks. In
Fig. 5, assume that chunk x appears in segments u4, v{, and v,, and
tasks ty, to, and t3 are assigned to those segments, respectively. In
this Case, IO(XH DI) - p(x7 Dl’f'l) =)O(Xs U]) +)O(X7 U2) - p(x’ u])' If
a task is assigned to any base segment of D; (i.e., t; and t3 in this
example), it increases either p(x, AD?’) or p(x, AD;"), assuming
that it knows all segments containing x and no other task increases
any of these values (lines 4-8). For example, t; increases p (x, AD?’)
by po(x,v1) — p(x,uy) if p(x,v1) > p(x,uy), and otherwise,
increases p(x, AD;") by p(x, u;) — p(x, vy). Definitely, the result
from t, and t3 does not satisfy (1) as follows:

p(X, AD]) — p(x, AD;) = p(x, v1) + p(X, v2) — 2p(X, 1)
px, D) — p(x, Di_1).
To correct this, D-SD relies on the symmetry property (lines

12-17). ty, which is assigned to a base segment of D;_;, can
find that u; is one of the reference segments of two other base

7 Let map(x) denote the result of applying the map function to each record in x.
To increase p(x, AD;’) by one, the task emits map(x) once as the (+)-typed records.
To increase p(x, AD;), it emits map(x) as the (—)-typed records.

segments (i.e., v; and v,), and p(x, uq) is counted twice, instead of
once. Therefore, t; increases p(x, AD,?L) by p(x, uy),and as a result,
D-SD satisfies (1) for x.

4.3. Overall procedure in HadUP

Now, we describe the overall procedure of D-SD in HadUP. For
convenience, we focus on D-SD performed in the first and second
run of the application. In subsequent runs, D-SD works similarly to
the second run.

In the first run, HadUP does not need to perform D-SD, but pre-
pares some information for the next run. Each map task performs
chunking and sampling of the base segments in its split while ap-
plying the map function, and stores the chunk information of each
segment into a separate HDFS file. The JobTracker gathers the sam-
ple fingerprints of D; from all tasks, and stores them into a single
HDFS file. It also stores the split information of D; in the HDFS to
create the map tasks on Dy in the second run.

In the second run, HadUP creates the map tasks on both D; and
D, to detect AD,. When the application starts to run, however,
there is no sample fingerprint of D,, therefore HadUP cannot
determine the reference segments of any base segment. Instead of
running an additional job to compute the sample fingerprints of D5,
HadUP divides D-SD into two phases and processes one snapshot
in each phase, as shown in Fig. 6. As a result, each snapshot is read
only once.

In the first phase, the JobTracker schedules the map tasks only
on D, (Fig. 6(a)). Each task first performs chunking and sampling
of the base segments in its split (Fig. 6(b)). Unlike in the first
run, it does not apply the map function; all the input records are
temporarily cached in memory and reused later. After processing
the whole split, the task chooses the reference segments of each
base segment, following the similarity property (Fig. 6(c)). This is
possible because the sample fingerprints of D; have already been
computed in the first run. Using the chunk information of the
chosen reference segments, the task finds the records belonging
to AD, using Algorithm 1, and applies the map function to them
(Fig. 6(d)). Since all the input records are cached and reused, D, is
not read again. The information required for the next run (i.e., the
chunk information, sample fingerprints, and split information of
D,) is stored in the HDFS, as was done in the first run.

D-SD enters the second phase after the JobTracker finds the ref-
erence segments of all base segments of D,. In the first phase, each
task sends the IDs of those segments to the JobTracker through
heartbeat messages (Fig. 6(e)). At the beginning of the second
phase, therefore, the JobTracker can determine the reference seg-
ments of all base segments of D; based on the symmetry prop-
erty (Fig. 6(f)). After that, it starts scheduling the map tasks on D
(Fig. 6(g)), which find the records belonging to AD, and apply the
map function to them (Fig. 6(h)).

5. Update propagation

Since the success of Google’s MapReduce, data parallel pro-
gramming models have been widely used for big data processing

72 D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79

Table 1
Variables and notations used in this section.
Variable Description
I The input dataset of a job
M The intermediate dataset of a job
R The output dataset of a job
map((k, v)) The result of applying the map function to record (k, v)
key(S) A set of keys that appears in a multiset of records S
sub(k, S) A sub-multiset of S that contains all records with key k

The result of applying the reduce function to sub(k, S).
It is an empty set if there is no record with key kin S.
The result of applying the combiner function to

sub(k, S).

It is an empty set if there is no record with key kin S.

reduce(k, S)

combine(k, S)

Algorithm 2 Update propagation with the map function
1: function MaPUP(key, value, type)
2: S <« Mar(key, value) > Compute map({key, value))
3: for all (k, v) € Sdo
4: Emit(k, v, type)
5: end for
6: end function

[1-3,5,8,9]. Using these models, an application is expressed as a
workflow of data parallel operations, where an operation trans-
forms one or more input datasets into one output dataset. For each
operation, the same computation is applied to each input record
(e.g., map and select) or each group of input records with the same
key (e.g., reduce, join, and cogroup). Based on these characteris-
tics, we design update propagation for the MapReduce model; the
independence between computations allows each operation to
compute the update of the output dataset if those of the corre-
sponding input datasets are explicitly given. Note that our design
can be easily applied to other programming models based on data
parallelism.

In the rest of this section, we describe update propagation for
the MapReduce model, and its efficient implementation for large-
scale Hadoop clusters. Table 1 lists the variables and notations used
in this section.

5.1. Update propagation with the map function

Let I and M denote the input and intermediate dataset of a job,
respectively. Since the map function is applied to each input record,
AM; is dependent only on Al;. Therefore, we can derive AM; as
follows:

AMF = | map((k, v))

(kv)eArt

AM] = U map((k, v)).

(k,v)eAl

Algorithm 2 describes the implementation of this approach
in HadUP. It is the same as the normal execution of the map
function, except for handling the record types. If the job is in-
volved in D-SD, the type of each input record is determined,
as discussed in Section 4. For the other jobs, the user should
override the function that determines the record types (i.e.,
setInputRecordTypeSelectorClass inFig.4). HadUP allows
a file to contain records of only one type. This policy makes a map
task handle one type so that overriding the above function is easy.
It also enables the data load/store phases of existing Hadoop jobs
to be reused in HadUP without change.

5.2. Update propagation with the reduce function

Let M and R denote the intermediate and output dataset of a
job, respectively. Since the reduce function is applied to each group

Algorithm 3 Update propagation with the reduce function

1: function REDUCEUP(key, values')
2 values < ¢
3 if key exists M;_; then
4: (key, values) < READ(key, M;_1) > Read sub(key, M;_1)
5: S < REDUCE(key, values) > Compute reduce(key, M;_1)
6 for all (k, v) € S do
7 EmIT(k, v, —)
8 end for
9: end if
10: values < MERGE(values, values’) > Compute sub(key, M;)
11: if values # () then
12: S < ReDuUCE(key, values) > Compute reduce(key, M;)
13: for all (k, v) € S do
14: Emit(k, v, +)
15: end for
16: end if

17: UPDATE(M;_1, key, values) > Preserve sub(key, M;)

18: end function

of intermediate records with the same key, we can derive AR; as
follows:

AR = U reduce(k, M;)

kekey(AM;)

AR =

1

reduce(k, M;_1).
kekey(AM;)

Algorithm 3 describes the implementation of this approach in
HadUP, where values represents a list of values and values” repre-
sents a list of value/type pairs. To inform M;_; of the reduce tasks,
the user should specify the ID of the same job executed in the last
run (i.e., setBaseJobID in Fig. 4). In HadUP, a reduce task pro-
duces two output files, one for each record type, because of the
policy described in Section 5.1. In addition, the task buffers the
output records temporarily in memory, and ignores all pairs of
records with the same key/value, but different types. This imple-
mentation is effective with some reduce functions that, for key k,
reduce(k, M;_1) and reduce(k, M;) share many records (e.g., reduce-
side join).

5.2.1. Partition files

For efficient update propagation with the reduce function, it is
important for HadUP to read records quickly from M;_; (line 4) and
to transform M;_, into M; (line 17), which is needed for subsequent
runs. To achieve this, HadUP maintains M using partition files,
which are similar to Hadoop’s MapFile. Each partition file contains
a portion of AM; and the indices for each key. Fig. 7 illustrates the
layout of the partition file. A Group field contains all records with
the same key in AM;. The last property is used for the indirect files
(which will be described in Section 5.2.2).

Each reduce task often creates one partition file with the
shuffled data,® and reads M;_; from some of the previously created
partition files. HadUP does not allow the user to change the
partitioner function used in the first run so that no task shares the
partition files. To retrieve sub(k, M;_1) for key k, a reduce task reads
the records in all the Group fields associated with k while ignoring
all pairs of records with the same value but different types. Since
the intermediate data is always processed in increasing key order,

8 A reduce task creates more than one partition file when the shuffled data is
large. In Hadoop, the shuffled data is stored in the task’s memory, but spilled to a
local disk if it does not fit in memory. HadUP replaces this spill file with the partition
file.

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 73

the partition file is always read sequentially, and all indices in it are
created without additional sorting.

To improve the performance of reading the partition files,
HadUP schedules each reduce task on the node where the task
assigned to the same partition was executed in the last run. Since
the HDFS always stores one replica of a block in the node where
the writer runs, this policy prevents reduce tasks from reading the
partition files remotely. If the target node is failed or overloaded,
HadUP schedules the task on the node storing the most blocks of
the required partition files.

5.2.2. Indirect files

If R is the application result, each reduce task creates an indirect
file instead of the output file with the (—)-typed records. For key k
in M;, the indirect file contains the location of reduce(k, M;) (i.e., file
name, offset, and length); the last property of the Group field is
used to store this information for subsequent runs. When the user
reads this file, the HadUP client library redirects the read requests
to the appropriate output files created previously. Therefore, the
user can get the updated result (i.e, R;) as if they were using
Hadoop.

5.2.3. Compaction

As the application is executed repeatedly, a reduce task might
read a number of partition files if there is no additional man-
agement for them. To avoid this, HadUP bounds the number of
partition files by executing compaction. Whenever the number of
partition files for a partition reaches a threshold, HadUP merges
them into a large one in the background. Compaction also reduces
space overhead because the compacted partition file does not need
to contain (—)-typed records and record types.

If a job produces the indirect files, HadUP also executes com-
paction of the job’s output files for better performance retrieving
the updated result. After compaction, therefore, the indirect files
become unnecessary, as they were at the end of the first run.

5.3. Update propagation with the combiner function

The combiner function is effective in reducing data transfer be-
tween the map and reduce tasks, but complicates update propaga-
tion. Recall that, unlike the reduce function, the combiner function
aggregates a portion of the values associated with each interme-
diate key. Because of this property, the strategy described in the
previous section is not suitable for the combiner function; the (4)-
typed records can be handled, but the (—)-typed ones cannot. If the
combiner function is applied only to the (4)-typed records, update
propagation with the following reduce function becomes impossi-
ble.® One option is to disable the combiner function, but it causes
a large data transfer between the map and reduce tasks, which can
result in a significantly poor performance.

Currently, HadUP supports a popular class of the combiner
functions, which is distributive with respect to both insertion and
deletion. These functions can compute the new output with the
old output and the input change. Input deletion is processed using
their inverse functions. For example, “sum” is one of the most
widely used combiner function belonging to this class, and its
inverse function is “additive inverse”.

9 Assume that a reduce task encounters (k, v, —) in AM;. If the combiner function
is not used, HadUP guarantees that the task gets (k, v, +) from the partition files
(i.e., M;_1) or from the shuffled data (i.e., AM,*). With the combiner function,
however, this is not guaranteed because (k, v) may have been combined with other
records.

Index file Data file
Key 1 > Group 1 Size
Key 3 Group 2 Key
LR _|-> Group 3 # values
Key N Group 4 List of
<value, type>
L Output location
Group N (optional)
(a) Partition file. (b) Group field.

Fig. 7. Layout of the partition file.
Based on the definition of the combiner functions, we can derive
AR; as follows:

AR = reduce(combine(k, M;))
kekey(AM;)

AR reduce(combine(k, M;_1)).

kekey(AM;)

If the given combiner function is distributive with respect to
both insertion and deletion, sub(k, M;) is not essential to compute
combine(k, M;). Let C be the combined intermediate dataset, where
sub(k, G;) is defined as combine(k, M;). Then, sub(k, C;) can be de-
rived as follows:

sub(k, G;) = combine(sub(k, Ci_1) U sub(k, AMiJr)
Uinv(k, AM,")) (2)

where inv(k, AM;") denotes the result of applying the inverse
function to sub(k, AM;"). That is,

inv(k, AM;") = {{k, v |(k, v) € sub(k, AM)}

where v~ is the inverse of v. Since reduce(combine(k, M;)) is equal
to reduce(sub(k, C;)), we can derive AR; without M; but with C;.

Consider the well-known word count job, whose combiner
functionis “sum”. Assume that word w appeared twice in the input
documents in the first run. Then, sub(w, M;) = {(w, 1), (w, 1)}
and sub(w, C;) = {{w, 2)}. If one of the w’s has been removed
before the second run (i.e., sub(w, AM,) = {{w, 1, —)}), inv(w,
AM;) is derived as {{w, —1)}. In this case, therefore, sub(w, C;) is
derived from (2) as follows:

sub(w, C;) = combine({{w, 2), (w, —1)}) = {{w, 1)}.

This is equal to the result without the combiner function.

Unfortunately, (2) is not always valid. For any key k, sub(k, ;)
is always derived as a non-empty set from (2) if sub(k, CG;_¢) is a
non-empty set. Assume that, in the above word count example,
all of the w’s have been removed before the second run. In this
case, sub(w, C;) must be an empty set, but it is derived from (2)
as follows:

sub(w, C;) = combine({{w, 2), (w, —1), (w, —1)})
{{w, 0)} # 0.

To avoid this case, there are two possible solutions. The first is
to check whether the result of (2) is valid. In Hadoop, the combiner
function of the word count job always produces non-zero values
for any word. Therefore, we can regard sub(w, ;) as an empty
set if {(w, 0)} is derived from (2). Though simple, this correction
is impossible for algorithms without such property.!® The second

10 gor example, consider a job whose combiner function is also “sum”, but whose
map function emits any number as a value.

74 D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79

Algorithm 4 Update propagation with the combiner function that
is distributive with respect to insertion and deletion

1: function MAPUP(key, value, type)
S < Map(key, value)
if type = + then
for all (k, v) € Sdo
Emit(k, v, 1)
end for
else
for all (k, v) € Sdo
v~ < INVERSE(V)
Emrt(k, v=!, —1)
end for
end if
: end function
: function COMBINERUP(key, values®)
values < VALUES(values®)
count < SuM(values®)
(k, v) <— CoMBINER(key, values)
Emit(k, v, count)
: end function
: function REDUCEUP(key, values®)
if key exists C;_; then
(key, value, count) < ReaD(key, C;_1)
count = |sub(key, M;_1)|

> Compute map({key, value))

> Compute inv((k, v))

NN N = = m m e e e e
N D OO IdDNT AR, PRPIN ALY

> Read sub(key, Ci_1) where

23: S < ReDucE(key, {value}) > Compute reduce(key, Ci_1)
24: for all (k, v) € Sdo

25: Emit(k, v, —)

26: end for

27: values® < MEeRrGE(values®, {(value, count)})

28: end if

29: (key, value, count) <— CoMBINERUP(key, values®) = Compute sub(key, C;)

where count = |sub(key, M;)|
30: if count > 0 then

31: S < Repuck(key, {value}) > Compute reduce(key, C;)
32: for all (k, v) € Sdo

33: Emit(k, v, +)

34: end for

35: end if

36: UPDATE(C;_1, key, value, count)
37: end function

> Preserve sub(key, C;)

solution, which is more general, is to track |sub(k, M;)|, the number
of records in sub(w, M;). If it is zero, M; contains no record with key
w, and therefore, sub(w, C;) must be an empty set, regardless of the
result of (2).

Algorithm 4 describes our implementation to support the
combiner functions in HadUP, where values® represents a list of
value/count pairs. In the map stage, HadUP emits the inverse values
of the (—)-typed map output records (line 9). Note that the user
should write the inverse function. Then, HadUP assigns a counter
to each intermediate record instead of type (line 5, 10), which will
be used to track [sub(k, M;)| for each intermediate key k. For the
(+4)-typed records, this counter is initialized to 1, and otherwise,
—1.

In the reduce stage, HadUP computes both sub(k, C;) and
|sub(k, M;)| before invoking the reduce function for key k (line 29).
The counters of intermediate records are added up during the com-
biner execution (line 16), thus |sub(k, M;)| can be computed. If it
becomes zero, the reduce function is bypassed. HadUP maintains
sub(k, G;) and |sub(k, M;)| using the partition files. If several par-
tition files contain the information for the same key, HadUP takes
only the information from the newest one and ignores the rest.

6. Evaluation

We evaluated HadUP on a 16-node cluster from the Amazon
Elastic Compute Cloud (EC2). Each node is the High-CPU medium
instance (cl.medium) that contains two virtual cores (with 2.5
EC2 Compute Units each) and 1.7 GB of memory, and provides
moderate I/O performance. We configured each TaskTracker to
run two map tasks and one reduce task concurrently, and limited

Table 2

Hadoop applications used in our evaluation.
Application Domain # Jobs
Word count (WC) Text analytics 1
Word co-occurrence (W0) Natural lang. processing 1
Clustering coefficient (CC) Link analysis 7
PageRank (PR) Graph algorithm 5

the heap memory of each task to 512 MB. We also assigned a
sufficiently large input to each task. To each map task, we assigned
128 MB of data by setting the HDFS block size to 128 MB. To each
reduce task, we assigned a few hundred megabytes of data by
carefully choosing the number of reduce tasks of each job. All other
configurations were set to the Hadoop’s default values. Note that,
in this environment, we can suppose that task-level memoization
based approaches perform similarly to (or worse than) Hadoop, as
discussed in Section 2.3.

Table 2 lists the Hadoop applications used in our evaluation,'!
which are representative for different domains. Only a single job
was used to implement WC and WO. Though both are similar, WO
shuffles much more data than WC (about 26 x). CC and PR consist
of several jobs. In CC, two jobs are dominant, which are executed in
series to count triangles in the input graph. The reason is that the
former job produces a significant amount of output data, almost 20
times that of its input data. In PR, we configured two jobs to run 10
times repeatedly for the PageRank computation (i.e., 10 iterations).
In all applications, we used the same code for each job on both
Hadoop and HadUP.

We used two performance metrics: time and work. Time refers
to the completion time of each application, while work refers to the
sum of the running time of all tasks. The tendency of both time and
work is similar, but work is less affected by resource heterogeneity
in EC2 and load imbalance. The difference between time and work,
therefore, tends to be larger, as the application consists of more
jobs.

In the rest of this section, we evaluate HadUP performance
for incremental processing, and then analyze the performance
impact of D-SD and update propagation on the overall HadUP
performance.

6.1. Incremental processing with HadUP

To evaluate HadUP performance for incremental processing, we
ran the applications with five snapshots of the Wikipedia English
article dataset, created monthly from Dec. 2011 to Apr. 2012.
The snapshot size increases almost linearly; the oldest snapshot
is 32.8 GB and the newest one is 34.9 GB in size. We set the
average chunk size of D-SD to 256 bytes, which shows the best
performance. To reduce the average chunk size to such a small
size, we implemented a customized input parser for the Wikipedia
English article dataset, which produces about 100-byte records on
average.'?

Fig. 8 shows HadUP’s incremental performance, normalized
to Hadoop’s non-incremental performance. Except in the first
run, HadUP outperforms Hadoop in all subsequent runs. The

11 e implement all these applications on our own. We refer to [20] and [21] to
implement CC and PR, respectively.

12 When processing text data with Hadoop, LineRecordReader is often used
to parse the data, which returns a line as a record. Using this parser, however, we
cannot sufficiently reduce the average chunk size, because each paragraph in the
Wikipedia article dataset is expressed as a single line whose average is over 1 KB.
Our customized input parser approximately breaks each paragraph into multiple
sentences. It returns the article name as key and each sentence in the article as
value. For other information such as wiki metadata, it returns a line as value.

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 75

-o-WC -2 WO -4& CC -¢PR

Time

0.0 T T T T T
Dec. Jan. Feb. Mar. Apr.
2011 2012 2012 2012 2012
Snapshot creation date
(a) Time.

-o-WC -B WO -A& CC -¢ PR

1.5

=<
o
=
0.0 T T T T T
Dec. Jan. Feb. Mar. Apr.
2011 2012 2012 2012 2012
Snapshot creation date
(b) Work.

Fig. 8. HadUP performance for incremental processing on the Wikipedia English article dataset.

performance benefit of HadUP varies depending on application
characteristics. Among the four applications, WC is the most
computationally inexpensive and involves the smallest amount
of data transfer. The benefit from update propagation with WC
is not sufficiently higher than the cost of D-SD, therefore HadUP
performs similarly to Hadoop with WC. In contrast, WO and CC
are computationally expensive and involve a large amount of
data transfer. Consequently, HadUP performs much better than
Hadoop with WO and CC, up to 1.8 x and 2.5 x better respectively.
With PR, HadUP outperforms Hadoop, but the performance benefit
is relatively low. The reason is that all PageRank computations
should always be re-executed because the total number of
pages affects the PageRank value of each page. Therefore, the
benefit by avoiding unnecessary computation mostly comes from
incrementally building the initial PageRank table and the inter-
page link table, which occupies only 11% of the total computation
in our environment.

In the first run, HadUP cannot take any advantage of update
propagation, but must do additional work in preparation for the
second run: the input data chunking (for D-SD) and the creation
of partition files (for update propagation). This is a cause of the
degraded performance of HadUP in the first run. The chunking cost
is affected only by the input size, but HadUP can perform worse
if the application consists of jobs processing larger intermediate
data. With W0 and CC, HadUP performance is degraded by up to 25%
compared with that of Hadoop. However, we argue that this one-
time cost is acceptable because it is amortized and transformed
into performance benefits in subsequent runs.

Interestingly, HadUP outperforms Hadoop with PR even in
the first run. In many iterative algorithms, a significant fraction
of the processed data remains invariant across iterations, thus
it is effective to avoid reprocessing the invariant data on each
iteration [21]. In PR, a number of inter-page links are invariant but
processed at each iteration. If we regard an iteration of PR as a sub-
application, update propagation can avoid reprocessing them after
the first iteration. This is the main factor affecting the performance
improvement of HadUP with PR.

6.2. Impact of D-SD

Next, we explore the impact of D-SD on HadUP performance.
We used the snapshot of the Wikipedia English article dataset that
was taken on Dec. 2011 as input in the first run, and that taken on
either Jan. 2012 or Apr. 2012 as input in the second run.

Fig. 9 shows the update size and the amount of chunk informa-
tion while varying the average chunk size of D-SD. The results are

normalized to the size of the older snapshot, and NF in Fig. 9(a)
denotes the update size computed by comparing both snapshots
record-by-record. The results reveal the tradeoff between the ef-
fectiveness (Fig. 9(a)) and the efficiency (Fig. 9(b)) of D-SD. With
smaller chunks, D-SD finds more unchanged data, but also handles
more chunk information. In our evaluation, a map task reads up to
30 MB of chunk information when the average chunk size is set to
128 bytes.

Fig. 10 shows HadUP performance in the second run versus the
average chunk size. The results are normalized to Hadoop’s non-
incremental performance. The trends of both time and work are the
same, so we omit the measurement of work. In our environment,
using 256-byte chunks achieves the best performance because
the effectiveness and efficiency of D-SD are the most balanced.
However, multi-job applications such as CC and PR are less
sensitive to the chunk size than single-job applications such as WC
and W0. D-SD affects only the jobs processing the application input.
In CC and PR, such jobs take only 9% and 8% of the total runtime
in our environment, respectively. As a result, the impact of D-SD
on HadUP performance is not severe. Since multi-job applications
are common in practice, most applications are insensitive to the
average chunk size of D-SD.

6.3. Impact of update propagation

Now, we evaluate update propagation without D-SD. In this
section, we use the term update ratio to represent how much the
application input changes. We say that the update ratio is r% when
r% of the input data in the last run is changed into new data. In our
experiments, we used multiple, same-sized files as input in the first
run, and changed r% of these files to new ones in the second run to
set the update ratio to r%. Therefore, HadUP handles only 2r% of the
input files used by Hadoop; the newly added files are treated as the
(+)-typed data and the removed ones as the (—)-typed data.

For WC and WO, we used the Wikipedia English article dataset
snapshotted on Dec. 2011, but used the LiveJournal dataset!> for CC
and PR. The LiveJournal dataset is a social network graph dataset
that contains the friendship network of an on-line community. We
enlarged the dataset without changing the network structure as
was done in [21], and the extended dataset is about 18 GB in size.

Fig. 11 shows HadUP performance in the second run while vary-
ing the update ratio. The results are normalized to Hadoop’s non-
incremental performance. For all applications, HadUP performance

13 http://snap.stanford.edu/data/.

http://snap.stanford.edu/data/

76 D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79

—& Jan. 2012 > Apr. 2012

2.0

Update size

0.0 T T T T T T T
NF 128 256 512 1K 2K 4K

Average chunk size (byte)

(a) Effectiveness.

-&- Jan. 2012 = Apr. 2012

0.4

Chunk information size

0.0 T T T T T T
128 256 512 1K 2K 4K

Average chunk size (byte)

(b) Efficiency.

Fig. 9. Effect of the average chunk size on D-SD.

- WC -8 WO -4CC PR
1.5

- WC -8 WO -4CC -%PR

Work

0.0

T T T
128 256 512 1024

Average chunk size (byte)

(b) Apr. 2012.

Fig. 10. Effect of the average chunk size on HadUP performance.

(0]
£
|_
0.0 T T T T
128 256 512 1024
Average chunk size (byte)
(a)Jan.2012.
--WC - WO -a~CC -xPR
2.0
(0]
=
|_
Update ratio (%)
(a) Time.

-o-WC =# WO -a~CC PR

2.0

Work

Update ratio (%)

(b) Work.

Fig. 11. Update propagation performance versus the update ratio.

degrades almost linearly as the update ratio increases. Though it
performs even worse than Hadoop with a high update ratio, HadUP
still considerably outperforms Hadoop with a small update ratio
as claimed. The benefit from update propagation depends on how
much computation the given update involves. WC shows the best
performance because a single input record is dependent on only
a few output records on average. WO shows similar performance
in the presence of a small update, but requires more computation
as the update ratio increases. Both CC and PR require relatively

more computation with a small update. In particular, the result of
PR is close to one because all PageRank computations are always
re-executed. However, PR is least affected by the update ratio, be-
cause the performance benefit for PR comes from avoiding repro-
cessing the inter-page link table in each iteration, as discussed in
Section 6.1.

Update propagation incurs space overhead to maintain the
partition files. Fig. 12 shows HadUP performance in the first run,
normalized to that of Hadoop, and the associated space overhead

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 77

B istrun @ 2nd run (10% updated)
25
D 20 —f -t
©
s J
D 15 g
> J
)
QA0 e
® J
o
O g5 .
J0.033 |_| 0.175
0.117
0 0.005 m
WC WO CC PR

Applications

(b) Space overhead.

Fig. 12. HadUP performance in the first run.

B Time @ Work
1.5
8 10 -]
Al e e P
©
£ |
o
E 0.5
a U
0.0 —
WC WO CC PR
Applications
(a) Time/work.
Table 3
Programming effort (lines of code).
Application Jobs Driver (Hadoop) Driver (HadUP)
wC 52 17 21
wo 77 17 21
cC 969 73 89
PR 512 72 117

normalized to the application input size. Without D-SD, perfor-
mance overhead in the first run mainly comes from creating the
partition files. For all applications, this overhead is not significantly
high, as shown in Fig. 12(a). In contrast, space overhead varies
substantially depending on application characteristics; it can be
as high as 20 times the input data size (with CC), as shown in
Fig. 12(b). Inevitably, HadUP consumes more space as the applica-
tion produces more intermediate data. Note that such space over-
head does not cause a significantly long runtime. The growth rate
of space usage is reduced in subsequent runs, especially with small
updates. Furthermore, compaction can prevent space usage from
growing without bounds.

6.4. Programming effort

We measure the programming effort by lines of code, and the
result shows that HadUP requires only a small amount of extra
programming cost, compared with Hadoop. Table 3 shows the lines
of code for each application without our customized input parser.
Most applications require only a few more lines of code for their
drivers, while PR requires more in order to avoid reprocessing the
inter-page link table in each iteration.

7. Related work

Large-scale incremental processing. There are several approaches
for large-scale incremental processing. They are divided into two
categories: transparent and non-transparent approaches. Our ap-
proach represents a middle ground between the two categories.
HadUP provides high performance and a sufficient level of trans-
parency.

Most transparent approaches are based on task-level memoiza-
tion. Comet [14] leverages the previous intermediate results of the
same query in an overlapping window of data. Nectar [11] provides
a general, datacenter-wide solution by managing the cached re-
sults of the sub-computations and by automatically rewriting ap-
plications to reuse them. Both Incoop [10] and IncMR [15] exploit

task-level memoization in the context of MapReduce. They pre-
serve intermediate data and reuse them whenever the reduce stage
of the future job needs them. Incoop, furthermore, tries to reduce
the number of tasks to be re-executed by applying content-based
chunking to the HDFS. While providing full transparency, none of
them can save a sufficient amount of computation in most cases
because of the inherent disadvantage of task-level memoization.
In contrast, HadUP detects and computes the change of datasets at
a fine-grained level using D-SD and update propagation. As a re-
sult, it provides higher performance, especially in an environment
where task-level memoization has no benefit.

Non-transparent approaches include Percolator [13] and Con-
tinuous Bulk Processing (CBP) [12]. Percolator is designed to
process many small updates concurrently to a large dataset in
Bigtable [22]. Whenever a user-specified column changes, an ob-
server is invoked to perform computation with the change. It can
trigger another observer by writing to the table. A Percolator ap-
plication, therefore, consists of a series of observers. CBP inte-
grates state into distributed computing using a groupwise operator
that takes state as an explicit input. It also offers dataflow man-
agement primitives to accommodate continuous execution. While
providing high efficiency, these approaches require that the appli-
cations be rewritten using their interfaces. The more fundamen-
tal disadvantage is that they require the user to devise dynamic
algorithms, which are known to be difficult to develop and im-
plement [10]. Compared with non-transparent approaches, HadUP
provides higher transparency because existing Hadoop jobs can be
reused.

Incremental view maintenance. Database systems maintain a view,
a derived relation defined in terms of base relations, to improve
query performance [23]. Since recomputing a view from scratch is
often unaffordable, these systems incrementally update a view as
the contents evolve.

Update propagation is inspired by incremental view mainte-

nance. Abstractly, a MapReduce program can be seen as a view
definition and the computed result as a materialized view [24].
Palpanas et al. [25] describe incremental maintenance for non-
distributive aggregate functions. While their approach is similar to
update propagation, it is tailored to RDBMS while ours is suited
to big data processing. Jorg et al. [24] discuss incremental view
maintenance in a Hadoop/HBase software stack. However, their
approach is valid only if the reduce function is distributive with re-
spect to both insertion and deletion. Compared with this approach,
HadUP supports a broader class of algorithms.
Stream processing. Traditional stream processing systems [26,27]
and distributed stream processing systems [28,29] focus on min-
imizing latency. Differently, to improve throughput, HadUP deals
with data in a batch fashion.

78 D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79

MapReduce Online [30] attempts to unify stream processing
and the MapReduce paradigm by pipelining between operations.
Pipelining enables the production of approximate outputs for on-
line aggregation and continuous queries, but cannot produce exact
results without recomputation from scratch. In contrast, HadUP al-
ways produces exact results using the indirect files. Nova [31] is a
workflow manager that supports batched incremental processing
for continually arriving data. It requires some specialized functions
to manage updates; for example, user-specified merge functions
for applying updates to base data. HadUP is free from such con-
straints.

Data deduplication. Data deduplication is mainly used to improve
storage utilization or to reduce the amount of network data trans-
fers. As datasets grow larger, the main challenge in this context
is how to manage chunk information efficiently using insufficient
memory. Zhu et al. [32] and sparse indexing [16] exploit chunk lo-
cality in backup data streams. Extreme Binning [33] exploits file
similarity for fine-grained, low-locality backup workloads consist-
ing of files, and SiLo [34] adopts both locality and similarity. All of
these techniques are proposed for data deduplication by a single
computing node. [33] proposes a mechanism to perform Extreme
Binning in a distributed system, but it is ineffective with large files.
In this work, we extended the principle of sparse indexing to a
distributed environment so that D-SD can effectively handle big
data.

8. Conclusions

We have presented HadUP (Hadoop with Update Processing), a
modified Hadoop architecture tailored to large-scale incremental
processing with conventional MapReduce algorithms. Through an
analysis of task-level memoization, we find that it is essential to
detect and compute the change of datasets at a fine-grained level
for efficient incremental processing. To reduce the granularity,
HadUP adopts two techniques: a deduplication-based snapshot
differential algorithm (D-SD) and update propagation. D-SD
extends the principle of sparse indexing [16] in order to detect the
change of the application input in large-scale Hadoop clusters, and
update propagation exploits data parallelism in the MapReduce
programming model to compute the updated result efficiently.
As a result, HadUP shows up to 2.5x speedup over Hadoop in
an environment where task-level memoization has no benefit.
Though HadUP incurs a penalty in the first run (up to 25% with
respect to Hadoop), it is just a one-time cost when no computation
can be reused. Furthermore, HadUP requires only a small amount
of extra programming cost so that the development of HadUP
applications is quite easy.

In future work, we would like to improve the efficiency of
HadUP for a broad class of algorithms. For example, we plan to
extend HadUP to support all classes of the combiner functions,
including those that are not distributive with respect to deletion
(e.g., max and min). We also plan to port Hadoop-based NoSQL
systems, such as Pig [6] and Hive [7], to run on HadUP. Since their
queries are compiled into Hadoop jobs, we expect that HadUP can
process unmodified (or little modified) queries in an incremental
manner.

References

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] J.Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
in: Proc. USENIX Symp. Operating Systems Design and Implementation, OSDI,
Dec. 2004.

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-
parallel programs from sequential building blocks, in: Proc. ACM European
Conf. Computer Systems, EuroSys, Mar. 2007.

[4] G. Malewicz, M.H. Austern, AJ. Bik,]J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: a system for large-scale graph processing, in: Proc. ACM
Int’l Conf. Management of Data, SIGMOD, Jun. 2010.

[5] D.G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, S.
Hand, CIEL: a universal execution engine for distributed data-flow computing,
in: Proc. USENIX Symp. Networked Systems Design and Implementation, NSDI,
Mar. 2011.

[6] C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig Latin: a not-so-
foreign language for data processing, in: Proc. ACM Int’l Conf. Management
of Data, SIGMOD, Jun. 2008.

[7] A.Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, R.
Murthy, Hive—a petabyte scale data warehouse using Hadoop, in: Proc. IEEE
Int’l Conf. Data Engineering, ICDE, Mar. 2010.

[8] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda,]. Currey,

DryadLINQ: a system for general-purpose distributed data-parallel computing

using a high-level language, in: Proc. USENIX Symp. Operating Systems Design

and Implementation, OSDI, Dec. 2008.

M. Zaharia, M. Chowdhury, T. Das, A. Dave,]. Ma, M. McCauley, M.J. Franklin,

S. Shenker, 1. Stoica, Resilient distributed datasets: a fault-tolerant abstraction

for in-memory cluster computing, in: Proc. USENIX Symp. Networked Systems

Design and Implementation, NSDI, Apr. 2012.

[10] P.Bhatotia, A. Wieder, R. Rodrigues, U.A. Acar, R. Pasquini, Incoop: MapReduce
for incremental computations, in: Proc. ACM Symp. Cloud Computing, SoCC,
Oct. 2011.

[11] P.K.Gunda, L. Ravindranath, C.A. Thekkath, Y. Yu, L. Zhuang, Nectar: automatic
management of data and computation in data centers, in: Proc. USENIX Symp.
Operating Systems Design and Implementation, OSDI, Oct. 2010.

[12] D. Logothetis, C. Olston, B. Reed, K.C. Webb, K. Yocum, Stateful bulk processing
for incremental analytics, in: Proc. ACM Symp. Cloud Computing, SoCC, Jun.
2010.

[13] D. Peng, F. Dabek, Large-scale incremental processing using distributed
transactions and notifications, in: Proc. USENIX Symp. Operating Systems
Design and Implementation, OSDI, Oct. 2010.

[14] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, L. Zhou, Comet: batched stream
processing for data intensive distributed computing, in: Proc. ACM Symp.
Cloud Computing, SoCC, Jun. 2010.

[15] C.Yan, X. Yang, Z. Yu, M. Li, X. Li, IncMR: incremental data processing based on
MapReduce, in: Proc. Int’l Conf. Cloud Computing, CLOUD, Jun. 2012.

[16] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, P. Camble, Sparse
indexing: large scale, inline deduplication using sampling and locality, in: Proc.
USENIX Conf. File and Storage Technologies, FAST, Feb. 2009.

[17] K.-H. Lee, Y.-J. Lee, H. Choi, Y.D. Chung, B. Moon, Parallel data processing with
MapReduce: a survey, ACM SIGMOD Record 40 (4) (2011) 11-20.

[18] D. Fetterly, M. Haridasan, M. Isard, S. Sundararaman, TidyFS: a simple and
small distributed file system, in: Proc. USENIX Annual Tech. Conf., USENIX, Jun.
2011.

[19] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system, in: Proc. ACM
Symp. Operating Systems Principles, SOSP, Oct. 2003.

[20] J. Cohen, Graph twiddling in a MapReduce world, Computational Science &
Engineering (2009).

[21] Y. Bu, B. Howe, M. Balazinska, M. Ernst, HaLoop: efficient iterative data
processing on large clusters, in: Proc. VLDB Endow., Sep. 2010.

[22] F. Chang,]. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T.
Chandra, A. Fikes, R.E. Gruber, Bigtable: a distributed storage system for
structured data, in: Symp. Operating Systems Design and Implementation,
OSDI, Nov. 2006.

[23] A. Gupta, LS. Mumick, Maintenance of materialized views: problems,
techniques, and applications, I[EEE Data Engineering Bulletin 18 (2) (1995)
3-18.

[24] T. Jorg, R. Parvizi, H. Yong, S. Dessloch, Incremental recomputations in
MapReduce, in: Proc. Int’l Workshop on Cloud Data Management, CloudDB,
Oct. 2011.

[25] T. Palpanas, R. Sidle, R. Cochrane, H. Pirahesh, Incremental maintenance for
non-distributive aggregate functions, in: Proc. VLDB Endow., Aug. 2002.

[26] A. Arasu, B. Babcock, S. Babu,]. Cieslewicz, M. Datar, K. Ito, R. Motwani, U.
Srivastava, J. Widom, STREAM: the Stanford data stream management stream,
in: Data Stream Management: Processing High-Speed Data Streams, Springer,
2009.

[27] J. Chen, D.J. Dewitt, F. Tian, Y. Wang, NiagaraCQ: a scalable continuous query
system for internet databases, in: Proc. ACM Int’l Conf. Management of Data,
SIGMOD, May 2000.

[28] Storm. https://github.com/nathanmarz/storm/.

[29] L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing
platform, in: IEEE Int’l Conf. Data Mining Workshops, ICDMW, Dec. 2010.

[30] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, MapReduce online, in: Proc.
USENIX Symp. Networked Systems Design and Implementation, NSDI, Apr.
2010.

[9

http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-739X(13)00189-1/sbref17
http://refhub.elsevier.com/S0167-739X(13)00189-1/sbref20
http://refhub.elsevier.com/S0167-739X(13)00189-1/sbref23
http://refhub.elsevier.com/S0167-739X(13)00189-1/sbref26
https://github.com/nathanmarz/storm/

D. Lee et al. / Future Generation Computer Systems 36 (2014) 66-79 79

[31] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V.B.N.
Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X. Wang, Nova:
continuous Pig/Hadoop workflows, in: Proc. ACM Int’l Conf. Management of
Data, SIGMOD, Jun. 2011.

[32] B. Zhu, K. Li, H. Patterson, Avoiding the disk bottleneck in the data domain
deduplication file system, in: Proc. USENIX Conf. File and Stroage Technologies,
FAST, Feb. 2008.

[33] D. Bhagwat, K. Eshghi, D. Long, M. Lillibridge, Extreme binning: scalable,
parallel deduplication for chunk-based file backup, in: Proc. IEEE Int’'l Symp.
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, MASCOTS, Sep. 2009.

[34] W. Xia, H. Jiang, D. Feng, Y. Hua, SiLo: a similarity-locality based near-exact
deduplication scheme with low RAM overhead and high throughput, in: Proc.
USENIX Ann. Tech. Conf., ATC, Jun. 2011.

Daewoo Lee received his B.S. degree in Electrical Engi-
neering from Korea Advanced Institute of Science and
Technology (KAIST) in 2002, and M.S. degree in Computer
Science from Korea Advanced Institute of Science and
Technology (KAIST) in 2005. Currently, he is a Ph.D. can-
didate in Computer Science at KAIST. His research inter-
ests include big data processing, cloud computing, and
distributed systems.

Jin-Soo Kim received his B.S., M.S., and Ph.D. degrees
in Computer Engineering from Seoul National University,
Republic of Korea, in 1991, 1993, and 1999, respectively.
He is currently an associate professor at Sungkyunkwan
University. Before joining Sungkyunkwan University, he
was an associate professor at Korea Advanced Institute
of Science and Technology (KAIST) from 2002 to 2008.
He was also with the Electronics and Telecommunications
Research Institute (ETRI) from 1999 to 2002 as a senior
member of the research staff, and with the IBM T.J. Watson
Research Center as an academic visitor from 1998 to 1999.
His research interests include embedded systems, storage systems, and operating
systems.

Seungryoul Maeng received his B.S. degree in Electronics
Engineering from Seoul National University (SNU), Repub-
lic of Korea, in 1977, and M.S. and Ph.D. degrees in Com-
puter Science from Korea Advanced Institute of Science
| and Technology (KAIST), in 1979 and 1984, respectively.
Since 1984, he has been a faculty member of the Computer
Science Department at KAIST. From 1988 to 1989, he was
with the University of Pennsylvania as a visiting scholar.
His research interests include micro-architecture, parallel
processing, cluster computing, and embedded systems.

	Large-scale incremental processing with MapReduce
	Introduction
	Background
	MapReduce programming model
	Hadoop
	Motivation

	HadUP overview
	Data representation
	Incremental processing in HadUP
	Map
	Reduce

	Writing HadUP applications

	Deduplication-based snapshot differential algorithm (D-SD)
	Choosing reference segments
	Getting the update from base segments
	Overall procedure in HadUP

	Update propagation
	Update propagation with the map function
	Update propagation with the reduce function
	Partition files
	Indirect files
	Compaction

	Update propagation with the combiner function

	Evaluation
	Incremental processing with HadUP
	Impact of D-SD
	Impact of update propagation
	Programming effort

	Related work
	Conclusions
	References

