
Future Generation Computer Systems 27 (2011) 1011–1026
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Cost optimized provisioning of elastic resources for application workflows

Eun-Kyu Byun a, Yang-Suk Kee b, Jin-Soo Kim c,∗, Seungryoul Maeng a

a Department of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
b Oracle USA Inc., Redwood Shores, CA 94065, USA
c School of Information and Communication Eng., Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea

a r t i c l e i n f o

Article history:
Received 19 October 2010
Received in revised form
19 April 2011
Accepted 3 May 2011
Available online 10 May 2011

Keywords:
Resource capacity estimation
Resource allocation
Application workflow
Cloud computing economy

a b s t r a c t

Workflow technologies have become a major vehicle for easy and efficient development of scientific
applications. In the meantime, state-of-the-art resource provisioning technologies such as cloud
computing enable users to acquire computing resources dynamically and elastically. A critical challenge
in integrating workflow technologies with resource provisioning technologies is to determine the right
amount of resources required for the execution of workflows in order to minimize the financial cost
from the perspective of users and to maximize the resource utilization from the perspective of resource
providers. This paper suggests an architecture for the automatic execution of large-scale workflow-based
applications on dynamically and elastically provisioned computing resources. Especially, we focus on
its core algorithm named PBTS (Partitioned Balanced Time Scheduling), which estimates the minimum
number of computing hosts required to execute a workflow within a user-specified finish time. The PBTS
algorithm is designed to fit both elastic resource provisioning models such as Amazon EC2 and malleable
parallel application models such as MapReduce. The experimental results with a number of synthetic
workflows and several real science workflows demonstrate that PBTS estimates the resource capacity
close to the theoretical low bound.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Many applications for large-scale scientific problems consist
of a number of cooperative tasks which typically require more
computing power beyond single machine capability. Distributed
HPC (High Performance Computing) environments such as cluster,
grid, and IaaS (Infrastructure as a Service) cloud have become
a viable computing platform for this class of applications. An
easy and popular way to describe complex applications is to
use a high-level representation. Especially, many projects in a
variety of disciplines adopt a workflow technology [1–4]. The
MapReduce programming model from Google [5] and Dryad
from Microsoft [6] are also an example of workflow approach.
A workflow is represented as a Directed Acyclic Graph (DAG)
with nodes and edges, which represent tasks and data/control
dependencies between tasks, respectively. A workflow can specify
the overall behavior and structure of an application independent of
target execution environments. Then, the workflow management

∗ Corresponding author.
E-mail addresses: ekbyun@camars.kaist.ac.kr (E.-K. Byun),

yang.seok.ki@oracle.com (Y.-S. Kee), jinsookim@skku.edu (J.-S. Kim),
maeng@camars.kaist.ac.kr (S. Maeng).

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.05.001
systems such as Pegasus [7], Askalon [8], and Triana [9] deal with
the complexity of application management and allow scientists to
execute the workflow on distributed resources.

Traditional HPC systems are mostly dedicated and statically
partitioned per administration policy. Owning a HPC system,
however, is not only very expensive but also inefficient in adapting
to the surge of resource demand. For this reason, the dynamic
coordination and provision of distributed resources rapidly draw
attraction from scientists. Some notable achievements are the
resource virtualization and provisioning technologies such as COD
(Cluster on-demand) [10], Virtual Grid [11,12], Eucalyptus [13],
and IaaS Cloud such as Amazon’s EC2 (Elastic Compute Cloud) [14].

Workflow technology can benefit from resource provisioning
technology. As observed in IaaS, resource provisioning technology
makes the resource allocation process simple and straightforward;
users only need to identify resource type, leasing period, and cost
for their applications. Since resource types tend to depend on
application characteristics, the main concerns of users would be
the leasing period and the cost. Ideally, users want to run their
applications as fast as possiblewith theminimum cost. However, if
applications are not time-critical, users may tolerate a little delay
of execution for more cost saving.

A critical issue in the integration of the workflow systems and
the resource provisioning technologies is to determine the amount

http://dx.doi.org/10.1016/j.future.2011.05.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:ekbyun@camars.kaist.ac.kr
mailto:yang.seok.ki@oracle.com
mailto:jinsookim@skku.edu
mailto:maeng@camars.kaist.ac.kr
http://dx.doi.org/10.1016/j.future.2011.05.001

1012 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
of resources that workflow systems should request to provisioning
systems, which is termed resource capacity in this paper. The
resource capacity affects the total execution time (makespan) of
application workflow and determines the financial cost.

If the amount of resources is large enough, themakespan can be
reduced by executing independent tasks simultaneously. However,
too many resources can lead to low resource utilization, high
scheduling overheads, and most importantly high cost. On the
contrary, if the amount of resources is too small, the execution time
of workflow can increase and in consequence the time constraints
of applications cannot be satisfied.

To solve this problem, we proposed a heuristic algorithm
named Balanced Time Scheduling (BTS) [15,16]. BTS estimates the
minimum number of computing resources required to execute
a workflow within a given deadline. We also built a prototype
system to prove the concept by integrating Pegasus for workflow
management and the Virtual Grid for resource management [17].
In BTS, the size of computing resources is kept static throughout
the entire workflow execution. Even though BTS is cost-efficient,
scalable, and generic, however, the static allocation strategy has
a potential resource waste because BTS may not use the entire
resources always for the leasing period.

On the contrary, state-of-the-art provisioning services allow
users to elastically adjust the size of computing resources at
runtime per workload. However, we notice that the smallest
charge unit of resource lease for most providers is one hour.
For example, Amazon EC2 [14] adopts an hour-based pay-as-
you-go charge policy. Another example is that most clusters for
Grid computing such as TeraGrid [18] have hour-based advance
reservation policies. In addition, the startup and cleanup overhead,
such as initializing and terminating virtual machines in the cloud
and the resource mapping in batch systems, is not negligible.
As such, fine-grained management for elastic resources is not
practical yet.

In response, this paper proposes an algorithm named the
Partitioned Balanced Time Scheduling (PBTS) algorithm, which
determines the best number of computing resources per time
charge unit in elastic computing environments, minimizing the
gross cost during the entire application lifetime. Fundamentally,
the PBTS algorithm is an extension of the BTS algorithm for elastic
resources, and it inherits all the benefits of BTS. First, PBTS is a
polynomial algorithm, which is scalable to very large workflows
having tens of thousands of tasks and edges. Second, PBTS can
handle workflows with data-parallel tasks and MPI-like parallel
tasks whose subtasks are executed concurrently on distinct
resources. Beyond the inherited characteristics, PBTS makes a full
use of the elasticity of resources and provides the user with a
resource allocation plan having the lowest cost. This is the unique
contribution that conventional workflow scheduling techniques
cannot achieve. PBTS is designed to adjust the resource allocation
at runtime so that PBTS can find the resource capacity with lower
cost when tasks are completed earlier than the predicted time.

The rest of this paper is organized as follows. Section 2 presents
the architecture for workflow execution on elastic resources and
defines the resource capacity estimation problem. In Section 3, we
provide an overview of prior studies closely related to our work.
Section 4 details the proposed PBTS algorithm. The methodology
and the experimental results are presented in Section 5. Finally,
Section 6 concludes the paper with future research directions.

2. Workflow execution on elastic resources

This section introduces the overall architecture of the comput-
ing framework to leverage elastic resources, and explains themod-
els of application and resource for this study.
Fig. 1. Computing platform model.

2.1. Integrated workflow execution system

Fig. 1 depicts our computing platform model for executing
workflows on elastic resources and a simple working scenario.
We use the same computing platform model used in our prior
study [15,16] except that resources are elastic with a discrete
lease period. First, a user asks the Workflow Management System
(WMS) to execute aworkflowwithin a deadline for a given resource
specification. Then, the WMS automatically performs resource
acquisition, task scheduling, and workflow execution. In more
detail, the Resource Capacity Estimator analyzes the workflow
structure to determine the amount of computing resources. The
Resource Acquisition Module then negotiates the external resource
provisioning systems and acquires the determined amount of
resources that satisfy all requirements. Once appropriate resources
are allocated, the Execution Manager automatically runs the tasks
on the resources guided by the Scheduling Module. Workflow tasks
communicate with each other via the storage where all input and
output data persist.

Themain difference of this computing platformmodel from the
traditional high performance computing models is that resource
allocation is application-driven, and that resource set size can be
changed at runtime.

In this computing platform model, the PBTS algorithm plays a
dual role; one is to determine the resource capacity as a Resource
Capacity Estimator, and the other is to determine the schedule of
tasks for each charge time as a Scheduling Module. In contrast to
BTS that estimates the resource capacity for the entire workflow
execution before running the workflow, PBTS determines the
resource capacity at the boundary of every charge time and adjusts
it, if necessary, considering the status of resources and tasks.

2.2. Application model

PBTS uses the same application model with that of BTS
described in [16]. An application is expressed as a workflow
composed of ordered tasks building a directed acyclic graph w =
(T , E) where T is a set of vertexes representing n tasks ti ∈ T , 1 ≤
i ≤ n, and E denotes a set of directed edges between two tasks. An
edge e(ti, tj) ∈ E, ti, tj ∈ T , ti ≠ tj implies that ti must be executed
before tj. P(t) ⊂ T and C(t) ⊂ T represent the sets of immediate
predecessors and successors of a task t ∈ T , respectively. Similarly,
A(t) ⊂ T and D(t) ⊂ T denote the sets of all ancestor tasks and
descendant tasks of t ∈ T , respectively. Without loss of generality,
we can say that there is only one entry task ttop and one exit task
tbottom. If there are multiple entry tasks or exit tasks, we can merge
them by introducing zero-weighted tasks, ttop spawning all entry
tasks and tbottom joining all exit tasks.

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1013
We also assume that each task is executed non-preemptively
and exclusively on a single resource or a set of resources. Every
task t ∈ T is associated with two values given by ET (t) ∈ N
and HR(t) ∈ N, which represent the execution time and the
host requirement of t , respectively. Typically, the execution of a
task consists of three phases, downloading of input data from the
storage system, running the task, and transferring output data to
the storage system. Thus, ET (t) is determined by the computation
time of tasks and the size of input/output data.We assume that the
execution time of individual tasks are given by users [19].

The host requirement,HR(t), denotes the number of computing
hosts that a task simultaneously occupies throughout its execution.
For example, a parallel processing task such as anMPI-task requires
multiple fully-connected computing hosts at the same time while
a sequential task can be executed on a single host independently.

The host requirement for a task can be fixed or flexible
throughout the execution. If a task needs a fixed number of
resources, we call the task rigid while the task is malleable if the
host requirement is changeable. For instance, parameter study
applications are malleable because the degree of parallelism can
be adjusted dynamically, while a sequential task or an MPI-task is
rigid because the numbers of resources are statically determined
by the task characteristics. In this paper, we term a malleable task
as an M-task while a rigid task as an R-task, and two symbols, TM
and TR, represent the set ofM-tasks and R-tasks, respectively.

We use the simplified equation to calculate the execution time
of anM-task as in Eq. (1) where FET (t) is the execution time if the
task t is executed on a single resource and SET (t) is the execution
time of the rigid computation part in FET (t) asmodeled in previous
studies [20–22]. FET (t) and SET (t) should be given by users for
everyM-task. For R-tasks, FET (t) and SET (t) are equal to ET (t).

ET (t) = SET (t)+
FET (t)− SET (t)

HR(t)
. (1)

All tasks are assumed to communicate via storage instead of
directly transferring of data between tasks. This model allows us
to have data persistency and enables asynchronous computation.
As a result, multiple instances of the same workflow and other
workflows in the same domain can reuse the stored data and avoid
the redundant computation. In addition, the persistent data can
be used for recovery in case of application failures. On the other
hand, the asynchronous computation can increase the resource
utilization. The synchronous communication between tasks forces
the sender to be alive until all child tasks receive the data. With
asynchronous computation, the sender tasks can release their
resource immediately once data persists in the storage system
successfully. One limitation of thismodel is that the storage system
or network can be a bottleneck.

2.3. Resource model

In our architecture, the Resource Provisioning System medi-
ates between individual resource providers and applications; it ac-
quires a collection of computing hosts from resource providers on
behalf of applications, based on the published resource specifi-
cations and users’ resource requirements. A computing host rep-
resents an independent processing unit equipped with a CPU,
memory, local storage, and network interface on which any tasks
of the workflow can be executed. All computing hosts allocated
by the provisioning system should satisfy all requirements such
as performance, availability, bandwidth, and so on, and they are
completely connected to each other by a network. These comput-
ing hosts are computing resources that have similar or comparable
configurations and performance per application basis. Therefore,
our algorithm treats these computing hosts as homogeneous re-
sources even though they can be actually heterogeneous because
they are allocated from independent resource providers such as
Grid and Compute Cloud as long as the SLA (Service Level Agree-
ment) is satisfied. This approach makes the PBTS algorithm simple
and lessens the scheduling overhead of the WMS.

We use the term, Resource Capacity (RC), to represent the
number of computing hosts allocated to an application workflow.
The WMS can adjust the resource capacity dynamically. Since
the financial cost (or simply cost) is calculated as the product
of resource capacity and the allocation duration, we can reduce
the cost by allocating the resource on-demand basis. That is, we
can acquire resources just before more resources are needed and
release them immediately when resources are idle. However, even
though current provisioning systems support such elasticity, the
cost model is restricted. For example, Amazon EC2 charges for
resource usage on a per hour basis. If somebody uses a virtual
machine from EC2 for any few minutes, he/she should pay for the
whole hour. Therefore, in order to minimize the cost, resources
should be held for the hour unit length and the resources should
be utilized as densely as possible.

Our algorithm is fully aware of such a pricing policy in reality as
well. Any adjustment of the resource set can take place only at the
border of charge time. In other words, the application’s running
time is divided into time-partitions whose length is equal to the
time charge unit of resource provisioning system (e.g., one hour),
and the resource capacity is adjusted at each time-partition while
the resource capacity remains constant within a time-partition.
In this model, the cost is determined by the sum of the resource
capacity over all time-partitions.

3. Related work

The issue presented in this paper is different from the well-
known workflow scheduling problems. The main objective of
conventional workflow scheduling algorithms is to minimize the
makespan of workflow for a given resource set [23–25]. Most
algorithms rely on a list scheduling and their performance is
known fairly well, having relatively small time complexity [26–
29]. By contrast, the goal of our study is to find the minimum
set of resources for application workflow that meet the given
deadline. More details about how the resource capacity estimation
is different from the conventional workflow scheduling were
presented in our previous study [16].

Based on this understanding, we only cover the prior studies
relevant to this study and categorize them into two groups:
(i) techniques that enable large-scale application execution with
dynamic resource provisioning, and (ii) techniques that estimate
the resource capacity for workflow execution.

As the IaaS cloud service has become mature, large-scale
scientific applications are able to leverage the dynamically
provisioned resources instead of using a dedicated supercomputer.
For example, the Pegasus WMS [7] can manage the execution
of complex application workflows on virtual machines acquired
from Amazon EC2 [30,31]. As another example, Science Cloud [32]
provides scientists, who have no dedicated computing resources,
with the IaaS cloud service, using the Nimbus toolkit [33]. Even
though its application is limited to a specific domain, Amazon’s
Elastic MapReduce [34] technique also enables users to execute
applications over the Hadoop framework on virtual machines.
However, these approaches are not able to exploit the elasticity of
resources because the resource capacity, i.e., the number of virtual
machines, is determined before applications start and is fixed even
though resource providers allow dynamic resource management.

In the meantime, some approaches focus on adjusting the
resource capacity according to the amount of demand. Murphy
et al. [35] suggested a system that dynamically provisions virtual
clusters by monitoring a job queue and spawns VMs to process

1014 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
Condor jobs. Marshall et al. [36] introduced Elastic Site, a virtual
cluster composed of elastically provisioned resources. Elastic Site
determines when to boot up additional VMs in the cloud or to
terminate them, based on the information provided by the queue
sensor in order to handle the bursting of demand and avoid the
low utilization at idle time. Please note that both approaches only
consider the current status of the global queue but do not exploit
the information of future demands even when the prediction is
possible as in workflow cases.

Unlike the aforementioned approaches,we focus onminimizing
the cost from the perspective of a user who wants to finish
his/herworkflowwithin a deadline. On another note, our approach
enables to find the best-effort resource allocation plan, based
on the workflow profile such as structure, input date size, and
approximate execution time.

The PBTS algorithm attempts to estimate the resource capacity
which minimizes the cost to complete a workflow within a given
deadline. As a prior research, we proposed the BTS algorithm
as a solution of the resource capacity estimation problem under
the assumption that the resource capacity is static throughout
the entire execution of the workflow [15,16]. Subsequently, we
propose the PBTS algorithm that supports the elastic resource
allocation/release environment and estimates the changes of
resource capacities over time.

To the best of our knowledge, no existing research solves
exactly the same problem as the PBTS algorithm. However, several
researches aim at a goal similar to the BTS algorithm. Sudarsanam
et al. [37] proposed a simple technique for estimating the amount
of resources. It iteratively calculates makespans and utilizations
for numerous resource configurations and finds the best one.
Wieczorek et al. proposed a general mechanism for a bi-criteria
workflow scheduling heuristic based on dynamic programming
called DCA [38]. It generates and checks candidate schedules
iteratively and finds the best among them. The problem of BTS can
be solved by DCA when two criteria are the workflow’s makespan
and the resource capacity. Even though these approaches are likely
to find an optimal solution, it does not scale well with large
workflows and large resource sets.

Huang et al. [39] proposed a mechanism for finding the
minimum resource collection (RC) size required to complete a
workflow within the minimum execution time. The RC size is
determined according to empirical data gathered from many
sampleworkflows, by varying such parameters as theDAG size, the
communication–computation ratio, parallelism, and regularity.
Even though this approach achieves reasonable performance for
workflows with similar characteristics to those of the sample
workflows, it does not guarantee that its estimates are correct for
arbitrary workflows. Additionally, the parallelism and regularity
cannot be calculated deterministically forworkflowswith complex
structures. Due to such limitations, this approach is only useful for
some limited classes of workflows. By contrast, our algorithm can
be applied to any type ofworkflow, and it does not require a kind of
training phase since our algorithm directly analyzes the workflow
structure. Finally, our algorithm can arbitrarily explore any desired
finish times greater than the minimum execution time.

4. The PBTS algorithm

4.1. Problem specification

The goal of this study is to determine a resource provisioning
plan of workflow; the algorithm should determine the number of
computing hosts and the task schedule for each time-partition.
Based on the models discussed in Section 2, PBTS first captures the
application characteristics and the resource constraints by three
inputs: (1) a workflow profile represented by an acyclic graph
W = (T , E) with ET (t) and HR(t) of all rigid tasks (t ∈ TR), and
FET (t) and SET (t) of all malleable tasks (t ∈ TM), (2) application
deadline (XD), and (3) length of time-partition (XP), which is
equal to the charge time unit of resources. A schedule of task t
includes its scheduled start time ST (t), its host requirement HR(t),
and its adjusted execution time ET (t). The schedule must satisfy
the conditions presented in Eq. (2) to guarantee the precedence
between tasks and the application deadline.

∀e(ti, tj) ∈ E, ST (ti)+ ET (ti) ≤ ST (tj)
∀t ∈ T , ST (t)+ ET (t) < XD.

(2)

The resource capacity of time-partition is dependent on the
number of tasks scheduled at the time-partition. In Eq. (3),NH(S, x)
denotes the number of computing hosts allocated for a set of tasks
(S) at time x. The resource capacity of time-partition (RC(i)) then
is the peak number of computing hosts within the time-partition
(Eq. (4)).

NH(S, x) =
−

{t|ST (t)≤x<ST (t)+ET (t),t∈S}

HR(t) (3)

RC(i) = max
(i−1)×XP≤x<i×XP

NH(T , x), where 0 < i ≤ np. (4)

The objective of PBTS is to minimize the total cost (Cost total)
by finding the best task schedule for each time-partition. Eq. (5)
defines the total cost, where Costunit is the price when a single
computing host is used for one time charge unit, i.e., XP . The total
cost is proportional to the sum of resource capacity across all time-
partitions.

Cost total = Costunit ·
−

RC(i). (5)

4.2. Approach

As emphasized earlier, our goal of this study is to minimize the
resource cost, not the makespan of workflow. PBTS is based on the
key technique that a task can be delayed as long as it does not break
time constraints of the application, anticipating that other tasks
can exploit the artificial slack time. If the deadline (XD) is longer
than the length of the critical path of workflow, any tasks can be
possibly delayed. Evenwhen the deadline is equal to theminimum
makespan of workflow, tasks on non-critical paths can be delayed
as well.

Fig. 2 illustrates how this simple idea can reduce the number
of resources. For comparison, we present a naive approach that
schedules all tasks as early as possible. Fig. 2(a) shows the structure
and task properties (ET (t) and HR(t)) of the workflow. The naive
approach estimates that four processors are required to exploit the
maximum parallelism of the workflow as in Fig. 2(b). With four
computing hosts, this workflow spends seven time units, which is
the sum of execution times of tasks on the longest path (i.e., tasks
1, 2, and 6). However, tasks 4 and 5 do not utilize the resources all
the time.We can delay tasks 3, 4, and 5 arbitrarilywithout affecting
the makespan of the workflow. For instance, we can execute tasks
3, 4, and 5 sequentially on a single host, because the sum of their
execution times is equal to the execution time of task 2. Fig. 2(c)
shows that we can schedule all tasks with the same makespan by
using only two hosts.

PBTS is an extension of the BTS algorithm for elastic resources.
PBTS and BTS are identical if a workflow runs within a single
time-partition, i.e., XD ≤ XP . However, if a workflow runs over
multiple time-partitions, PBTS becomes an online algorithm, and
it leverages BTS iteratively to estimate the resource capacity for
individual time-partitions. That is, PBTS adaptively estimates the
resource capacity of time-partition at runtimewhile the decision of
BTS ismade at the beginning of execution and fixed throughout the

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1015
(a) Workflow
structure.

(b) Task
information.

(c) Naive scheduling. (d) Optimal
scheduling.

Fig. 2. Comparison of two scheduling strategies for minimummakespan of an example workflow.
(a) Workflow
structure.

(b) BTS approach. (c) PBTS approach.

Fig. 3. An example scenario that the elasticity reduces the cost.
execution. Fig. 3 shows the difference with an example workflow
having 14 identical tasks (ET (t) = 1). The minimum makespan of
the workflow is six when XD = 8 and XP = 2. BTS estimates the
resource capacity as two and keeps them throughout. By contrast,
PBTS decides to use only one computing host for the first three
time-partitions and expands the resource capacity for the last
time-partition. As a result, PBTS can execute the same workflow
within the same deadline only with the 7/8 cost.

A simple approach people may try to solve the problem is
to apply BTS repeatedly for all unexecuted tasks at every time-
partition. That is, given a set of unfinished tasks and a deadline
of charge time unit, BTS can estimate the minimum resource
capacity for each time-partition until all tasks finish. However, this
approach can fall into a local optimumbecause it does not consider
the consequence of a decision for each partition on the total cost.
In contrast, PBTS takes into account of the influence on the total
cost when estimating the minimum resource capacity of each
partition.

The high-level description of PBTS is given in Fig. 4 where
Tremain, Tsche, and Texec denote the set of unexecuted tasks, the set of
tasks selected to be scheduled at the target time-partition, and the
set of executed tasks, respectively. PBTS iterates all time-partitions
of the application one by one in the time order at runtime, and
has three phases to determine the resource capacity of the next
time-partition; (1) PBTS identifies the set of executable tasks for
the next partition, based on the approximate resource capacity,
considering the total cost, (2) estimates the exact resource capacity
and the schedule of the selected tasks for the time-partition using
BTS, (3) allocates actual resources as estimated and executes the
selected tasks on the resources by the schedule. PBTS performs
the estimate for the first time-partition before the workflow
starts, considering all tasks in the workflow. PBTS then repeats
the three phases for the remaining time-partitions until all tasks
are completed. PBTS considers the actual progress information of
tasks in the current partition, and conducts the estimate for the
upcoming partition just before the next partition starts.
This online approach has two main advantages. First of all,
since the algorithm monitors the task progress, the algorithm can
adapt to the dynamics of tasks and resources in each partition,
and can adjust the resource capacity in the following partitions.
For example, if tasks are lagged or unexecuted in the current
partition, PBTS continues to execute such tasks, and tries to
allocate additional resources for them in the next partition to keep
the deadline. Likewise, if tasks finish earlier, PBTS aggressively
utilizes the free resources by executing the unscheduled tasks
in advance. As a result, PBTS can estimate less resource capacity
in the following time-partitions, which eventually can reduce
the total cost. Second, since the workflow scheduling overhead
is amortized over the iterations, applications experience only
the scheduling overhead for the first time-partition even with
large workflows. Note that this online approach is only feasible
with a highly efficient and scalable algorithm like PBTS. The
following subsection describes each phase of the iteration in
detail.

4.3. Task selection phase

This phase is a major difference from our previous study
where the algorithm, BTS, which assumes a single virtual time-
partition equal to the application deadline regardless of actual
time-partitions determined by resource providers and determines
the time schedule of all tasks at once. To the contrary, PBTS is
aware of the time partitions and experiences the dynamic changes
of tasks set and resource capacity in every time-partition. PBTS
should determine the distribution of tasks across time-partitions
in order to determine the resource capacity of each time-partition.
The task selection phase identifies the task set to be scheduled
in the immediate time-partitions. However, the task set is also
influenced by the resource capacity of the time-partition, and
this constitutes a cyclic dependency between resource capacity
estimate and task set selection. To resolve this issue, the task

1016 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
Fig. 4. The high-level description of the PBTS algorithm.
selection phase first approximates the resource capacity of all
remaining time-partitions with the given information of the
workflow. Then, PBTS determines a set of candidate tasks that
can be scheduled on the immediate time-partition under the
assumption that the approximation is accurate. Note that the task
selection phase does not try to minimize the resource capacity
of the target time-partition greedily. Rather, it determines the
resource capacity of the time-partition, considering the total cost
of the entire workflow and the deadline in order to avoid falling
into a local optimum.

The workflow structure and the deadline (XD) determine the
resource capacity of each time-partition. Especially, the degree of
parallelism of tasks is a dominant factor of resource capacity when
the deadline is close to the minimum makespan. However, if the
deadline is far from the minimummakespan, tasks can be delayed
as long as the deadline is guaranteed. In this paper, the difference
between the deadline and the minimum makespan is called the
spare time (Xspare). PBTS exploits this spare time to reduce resource
capacity. The distribution scheme of the spare time affects the
overall cost. For example, the workflow in Fig. 5(a) needs five unit
computing hosts to finish by the minimum makespan (i.e., two
time-partitions): three for the first time-partition and two for the
second time-partition. Let XD be three times of XP and have the
spare time of one XP . If the spare time is used for the first four
tasks as in Fig. 5(b), one computing host allocated for two time-
partitions can execute them, and two computing hosts allocated
for one time-partition can execute the remaining four tasks. The
total cost of this execution is 4 units. On the contrary, if the spare
time is assigned to the last four tasks as in Fig. 5(c), the first four
tasks still need three computing hosts, and one computing host
is enough for the last four tasks. The cost of this execution is 5
units. As such, finding the best distribution of the spare time is
essential to approximating the resource capacity with minimal
cost.

In summary, the task selection phase consists of three sub-
steps: (1) analyzing the workflow structure to get the variance
of resource capacity over time to finish the workflow as early as
possible, (2) finding the best distribution of the spare time that
minimizes the total cost and approximating the resource capacity
of the target time-partition, (3) selecting the set of tasks to be
scheduled in the target time-partition for the resource capacity
approximated in Step (2).

4.3.1. Workflow structure analysis
The first step of the task selection phase is to identify the dis-

tribution of resources over time-partitions. The resource capacity
distribution is closely related to the structure and characteristics
of workflow. For this purpose, we quantify the workflow structure
and characteristics via a simple mathematical model.

We analyze the structure of the workflow by using the earliest
start time and the latest finish time of un-scheduled tasks under
the assumption that the deadline (XD) is equal to the minimum
makespan of workflow (XM). As shown in Eq. (6), the earliest
start time of a task, i.e., EST (t), is influenced by the start time of
scheduled parent tasks and the earliest start time of unscheduled
parent tasks. We use symbols, xps and xpe, to represent the start
time and the end time of the target time-partition, respectively.
The minimum makespan of the workflow is equal to the earliest
start time of the zero-weighted bottom task, i.e., XM = EST (tbottom).
LFTmin(t) is the latest finish timeof the taskwhenXD = XM (Eq. (7)).
A task can be scheduled anytime between EST (t) and LFTmin(t) as
long as the workflow makespan remains smaller than or equal to
XM . We can calculate these values by a depth first search from ttop
and tbottom.

EST (t) = max
∀j∈P(t)−Texec ,∀k∈P(t)∩Texec

{EST (j)+ ET (j),

ST (k)+ ET (k), xps} (6)

LFTmin(t) = min
∀c∈C(t)

{LFTmin(c)− ET (c), XM}. (7)

As a part of the process determining EST (t) and LFTmin(t), PBTS
also initializes ET and HR ofM-tasks. As shown in Fig. 6, the goal of
this initialization algorithm is to extend ETs of M-tasks not on the
critical path as long as possible and to reduce their HRs. As a result,
the host requirements of allM-tasks are balanced.

PBTS quantifies the workflow structure by AHR(x) which
denotes the aggregate host requirements of all tasks that can be
scheduled at time xmeasured from xps. All tasks on the critical path
must be scheduled as early as possible for theminimummakespan.
However, the schedulable range of tasks on the non-critical paths
is wide, and it is hard to decide at which time non-critical tasks
should be scheduled in order to determine AHR(x). For simplicity,
we use the average of two extreme scheduling schemes as shown
in Eq. (8).

AHR(x) =
AHRe(x)+ AHRl(x)

2
+ NH(Texec, x). (8)

AHRe(x) defines the sum of the average host requirement of all
tasks whose schedulable range is intersected on x when all tasks
are scheduled as early as possible (cf. Eq. (9)). LFT e(t) is the latest
finish time restricted by its child tasks as in Eq. (10).

AHRe(x) =
−

∀t∈{t|EST (t)≤x<LFT e(t)}

ET (t) · HR(t)
LFT e(t)− EST (t)

(9)

LFT e(t) = min
∀tc∈C(t)

EST (tc). (10)

On the contrary, AHRl(e) defined in Eq. (11) is the sum of
average host requirements of all tasks whose schedulable range is
intersected with the minimum makespan (XD = XM). In AHRl(e),
the schedulable range of tasks is from EST l(t) to LFTmin where

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1017
(a) Two time-partitions. (b) Three
time-partitions, two for
the first four tasks.

(c) Three
time-partitions, two for
the last four tasks.

Fig. 5. The cost with different spare time and its distribution.
Fig. 6. Initializing HR and ET of every M-task.
EST l(t) in Eq. (12) is the earliest start timewhen all its parent tasks
are finished at their LFTmin.

AHRl(x) =
−

∀t∈{t|EST l(t)≤x<LFTmin(t)}

ET (t) · HR(t)
LFTmin(t)− EST l(t)

(11)

EST l(t) = max
∀tp∈P(t)

LFTmin(tp). (12)

Finally, the last term of Eq. (8) represents the number of
computing hosts occupied by tasks that started in the previous
time-partitions but have not finished yet. Tasks having longer
execution times than XP or scheduled near the end of the previous
time-partition can run over multiple time-partitions.

4.3.2. Spare time distribution
Based on the information of resource requirement over time

obtained in the previous step, this step determines which time-
partition can have the most benefit with the spare time. The
resource capacity of the time-partition is determined by the peak
resource requirement within the time-partition. Therefore, the
beneficiary of spare time should be able to lower the peak at the
expense of the task execution time.

As illustrated in Fig. 7(a), AHR(x) of workflow can be repre-
sented by a plane where the x-axis represents time and the y-axis,
the resource capacity. As shown in Fig. 7(b), the plane then can be
partitioned alongwith the time axis, based on the charge time unit.
In this plane, the total resource requirement of workflow is equal
to the total area of the polygon. Since the resource capacity changes
over time, the polygon can have an arbitrary stepped shape. How-
ever, we approximate the shape for each partition to an L-shaped
hexagonwith the same area to the original polygon in order to sim-
plify the area computation.

Fig. 8 illustrates this transforming process. The height of the
leftmost side of hexagon, Hmax

i , is equal to the tallest height of the
original polygon while the height of the rightmost side, Hmin

i , is
equal to the shortest height of the original polygon. Then, thewidth
of the left top side can be calculated by Eq. (13).

xmax
i =

XP if Hmax

i = Hmin
i

Si − XP · Hmin
i

Hmax
i − Hmin

i
if Hmax

i > Hmin
i

where Si =
i·XP−

x=(i−1)·XP

AHR(x). (13)

Now, we transform this simplified hexagon one more time
when extra time is assigned to the partition. We just transform
the rectangle on the left side of the hexagon while the right
size remains the same, which means that tasks scheduled on the
busiest time utilize the additional time to reduce the resource
requirement. Then, the new height of the final hexagon can be
calculated by Eq. (14), and the total cost of this partition is obtained
by Eq. (15).

Hnew
i = Hmax

i ·
xmax
i

xmax
i + xinc

(14)

Cost i = Hnew
i (XP + xinc). (15)

Our interest here is which partition can have the most
benefit with the spare time. To get the optimal answer, we
need to solve an integer program. For simplicity, we compare
a differential coefficient of the cost function (Eq. (16)). The
dCost/dxinc value of candidate time-partition should be less
than zero to reduce the total cost, and the smaller dCost/dxinc
means more cost reduction. Therefore, the time-partition with the
smallest differential coefficient is the best candidate.
dCost i
dxinc

= Hmax
i · xmax

i ·
xmax
i − XP

(xmax
i + xinc)2

. (16)

Next,we apply the newheight andwidth to the original polygon
of resource capacity, and reshape it. For instance, the polygon on

1018 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
(a) A plane graph of AHR. (b) Partitioning.

Fig. 7. Plane graph expression of AHR and its partitioning.
Fig. 8. Cost approximation model.
the left in Fig. 9 is transformed into the polygon on the right after
trimming the tall rectangles down to Hnew

i . If the height of the
rectangle is shorter than Hnew

i , reshaping is not required.
Let wi,k and hi,k be the width and the height of k-th rectangle,

respectively, and assume that there are ri rectangles in the i-th
time-partition. The width and the height of k-th rectangles of i-th
time-partition are updated by Eq. (17) and AHR(x) is also updated
accordingly.

hi,k ← min{hi,k,Hnew
i }

wj,k ← hi,k · wj,k/min{hi,k,Hnew
i }.

(17)

PBTS repeats this distribution until the entire spare time is
consumed, or all time-partition dCost/dxinc values become zero
meaning that each L-shaped hexagon becomes a rectangle, i.e.,
Hmax

= Hmin. The termination conditions make tasks scheduled
as early as possible if adding the spare time to any time-partition
cannot reduce the cost. As such, PBTS minimizes the turnaround
time of workflow as well as the cost.

The time unit of the spare time distribution, xinc , should be
determined to balance the computing overhead and the accuracy
of approximation. According to our experiments, the rule of thumb
is to use one tenth of XP . Wewill use a symbol xunitinc to represent the
amount of spare time assigned to a time-partition.

4.3.3. Task selection
As the last step of the task selection phase, PBTS selects tasks

to be scheduled in the target time-partition by checking the LFT of
tasks extended through spare time distribution.

In AHR(x) graph, X-axis of AHR(x) graph represents the time
from xps and the rightside edge of a rectangle represents LFTmin(t)
of a task. Thus, LFTmin(t) can be calculated as the sum of width
of all rectangles located at the left-side of the matched rectangle.
Assigning a portion of spare time to a time-partition extends the
schedulable range of tasks to be scheduled on the time-partition.
More formally, as in Fig. 9, the widths of some rectangle (wi,k) and
correspondingly the LFTmin(t)s of some tasks are increased.Weuse
a symbol LFT l

min(t) to represent the increased value of LFTmin(t) of
task t , and it is calculated as in Eq. (18) when t is matched to k-th
rectangle in p-th polygon.

LFT l
min(t) = xps +

p−1−
n=1

rn−
m=1

wn,m +

k−
m=1

wp,m. (18)

In the task selection phase, first of all, PBTS sets Tsched to an
empty set. Then for every task t in Tremain, if LFT l

min(t) − ET (t) is
smaller than xpe, task t is added to Tsche since t is considered that its
scheduling range is laid on the target time-partition. After checking
all tasks, the tasks selection phase returns Tsched.

All the steps of the task selection phasewhich select the tasks to
be executed in the target time-partition among unscheduled tasks
(Tremain) are summarized in Fig. 10.

4.4. Resource capacity estimate and task scheduling phase

PBTS applies the BTS algorithm to the tasks selected in the
previous phase to estimate the minimum resource capacity of
the adjusted time-partition. More specifically, the task placement
phase and the task redistribution phase of the BTS algorithm find
the best time schedules of tasks [16]. The only difference is that
LFT (t) of task is bounded by the end of time-partition, xpe, as in
Eq. (19). Note that tasks may not complete their computations
within the time-partition, but all tasks must start before the end
of the time-partition.

LFT (ti) = min
∀tj∈C(ti)∩Ts

{LFT (tj)− ET (tj), LFT l
min(t)}. (19)

First, BTS performs preliminary scheduling of tasks, using a
heuristic algorithm as presented in Fig. 11, where Ts represents the
set of tasks whose start time is set by BTS. This algorithm iterates
three steps until the start times of all tasks are determined. BTS
first selects a task with the smallest schedulable duration among
unscheduled tasks (line 2) and then determines the best start time
of the task within its schedulable duration (lines 3, 4). Finally, it
updates ESTs and LFTs of all its dependent tasks to reflect the
changes in the time constraints of the task (lines 5, 6). Once the
task placement phase finishes, the start time (ST (t)) of every task
is determined.

Since the task placement algorithm does not always find
an optimal solution, BTS does further optimization in the task
redistribution phase as in Fig. 12. For each task placed in the
most resource-demanding time slots (tb ∈ Tbusy), BTS tries to
relocate them between ESTmin(tb) and LFTmax(tb) or to change
its host requirement (HR(tb)) in order to reduce the maximum
NH(T , x) of the time slot on which the task is placed. In other
words, tasks in busy time slots are moved to relatively idle time
slots and eventually the total resource requirement over time
is balanced. A relocation can involve cascading relocations of
dependent tasks, in order to preserve the precedence between
tasks. Whenever the new start time of relocated task is earlier

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1019
Fig. 9. Change of AHR of the most benefitable time-partition after Xinc is added.
Fig. 10. Algorithm description of the task selection phase.
Fig. 11. Task placement algorithm of BTS.
than the finish time of any precedent tasks, the preceding task
must be relocated also before the new start time. The new start
time is selected as closely as possible to the original, to minimize
the impact on dependent tasks. BTS first tries to relocate tasks to
earlier time slots in ascending order of ST (t) until no relocation
can reduce the maximum NH(T , x) by MoveLeft (line 2–4). BTS
then tries to relocate tasks to later time slots in descending order
of ST (t) + ET (t) by MoveRight (line 5–7). BTS stops when no
more relocation is possible, and returns the maximum value of
the resulting NH(T , x) as the resource capacity for the workflow
(line 8).

Both phases have a polynomial complexity. Details of the
algorithms are described in our previous paper [16].

4.5. Task execution phase

With the PBTS algorithm, an estimate of resource capacity
assumes a certain schedule of tasks for each time-partition. A
workflow can meet the deadline with the estimated resources
when the PBTS algorithm is used to schedule tasks while other
algorithms may not guarantee the deadline with the PBTS’s
estimate. For this reason, we enforce the PBTS schedule in the
execution phase.

PBTS can execute a task whenever the following three rules
are satisfied. First, all parent tasks must be finished. Second, HR(t)
of a task must be smaller than the number of free computing
hosts. Last, the execution of a task must not delay any tasks whose
scheduled start time is earlier than ST (t). In otherwords, a task can
be executed only if the inequality in Eq. (20) is satisfied.−
j∈{j|ST (tj)<ST (t),tj∈Tsche}

HR(tj)+ HR(t) > RC free. (20)

Even though PBTS estimates the resource capacity of a time-
partition very tightly, a time-partition can have free resources
even when all tasks scheduled for the time-partition are executed.
This is because a provisioning system can allocate over-qualified
resources or tasks can run shorter than the predicted execution
time.

The task execution phase tries to run unscheduled tasks to
utilize the free resources. This can reduce the resource capacity

1020 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
Fig. 12. Task redistribution algorithm of BTS.
of upcoming time-partitions. PBTS selects the task satisfying three
conditions, (1) all parent tasks of the task must be finished, (2) the
number of free computing hosts is equal to or larger than the
host requirement of the task, and (3) the tasks must finish before
the end of the current time-partition. If multiple tasks satisfy the
conditions, PBTS executes the task with the largest value of ET (t) ·
HR(t) first.

5. Evaluation

We evaluate our algorithm in terms of the cost and the quality
of adaptation to application dynamics. For cost, we compare PBTS
to a theoretical optimal solver and BTS. For adaptation,we simulate
the actual task execution by using a probabilistic model based on
the predicted execution time, and measure the total cost and the
actual turnaround time of the workflow.
5.1. Evaluation methodology

First, we compare PBTS to the optimal solution. The optimum
cost is the costwhen resource allocation/release is fully elastic, and
the charge unit is not discrete (e.g., one hour). Hence, the cost is
exactly proportional to the resource time used by a workflow. This
optimal cost is the lower bound of cost for estimation algorithms.
In addition, we compare PBTS to our static algorithm, BTS, to
demonstrate the importance of an algorithm being aware of the
elasticity of resources. BTS aims to minimize the cost by statically
estimating the resource capacity for workflows [15,16]. Instead,
we enhance the BTS algorithm for fair comparison so that it can
adjust the resource capacity for each time-partition, based on the
BTS schedule. We call this enhanced version of BTS as BTSE.

In summary, the equations from (21) through (24) present the
costs of four different approaches: Optimum, BTS, BTSE, and PBTS.
The optimum cost (Costopt) is exactly proportional to the resource

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1021
time used by aworkflow (Eq. (21)). The BTS cost (CostBTS) is the cost
when the resource capacity is constant throughout the workflow
execution (Eq. (22)). The BTSE cost (CostBTSE) is the cost when tasks
are scheduled just one time by BTS but the resources are allocated
elastically, based on the actual resource capacity requirement as in
Eq. (23).CostBTSE must be smaller thanor equal toCostBTS since BTSE
can release idle resources for the under-utilized time-partitions.
Finally, CostPBTS is the aggregate resource capacity across all time-
partitions (Eq. (24)).

Costopt =
−
∀t∈T

ET (t) · HR(t) (21)

CostBTS = RCBTS · XD (22)

CostBTSE = XP ·

np−
i=1

{ max
(i−1)×XP≤x<i×XP

NH(T , x)} (23)

CostPBTS = XP ·

np−
i=0

RC(i). (24)

The unit of cost in the above equations is different from that
of the charge time unit of resource allocation. For instance, the
typical unit of execution time is a second while that of a charge
time unit is an hour. As such, the actual financial cost is calculated
by dividing the total cost by the charge time unit and then by
multiplying the unit cost (Costunit). For example, let CostPBTS be
20,000 and the unit of ET (t) be a second. If the resource provider
charges 0.1$ for one-hour usage of a virtual machine, the actual
cost is 20,000× 0.1/3600 dollars.

5.2. Real application workflow

We perform experiments with five real application workflows
used in diverse scientific domains: Montage [1], CyberShake [4],
Epigenomics [40], LIGO Inspiral Analysis Workflow [41], and
SIPHT [42]. Montage creates custom image mosaics of the sky
on-demand and consists of four major tasks: re-projection,
background radiation modeling, rectification, and co-addition.
CyberShake is used by the Southern California Earthquake Center
to characterize earthquake hazards. Epigenomics is used to map
the epigenetic state of human cells on a genome-wide scale.
The DNA sequence data is split into several chunks, and then
conversion and filtering is performed on each chunk in parallel.
The final data are aggregated to make a global map. The LIGO
Inspiral Analysis Workflow is used by the Laser Interferometer
Gravitational Wave Observatory to detect gravitational waves in
the universe. The detected events are divided into smaller blocks
and checked. SIPHT automates the search for sRNA encoding-genes
for all bacterial replicons in the National Center for Biotechnology
Information database. SIPHT is composed of a variety of ordered
individual programs on data. The structure of each workflow with
the computation time and input/output data size of each task are
summarized in Fig. 13. Further information on these workflows
is available in [19]. Note that the computation time and the data
size in Fig. 13 are representative and they can be reconfigured
according to the problem size while the structure remains the
same.

Bharathi et al. also provide a tool to generate DAX (Directed
Acyclic Graph in XML) of five applications for a given workflow
size, i.e., the number of tasks. The DAX file contains all information
that PBTS requires such as the list of tasks, dependencies between
tasks, computation time, and input/output data size of task.

We apply BTS and PBTS to the DAX files of five applications and
calculate the costs of four approaches. The results are presented in
Fig. 14. Theminimummakespans of applications are several hours,
and the numbers of tasks, n = |T |, range from 200 to 10,000.
We choose the deadlines close to the minimum makespan (XM) to
reflect the reality that users typically prefer finishing as early as
possible.

The length of the time-partition is set to one hour by default.
However, for some cases with too short a deadline, we use 20 or
30 min to understand the effects of the length of charge time unit.
As shown in the Montage, LIGO, and SIPHT cases, PBTS and BTSE
can be benefited from short time-partitions when the resource
capacity changes frequently over time.

The results show that PBTS is better than BTS and BTSE in most
cases. Noticeably, the cost reduction by relaxing the deadline is
remarkable with the Montage and SIPHT workflows whose degree
of parallelism varies widely. In addition, PBTS is comparable to or
slightly better than BTSE with CyberShake and Epigenomics. Since
both estimate the costs close to optimum, these results still support
the high estimate quality of PBTS. One case where PBTS shows a
worse performance is the LIGO worfkflow which contains lots of
tasks whose execution time is longer than the length of the time-
partition (XP). PBTS can fail to find the optimal start time of such
long tasks since PBTS considers only a single time-partition once
the spare time distribution is done. By contrast, BTS finds the best
schedule across the entire time range between 1 and XD.

We alsomeasure the time overhead of large workflows with up
to 100,000 tasks. Even though the results are not presented in this
paper, PBTS spends up to 10 s per time-partition for estimating the
resource capacity. Since applications experience only one iteration
delay when a workflow starts, the time overhead is negligible in
total running time.

5.3. Synthetic workflow

Since the five applications discussed in the previous section
cannot cover the characteristics of all scientific applications,
we evaluate our algorithm more rigorously against complex
workflows with various structures. We classify these synthetic
workflows into two groups: unstructured workflows and leveled
parallel workflows.

We use six parameters to define an unstructured workflow:
number of tasks, number of edges, range of execution time, range
of host requirements for R-task, and percentage of M-tasks. Each
edge connects two randomly selected distinct tasks, and the
execution time and host requirement of each task are selected
via random trials with a uniform distribution over the range.
The ranges of parameters are selected to cover as many cases as
possible.

By contrast, a leveled parallel workflow has a fixed structure
where tasks are divided into several levels and only tasks in
adjacent levels can have dependencies. We use four parameters to
synthesize a workflow: number of tasks, number of levels, range
of the number of tasks in a level, and range of execution time of
task. All tasks in the i-th level are parents of tasks in the (i+ 1)-th
level. The execution time of a task is selected via random trials as
in unstructured workflows. This represents the typical structure of
distributed applications such as MapReduce and Dryad.

Through experiments with numerous synthetic workflows, we
have observed common trends, and this section presents the
representative ones.

We categorize unstructured workflows into three groups
according to the existence of M-tasks and the range of HR. First,
Fig. 15 shows the average cost of 100 unstructured synthetic
workflows without M-task where every task needs a single
computing host. The results show that PBTS is consistently better
than BTS and BTSE by about 1%–4% while both PBTS and BTSE
are close to the optimum. In addition, the cost decreases with
the number of time-partitions (XD/XP). Second, Fig. 16 shows the
average cost of 100 unstructured synthetic workflows without

1022 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
Fig. 13. Workflow structures of five applications with the information on computation time (CT) and input/output data size of each task.
M-tasks in which the HR of each task is 2n where n is selected
by a random trial with a uniform distribution between 1 and 7.
Likewise, PBTS is consistently better than BTS and BTSE, and the
cost decreases as the length of the time-partition decreases. Unlike
the static algorithm, both PBTS and BTSE leverage the elasticity
of resources accordingly. Furthermore, PBTS saves the cost more
aggressively than BTSE and saves about 10% more than BTS.
Typically, workflows with multi-HR tasks have a wide fluctuation
of resource requirement, and PBTS adapts to the fluctuation
better than BTS. Finally, Fig. 17 shows the average cost of 100
unstructured synthetic workflows where the half of tasks are M-
tasks. The result is similar to that of the second group except
that the cost gap between BTSE and PBTS becomes narrow and
that both estimates for large deadlines approach the optimal. The
improvement of BTSE is mainly because the flexibility of M-task
contributes to reducing the peak capacity.

Since the minimum makespan of an application may not be
aligned with charge time unit, users may tolerate some delays of
execution in order to fully use the allocated resources. We extend
the deadline and observe the effects on the resource cost. The
overall trend is that cost decreases gradually to a certain point as
deadline increases. However, the cost saving gets saturated beyond
an application-specific threshold because the increase of resource
allocation time cancels out the gain due to the reduction of
resource count so we cannot expect any further savings any more.
Actually, the excessive increase of the deadline is not desirable
because long running applications are more likely to experience
failures.

Then, the question would be how long can we extend the
deadline. An interesting observation is that we can save significant
cost by slightly extending the deadline beyond the minimum
makespan. The results when the deadline is extended to 120% of
the minimum makespan are shown in Figs. 15–17. As a rule of
thumb, the cost saving is noticeable until the deadline increases
up to 120% of the workflow’s minimum makespan in most types
of synthetic workflows. In practice, we can align the deadline to
the boundary of the charge time unit around the 120% extended
time.

Lastly, we evaluate PBTS and other approaches with synthetic
leveled parallel workflows. Fig. 18 shows the average cost of 100
synthetic workflows with 10 levels. In each level, the number of
tasks are randomly selected by a uniform distribution between 10
and 100. The three graphs lead us to the conclusion that PBTS is the
most efficient in terms of cost. In addition, the longer deadlines get,
the wider the difference between PBTS and BTSE becomes.

5.4. Effect of the runtime feature of PBTS

The experiments in the previous sections assume that the
execution time of tasks is accurate and constant. However, the
actual execution time can fluctuate at runtime. As a result,
resources can be wasted in case of over-provisioning, or the
application can miss the deadline otherwise. We simulate the real
execution time by using a simplified model and observe how well
PBTS can adapt to such dynamics.

The first experiments show how well the PBTS algorithm
with the runtime information can save the cost when the actual
execution times of tasks are shorter than the predicted ones. This
configuration represents the case when allocated resources are
mostly faster than user’s requirements. We compare this version
of the PBTS algorithm to the pure PBTS algorithm without any
runtime information. Table 1 summarizes the results for several
workflows when the deadline is 120% of the minimum makespan.
The task execution time follows a normal distribution where
the mean is the normalized actual execution time based on the
predicted time; we use two mean values, 0.8 and 0.9, and two

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1023
Fig. 14. Comparison of the costs of optimum, BTS, BTSE and PBTS for the five real application workflows.
Fig. 15. Comparison of the costs of optimum, BTS, and PBTS for unstructured synthetic workflows without any M-tasks and multi-HR R-tasks. Average of 100 random
workflows with 1000 tasks and 4000 edges.
Fig. 16. Comparison of the costs of optimum, BTS, and PBTS for unstructured synthetic workflows without any M-tasks. The range of HR is 1–128. Average of 100 random
workflows with 100 tasks and 500 edges.

1024 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
Fig. 17. Comparison of the costs of optimum, BTS, and PBTS for unstructured synthetic workflows with 50% of M-tasks. Average of 100 random workflows with 200 tasks
and 500 edges.
Fig. 18. Comparison of the costs of optimum, BTS, and PBTS for leveled parallel synthetic workflows. Average of 100 randomworkflows with 10 levels and 10–100 tasks in
each level.
Table 1
Relative costs of PBTS with runtime information compared to PBTS without runtime feature (mean values (µ) and standard deviations (σ) are the ratio between actual
execution time and predicted execution time).

XD/XP = 4 XD/XP = 8

Workflows µ = 0.9, σ = 0.1 (%) µ = 0.8, σ = 0.2 (%) µ = 0.9, σ = 0.1 (%) µ = 0.8, σ = 0.2 (%)

Montage 88.5 83.3 84.2 81.8
LIGO 94.2 91.3 92.5 87.3
SIPHT 95.2 91.9 91.6 89.8
CyberShake 90.2 85.7 88.3 82.4
Epigenomics 89.2 86.7 85.9 83.1
standard deviation values, 0.1 and 0.2. The values in the table
are the ratio of the cost of PBTS with runtime information to
that of pure PBTS. PBTS successfully reduces the overall cost of
the application, exploiting the slack time of faster tasks. This also
means that PBTS can take advantage of faster resources. Moreover,
the results show that PBTS can get more cost savings with finer
time-partitions since PBTS can use more up-to-date information
and have more chances to adjust its estimate.

We repeat the same experiments when the actual execution
times of tasks are longer than the predicted ones. Table 2 shows
the results with amean of 1.2 and a standard deviation of 0.2 of the
predicted ET. PBTS fails tomeet the deadline evenwith the runtime
information because PBTS cannot handle the cases when the sum
of execution times of tasks on the critical path is longer than the
deadline.

The online characteristic of PBTS allows us to add features
to reduce the deadline miss probability whereas it is not easy
with static approaches such as BTS and traditional scheduling
algorithms. For example, PBTS can selectively adopt a redundant
execution scheme for tasks on critical path. Besides, we can apply
PBTS more conservatively with longer execution time of tasks
(e.g. worst case execution time). Then, this approach becomes
equivalent to the case discussed in Table 1 since the actual
execution times are likely shorter than the predicted ones. PBTS
can reduce the deadline miss probability at the small expense of
the cost.
Table 2
Actual turnaround time of workflow compared to the deadline (120% of the
minimummakespan) when the actual execution time of each task follows a normal
distribution (µ = 120% of the predicted execution time, standard deviation = 20%
of the predicted execution time).

Workflows w/o runtime info. (%) With runtime info. (%)

Montage 116.08± 6.58 112.52± 7.72
LIGO 125.22± 9.21 123.74± 10.51
SIPHT 114.52± 6.06 111.34± 8.84
CyberShake 116.82± 9.57 112.51± 10.89
Epigenomics 123.14± 7.33 120.85± 9.47

Especially the runtime characteristic enables PBTS to savemore
cost than BTSE. We measure the cost when both PBTS and BTES
set the predicted execution time of every task by 20% longer than
the values given by users while the actual execution time follows
a normal distribution with a mean value of 100% and a standard
deviation of 20% of the given values and the deadline is 120% of the
minimum makespan (XM). We have observed that this approach
can reduce the deadline miss probability down to 20% or less. The
relative cost of BTSE to BTS shown in Table 3 proves that PBTS
can save about 20% cost compared to BTSE when the predicted
execution time ismostly longer than the actual execution time.We
plan to leverage such inline characteristic of PBTS in order to make
the algorithmmore robust and tolerant of runtime dynamics in our
future work.

E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026 1025
Table 3
The relative costs of BTSE to PBTS when both set the predicted execution time of
every task by 20% longer than the values given by users while actual execution
time follows a normal distribution (µ = 100% and σ = 20% of the given values,
XD = 1.2XM).

Workflows CostBTSE/CostPBTS

Montage 1.218
LIGO 1.125
SIPHT 1.190
CyberShake 1.235
Epigenomics 1.107
Unstructured synthetic 1.380
Leveled parallel synthetic 1.182

6. Conclusion

In this paper, we have suggested an architecture for executing
workflow applications on elastic computing resources. In addition,
we have proposed the core algorithm named PBTS for estimating
the minimum resource capacity to execute a workflow within
a given deadline. The main contribution of our research is that
PBTS bridges the gap between workflow management system and
the state-of-the-art resource provisioning environments.With this
framework, scientists are able to exploit cloud while saving more
operational cost with utility basis billing policy. PBTS estimates
resource capacity per time-partition so that it minimizes the
resource cost, satisfying the deadlines. In addition, PBTS handles
any workflows of DAG structure that includes single, data-
parallel, and evenMPI-like tasks. Finally, PBTS determines not only
the resource capacity but also the time schedule and the host
requirements of tasks.

Various experiments with synthetic and real workflows have
demonstrated that the PBTS algorithm performs better than the
alternative approaches in terms of cost, and its performance is
close to the theoretical low bound. In addition, the algorithm has
a polynomial time complexity, taking only a few seconds even for
large workflows. Moreover, we have shown that users can benefit
from the relaxation of deadline to trade the execution time for cost
savings; as a rule of thumb, the deadline can be extended up to
the 120% of the minimum makespan of workflow. Finally, PBTS
can leverage the runtime information of tasks. PBTS can adapt to
the fluctuation of execution time of individual tasks and meet the
deadline of the application successfully in most cases.

We plan to improve PBTS in several directions. First, even
though PBTS can adapt to its estimate according to the dynamics
of tasks, it may fail if the tasks on the critical path are delayed too
much or in the worst cases if some tasks crash. The bottom line is
that PBTS can use the runtime information and adjust the resource
capacity accordingly on the fly. PBTS can use various options; tasks
can be executed redundantly based on the task failure probability,
or theworst case execution time can be used as the predicted time.
Second, PBTS does not consider I/O contention when determining
the start time of task. Many workflow applications are data-
intensive, and load/store bandwidth can be an issue. Finally,
we assume that a workflow has a DAG structure. However, a
workflow can have loops or conditional branches as in BPEL [43]
or Spark [44], or tasks can be added dynamically at runtime.

Acknowledgements

This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea Government (MEST) (No.
2010-0026511).

References

[1] J.C. Jacob, D.S. Katz, T. Prince, The montage architecture for Grid-enabled
science processing of large, distributed datasets, in: Proceedings of the 4th
Earth Science Technology Conference, ESTC2004, 2004.
[2] S.J. Ludtke, P.R. Baldwin, W. Chiu, EMAN: semiautomated software for high-
resolution single-particle reconstructions, Journal of Structural Biology 128
(1999) 82–97.

[3] B. Plale, et al., CASA and LEAD: adaptive cyberinfrastructure for real-time
multiscale weather forecasting, IEEE Computer 39 (2006) 56–64.

[4] H. Magistrale, S. Day, R.W. Clayton, R. Graves, The SCEC southern California
reference three-dimensional seismic velocity model version 2, Bulletin of the
Seismological Society of America 90 (2000) S65–S76.

[5] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
in: Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, 2004, pp. 137–150.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel
programs from sequential building blocks, SIGOPS Operating Systems Review
41 (3) (2007) 59–72.

[7] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K.
Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, D. Katz, Pegasus: a framework
for mapping complex scientific workflows onto distributed systems, Scientific
Programming Journal 13 (3) (2005) 219–237.

[8] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, J.C. Seragiotto, H.-L. Truong,
Askalon: a tool set for cluster and Grid computing, Concurrency and
Computation: Practice and Experience 17 (2–4) (2005).

[9] I. Taylor, M. Shields, I. Wang, A. Harrison, Visual Grid workflow in Triana,
Journal of Grid Computing 3 (3–4) (2005) 153–169.

[10] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, K. Yocumet, Sharing
networked resources with brokered leases, in: Proceedings of the USENIX
Technical Conference, 2006.

[11] Y.-S. Kee, K. Yocum, A.A. Chien, H. Casanova, Improving Grid resource
allocation via integrated selection and binding, in: Proceedings of the 19th
ACM/IEEE International Conference on High Performance Computing and
Communication, 2006.

[12] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, A.A. Chien, Efficient resource
description and high quality selection for virtual Grids, in: Proceedings of the
5th IEEE International Symposium on Cluster Computing and the Grid, 2005.

[13] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
D. Zagorodnov, The Eucalyptus open-source cloud-computing system, in:
Proceedings of the 1st Workshop on Cloud Computing and its Applications,
2008.

[14] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2.
[15] E.-K. Byun, Y.-S. Kee, E. Deelman, K. Vahi, G. Mehta, J.-S. Kim, Estimating

resource needs for time-constrained workflows, in: Proceedings of the 4th
IEEE International Conference on e-Science, 2008.

[16] E.-K. Byun, Y.-S. Kee, J.-S. Kim, E. Deelman, S. Maeng, Bts: resource
capacity estimate for time-targeted science workflows, Journal of Parallel and
Distributed Computing 71 (6) (2011) 848–862.

[17] Y.-S. Kee, E.-K. Byun, E. Deelman, K. Vahi, J.-S. Kim, Pegasus on the virtual Grid:
a case study of workflow planning over captive resources, in: Proceedings of
the 3rd Workshop on Workflows in Support of Large-Scale Science, 2008.

[18] NCSA TeraGrid linux cluster. http://www.ncsa.uiuc.edu/UserInfo/Resources/
Hardware/TGIA64LinuxCluster.

[19] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.H. Su, K. Vahi,
Characterization of scientific workflows, in: Proceedings of the 3rdWorkshop
on Workflows in Support of Large-Scale Science, 2008.

[20] A. Radulescu, A. van Gemund, A low-cost approach towards mixed task and
data parallel scheduling, in: Proceedings of the 2001 International Conference
on Parallel Processing, 2001.

[21] R. Shankar, S. Sachin, B. Prithviraj, A framework for exploiting task and data
parallelism on distributed memory multicomputers, IEEE Transactions on
Parallel and Distributed Systems 8 (11) (1997) 1098–1116.

[22] R. Thomas, R. Gudula, Compiler support for task scheduling in hierarchical
execution models, Journal of Systems Architecture 45 (6–7) (1999) 483–503.

[23] Y.K. Kwok, I. Ahmad, Benchmarking and comparison of the task graph
scheduling algorithms, Journal of Parallel and Distributed Computing 59 (3)
(1999) 381–422.

[24] J. Yu, R. Buyya, K. Ramanohanarao, Metaheuristics for Scheduling in
Distributed Computing Environments, Springer, Berlin, Germany, 2008.

[25] F. Dong, S.G. Akl, Scheduling algorithms forGrid computing: state of the art and
open problems, Tech. Rep., School of Computing, Queen’s University, Kingston,
Ontario, January 2006.

[26] H. Topcuoglu, S. Hariri,M.Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Transactions on Parallel and
Distributed Systems 13 (3) (2002) 260–274.

[27] T.L. Adam, K.M. Chandy, J.R. Dickson, A comparison of list schedules for parallel
processing systems, Communications of the ACM 17 (12) (1974) 685–690.

[28] G.C. Shih, E.A. Lee, A Compile-Tim scheduling heuristics for interconnection-
constrained heterogeneous processor architecture, IEEE Transactions on
Parallel and Distributed Systems 4 (2) (1993) 75–87.

[29] M. Rahman, S. Venugopal, R. Buyya, A dynamic critical path algorithm for
scheduling scientific workflow applications on global Grids, in: Proceedings
of the 3rd IEEE International Conference on e-Science and Grid Computing,
2007.

[30] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman, P.
Maechling, Scientific workflow applications on Amazon EC2, in: Proceedings
of the Workshop on Cloud-based Services and Applications in conjunction
with the 5th IEEE International Conference on e-Science, e-Science 2009,
2009.

[31] C. Evangelinos, C. Hill, Cloud computing for parallel scientificHPC applications:
feasibility of running coupled atmosphere-ocean climatemodels on Amazon’s
EC2, in: Proceedings of the 1st Workshop on Cloud Computing and its
Applications, 2008.

http://aws.amazon.com/ec2
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/TGIA64LinuxCluster

1026 E.-K. Byun et al. / Future Generation Computer Systems 27 (2011) 1011–1026
[32] Science clouds. http://www.scienceclouds.org/.
[33] The nimbus toolkit. http://www.nimbusproject.org/.
[34] Amazon elastic mapreduce. http://aws.amazon.com/elasticmapreduce.
[35] M.A. Murphy, B. Kagey, M. Fenn, S. Goasguen, Dynamic provisioning of virtual

organization clusters, in: Proceedings of the 9th IEEE International Symposium
on Cluster Computing and the Grid, 2009.

[36] P. Marshall, K. Keahey, T. Freeman, Elastic site: using clouds to elastically
extend site resources, in: Proceedings of the 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2010.

[37] A. Sudarsanam, M. Srinivasan, S. Panchanathan, Resource estimation and task
scheduling for multithreaded reconfigurable architectures, in: Proceedings
of the 10th International Conference on Parallel and Distributed Systems,
2004.

[38] M. Wieczorek, S. Podlipnig, R. Prodan, T. Fahringer, Bi-criteria scheduling
of scientific workflows for the Grid, in: Proceedings of the 8th ACM/IEEE
International Symposium on Cluster Computing and the Grid, 2008.

[39] R. Huang, H. Casanova, A.A. Chien, Automatic resource specification gener-
ation for resource selection, in: Proceedings of the 20th ACM/IEEE Inter-
national Conference on High Performance Computing and Communication,
2007.

[40] Usc epigenomic center. http://epigenome.usc.edu.
[41] D.A. Brown, P.R. Brady, A. Dietz, J. Cao, B. Johnson, J. McNabb, A case study

on the use of workflow technologies for scientific analysis: gravitational wave
data analysis, in: Workflows for e-Science, Springer, 2006 (Chapter).

[42] J. Livny, H. Teonadi, M. Livny, M.K. Waldor, High-throughput, kingdom-wide
prediction and annotation of bacterial non-coding RNAs, PLoS ONE 3 (9)
(2008).

[43] Web services business process execution language, version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[44] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster
computing with working sets, in: The 2nd USENIXWorkshop on Hot Topics in
Cloud Computing, 2010.

Eun-Kyu Byun received his B.S. and M.S. degrees in
computer science from the Korea Advanced Institute
of Science and Technology (KAIST), in 2003 and 2005,
respectively. Currently, he is pursuing his Ph.D. degree
in Computer Science at the same school. His research
interests include distributed systems, cloud computing,
resource management, and workflow management.
Yang-Suk Kee (Yang Seok Ki) is a Senior Member of
Technical Staff at Oracle America and involved in de-
signing and developing the next generation of the Oracle
Streams Advanced Queuing (AQ) system. His research
interest spans high performance scientific/enterprise
computing (HPC), message oriented middleware (MOM),
service oriented architecture (SOA), Grid/cloud comput-
ing, parallel computing. Before Dr. Kee joined Oracle, he
was a post-doctoral researcher under Dr. Carl Kesselman
at Information Sciences Institute, University of Southern
California and under Dr. Andrew A. Chien and Dr. Henri

Cassanova at University of California, San Diego. Dr. Kee actively participated in the
VGrADS (Virtual Grid Application Development System) project as a leading core
contributor to the VGES (Virtual Grid Execution System). He was a lecturer of Grad-
uate Study at Seoul National University and lead the ParADE (Parallel Application
Development Environment) and xBSP (eXpress Bulk Synchronous Parallel) projects.
He received Ph.D. in Electrical Engineering and Computer Science, Master of Com-
puter Engineering, and Bachelor degrees of Computer Engineering from Seoul Na-
tional University.

Jin-Soo Kim received his B.S., M.S., and Ph.D. degrees in
Computer Engineering fromSeoul National University, Ko-
rea, in 1991, 1993, and 1999, respectively. He is currently
an associate professor in Sungkyunkwan University. Be-
fore joining Sungkyunkwan University, he was an asso-
ciate professor in Korea Advanced Institute of Science and
Technology (KAIST) from 2002 to 2008. He was also with
the Electronics and Telecommunications Research Insti-
tute (ETRI) from 1999 to 2002 as a senior member of
research staff, andwith the IBM T. J.Watson Research Cen-
ter as an academic visitor from 1998 to 1999. His research

interests include embedded systems, storage systems, and operating systems.

Seungryoul Maeng received the B.S. degree in Electronics
Engineering from Seoul National University, Korea, in
1977, and the M.S. and Ph.D. degrees in Computer Science
from KAIST in 1979 and 1984, respectively. Since 1984
he has been a faculty member at KAIST. From 1988 to
1989, he was with the University of Pennsylvania as a
visiting scholar. His research interests include computer
architecture, cluster computing, and embedded systems.

http://www.scienceclouds.org/
http://www.nimbusproject.org/
http://aws.amazon.com/elasticmapreduce
http://epigenome.usc.edu
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	Cost optimized provisioning of elastic resources for application workflows
	Introduction
	Workflow execution on elastic resources
	Integrated workflow execution system
	Application model
	Resource model

	Related work
	The PBTS algorithm
	Problem specification
	Approach
	Task selection phase
	Workflow structure analysis
	Spare time distribution
	Task selection

	Resource capacity estimate and task scheduling phase
	Task execution phase

	Evaluation
	Evaluation methodology
	Real application workflow
	Synthetic workflow
	Effect of the runtime feature of PBTS

	Conclusion
	Acknowledgements
	References

