
S. Sambath and E. Zhu (Eds.): Frontiers in Computer Education, AISC 133, pp. 745–752.
springerlink.com © Springer-Verlag Berlin Heidelberg 2012

Tuning the Ext4 Filesystem Performance
for Android-Based Smartphones

Hyeong-Jun Kim and Jin-Soo Kim

School of Information and Communication Engineering
Sungkyunkwan University (SKKU), Suwon 440-746, Korea

{kimhj0514,jinsookim}@skku.edu

Abstract. The storage performance plays an important role in today’s
smartphones. However, most file systems have been optimized for hard disk
drives and general filesystem workloads. This paper aims at improving the
performance of the Ext4 filesystem, a de facto filesystem in Android-based
smartphones, by taking into account the filesystem workloads in the Android
platform and the characteristics of the underlying NAND flash-based storage
device. We have considered five tuning parameters of the Ext4 filesystem. Our
evaluation on a real Android-based smartphone shows that the new Ext4
filesystem, where all the tuning parameters are applied, improves the Postmark
performance by up to 13% compared to the original Ext4 filesystem.

Keywords: Ext4, Filesystem performance, Android, NAND flash-based
storage.

1 Introduction

Recently, the demand for Android-based smartphones is increasing rapidly. The
market share of Android-based smartphones is reported to be 43.4% in the second
quarter of 2011, up from just 17.2% in the same quarter of the previous year [1].
Among all smartphone operating systems, Android is the most fast-growing OS in
terms of the market share during the past year. With this growth, the features and
capabilities offered by Android-based smartphones are getting more and more
sophisticated.

The storage performance plays an important role in ensuring better user experience
in today’s smartphones. This is because the applications running on smartphones are
getting complex and storage can be a performance bottleneck in these applications, as
in conventional desktop or notebook computers. For example, the Internet browser
needs to store a large number of small product images while browsing e-commerce
sites. High-end game software available in smartphones has a visible delay to read in
more than tens of megabytes of game data when it is started. Therefore, maximizing
the storage performance is one of the most challenging tasks facing system designers.

In this paper, we primarily focus on the filesystem performance of Android-based
smartphones. More specifically, we strive to improve the performance of the Ext4
filesystem which serves as a de facto filesystem in most of Android-based

746 H.-J. Kim and J.-S. Kim

smartphones. Tuning the Ext4 filesystem performance has been approached in two
ways. First, we tune the Ext4 filesystem by analyzing the filesystem workload
characteristics of Android-based smartphones. According to our analysis, we find that
about 50% of the files are less than or equal to 4KB in size. This suggests that it is
important to minimize the metadata overhead caused by reading and writing small
files. Second, the Ext4 filesystem has been extensively optimized for hard disk drives
(HDDs), but most of smartphones use NAND flash-based storage such as eMMCs
(Embedded MultiMediaCards) [2]. Since eMMCs exhibit performance characteristics
quite different from HDDs, we need to revisit policies and mechanisms of the Ext4
filesystem for eMMCs. Our evaluation on a real Android-based smartphones shows
that the carefully tuned Ext4 filesystem improves the read and write throughput of the
Postmark benchmark by 13% and 11%, respectively, compared to the performance
with default options.

The rest of the paper is organized as follows. The next section discusses the related
work. Section 3 briefly reviews some of features of the Ext4 filesystem. Section 4
presents the performance evaluation results obtained on a real Android-based
smartphone for each tuning parameter. Finally, section 5 concludes the paper.

2 Background

Early Android-based smartphones used YAFFS2 [3] as the default filesystem.
However, since the official release of the Android 2.3 platform codenamed
Gingerbread, the default filesystem has been changed to Ext4. One of the main
reasons is that YAFFS2 has a single-threaded design which might be a bottleneck in
the upcoming multi-core environment [4].

The Ext4 filesystem has been designed and optimized mainly for HDDs. The seek
time and the rotational delay caused by mechanical arms and rotating platters make
the random I/O performance of HDDs fall far short of their sequential I/O
performance. Many filesystem policies and mechanisms of Ext4 have been devised to
overcome these performance characteristics of HDDs. One notable example is the
block group. The Ext4 filesystem divides the entire disk space into a number of block
groups, and tries to allocate data blocks belonging to a file into the same block group.
This is an effort to minimize the head movement when reading the file, by placing the
related data at physically close locations.

On the other hand, NAND flash memory used as a storage medium in most
smartphones has different characteristics. First, there is no seek time since NAND
flash memory is a solid state storage device. The read latency is independent of the
location of the data in a single NAND flash memory chip. Second, NAND flash
memory has asymmetric operational latencies; the write latency is greater than the
read latency by more than four times. Third, the previously written data should be
erased to overwrite a new data in the same location. To make matters worse, the
larger area (called an erase block) containing the previous data needs to be erased at
once by a single erase operation.

Due to the presence of erase operations, the traditional disk-based file system
cannot be used directly on top of NAND flash memory. Instead, NAND flash-based
storage solutions such as SSDs (Solid State Drives) and eMMCs have internal

 Tuning the Ext4 Filesystem Performance for Android-Based Smartphones 747

firmware called FTL (Flash Translation Layer) [5], which hides the peculiarities of
NAND flash memory and emulates the block device interface on NAND flash
memory. With the help of FTL, unmodified disk-based file systems such as Ext4 can
be used for eMMCs as well.

3 Ext4 File System

Ext4 is one of the most widely used journaling filesystems in Linux, developed as a
successor to Ext3. The Ext4 filesystem splits the disk space into logical blocks to
reduce management overhead and to increase throughput. The typical block size is
4KB. These blocks are grouped together to form a block group. Each block group
consists of block bitmap, inode bitmap, inode table, and data blocks with optional
backup of superblock and block group descriptor table. To minimize external
fragmentation and disk seek time, the block allocator tries to allocate new blocks in
the same block group for a new file [7, 8]. The key features of the Ext4 filesystem can
be summarized as follows.

Extents. Extents are a new block mapping scheme introduced in Ext4. Instead of
indirect pointers used in Ext2/3, a single extent identifies a set of blocks which are
logically contiguous within the file and also on the underlying block device. Up to 4
extents are stored in the inode directly, while Htree is used when the number of
extents exceeds four. Extents are useful to reduce the amount of block allocation
information especially for large files.

Delayed Allocation. Ext4 uses a new block allocation mechanism called delayed
allocation. Instead of allocating a new block during the write() operation, Ext4
postpones the allocation of a new block until it is flushed from the page cache. This is
effective in reducing internal file fragmentation.

Multiblock Allocator. With delayed allocation, Ext4 can allocate a group of relevant
blocks in a batch while Ext2/3 allocates one block at a time. The multiblock allocator
minimizes the filesystem overhead, making better choice for allocating blocks.

Flex Block Group. The flex block group allows for more flexible placement of
filesystem metadata. A number of block groups (16, by default) are combined into a
flex block group, where block bitmap, inode bitmap, and inode tables for each block
group are all allocated at the beginning of the corresponding flex block group. This
increases the metadata locality and enables fast loading of metadata.

Large Inode. In Ext2, the default inode size was 128 bytes. In Ext4, the default inode
size is increased to 256 bytes to accommodate several new fields for supporting nano
second timestamps, inode versioning, and extended attributes. Extended attributes are
used to associate special metadata (such as access control lists, etc.) with a file.

Journal Checksum. To improve reliability, Ext4 computes a CRC32 over all of the
journal transaction and adds it to the journal commit block. Without the journal
checksum, the recovery program has to detect the corruption in the journal by
matching the transaction numbers of the header and the commit block. Moreover, the

748 H.-J. Kim and J.-S. Kim

commit block should be written to disk after the header and all the metadata blocks
are written to disk to ensure reliability. Using the journal checksum, corrupted
transactions can be detected more easily and the commit block can be written before
other metadata blocks.

4 Tuning the Ext4 Filesystem

4.1 Evaluation Methodology

Our evaluations have been performed on a commercial Android-based smartphone,
Samsung GT-I9000, running the Linux kernel version 2.6.32.9. GT-I9000 is equipped
with 8GB of internal eMMC storage (Sandisk iNand), which is divided into 2GB of
/data partition and another 6GB of /mnt/sdcard partition. Since the /data partition is
essential in operating the smartphone, we used the /mnt/sdcard partition for our
evaluations after reducing its size to 2GB. Whenever we create a new Ext4 filesystem
with different parameters, we aged the filesystem to model a realistic environment.
Aging has been performed by repeating the creation and deletion of 256KB-sized files
randomly until the half of the filesystem is filled with those files.

To investigate the different aspects of filesystem performance, we chose three
benchmarks: IOzone [9], Flexible Filesystem Benchmark (FFSB) [10], and Postmark
[11]. IOzone is configured to perform several microbenchmarks (sequential read,
sequential write, random read, and random write) on a 32MB file with the 256KB
record size for sequential tests and with the 4KB record size for random tests. FFSB is
used to model the filesystem workload issued by multiple threads. We create 8
threads for each benchmark test. For large file read and write tests, each thread reads
or writes 25MB files with the 256KB record size. In small file read and write tests,
each thread reads or writes 40KB files with the 4KB record size. The performance
metric we use is the amount of data read or written per second by each thread.
Postmark performs 10000 transactions on 5000 files using a single thread. Each
transaction is one of create, read, append, and delete operations and the file size is set
to 4KB. These configurations are based on our analysis of five real Android-based
smartphones; we find that about 50% of files in the /data partition are less than or
equal to 4KB in size. In all benchmarks, we have cleared the buffer cache before
each run.

4.2. The Effect of Each Tuning Parameter

Ext4 provides a number of tuning parameters. In this subsection, we study the effect
of these parameters on the performance by changing only one or two parameters at a
time. All the benchmark results are normalized to the performance of Ext4 with
default options.

 Tuning the Ext4 Filesystem Performance for Android-Based Smartphones 749

Fig. 1. The normalized performance when we enable noatime/noauto_da_alloc options and the
inode size is reduced to 128 bytes

Noatime, noauto_da_alloc. The first tuning parameters we consider are noatime and
noauto_da_alloc. When a file is read, Ext4 updates the last access time in the
corresponding inode. The option noatime makes the Ext4 filesystem stop recording
the last file access time, which eliminates inode updates. This option is useful
especially when a number of small files are read. Ext4 tries to avoid the creation of
zero-length files due to delayed allocation when a system crashes in a certain
situation. The noauto_da_alloc disables this feature. In fact, the generation of zero-
length files on a sudden power failure is POSIX-compliant and the problem should be
avoided not by the file system, but by the application by calling fsync() before closing
a file. Therefore, it is safe to use the noauto_da_alloc option as long as the application
is correctly written. With noauto_da_alloc, Ext4 does not have to detect the
problematic situation and utilizes delayed allocation more effectively.

Figure 1 depicts the normalized performance of Ext4 when noatime and
noauto_da_alloc are enabled. The improved read performance in FFSB and Postmark
is due to the noatime option. We can see that the use of noauto_da_alloc increases the
write performance in IOzone, FFSB, and Postmark.

128-Byte Inode Size. The default inode size of Ext4 is increased from 128 bytes to
256 bytes. However, new fields added into the 256-byte inode, such as nano second
timestamps and extended attributes, are not used in Android-based smartphones. If we
decrease the inode size back to 128 bytes, the number of inodes stored in a single
inode page is doubled. This is found very effective in reducing the metadata traffic,
especially when a large number of files are accessed. As shown in Fig. 1, the
performance of Postmark and FFSB has been improved by about 8% and by about
3%, respectively, with this change. The performance of IOzone has not been affected
because IOzone deals with only a single file.

750 H.-J. Kim and J.-S. Kim

Fig. 2. The changes in the performance when we vary the number of flex block groups to 32, 8,
4, and 1 with 32 block groups. The results are normalized to the case of No_FlexBg.

The Flex Block Group Size. In Ext4, the default flex block group size is 16, i.e., all
the filesystem metadata of 16 block groups are placed at the beginning of the
associated flex block group. To investigate the impact of the flex block group size on
the Ext4 performance, we create a new 4GB filesystem in the /mnt/sdcard partition.
Fig. 2 compares the performance when we change the number of flex block groups to
32 (No_FlexBg), 4 (4_FlexBg), 2 (2_FlexBg), and 1 (1_FlexBg) in the same 4GB
partition. Since the each block group size is 128KB with the 4KB block size, the
partition has 32 block groups. Therefore, there are 1, 8, 16, and 32 block groups per
flex block group for No_FlexBg, 4_FlexBg, 2_FlexBg, and 1_FlexBg, respectively.
Having only one block group for each flex block group (No_FlexBg) is essentially
equivalent to not using the flex block group feature. 2_FlexBg represents the default
Ext4 configuration. In 1_FlexBg, we combine all 32 block groups in one flex block
group.

As can be seen in Fig. 2, the overall performance has been improved by up to 20%
(in Postmark), when we decrease the number of flex block groups. Usually, filesystem
metadata, such as block bitmaps, inode bitmaps, and inode tables, are considered hot
as they are frequently updated, while file data are relatively considered cold. In the
NAND flash-based storage, separating hot data from cold data is known to be very
important to increase the efficiency of flash memory management [12]. We believe
placing the entire filesystem metadata at the very beginning of the partition as is done
in 1_FlexBg, is desirable to the underlying NAND flash-based storage.

Journal Asynchronous Commit. The default behavior of Ext4 is to perform
synchronous commit; the commit block can be written to disk after ensuring that the
header and all metadata blocks are written to disk. However, with the journal
checksum, Ext4 no longer has to wait until the header and metadata blocks are written
to disk to write the commit block. This feature is called journal asynchronous commit.

The use of journal asynchronous commit can increase the bandwidth as it removes
a barrier needed before writing the commit block in the synchronous commit scheme.
Fig. 3 depicts the changes in the performance when we enable journal asynchronous
commit. As expected, the write performance is improved by up to 7%.

 Tuning the Ext4 Filesystem Performance for Android-Based Smartphones 751

Fig. 3. The effect of enabling journal asynchronous commit

4.3 The Performance of the Tuned Ext4 Filesystem

Fig. 4 summarizes the tuning parameters investigated in this paper. Among them,
noatime, noauto_da_alloc, and journal_async_commit are mount options, while the
number of flex block groups and the inode size are parameters used during filesystem
creation with mkfs. The use of noatime, single flex block group, and the smaller inode
size contributes to reducing the metadata overhead in NAND flash-based storage. The
journal asynchronous commit and the noauto_da_alloc options enhance the efficiency
of filesystem operations.

Fig. 5 depicts the performance of the tuned Ext4 filesystem where all the
aforementioned features are applied. We can see that the proposed tuning method has
benefit for all benchmarks we have tested. In particular, the performance of Postmark
has been improved by 13% and by 11% for reads and writes, respectively, compared
to the Ext4 performance with default options.

mkfs options

Single Flex BG -G 32

128B inode -I 128

mount options

noatime -o noatime

noauto_da_alloc -o noauto_da_alloc

Journal_async_commit -o journal_async_commit

Fig. 4. Tuning parameters of Ext4
considered in this paper

Fig. 5. The normalized performance of the
tuned Ext4 filesystem where all the
proposed features are applied

752 H.-J. Kim and J.-S. Kim

5 Conclusion

This paper aims at improving the performance of the Ext4 file system for Android-
based smartphones. In tuning the Ext4 filesystem, it is important to understand the
filesystem workload characteristics of Android-based smartphones. We have
conducted an analysis of file systems used in five real Android-based smartphones
and found that about half of the files require only one 4KB data block. This suggests
that it is necessary to reduce the metadata overhead while reading and writing small
files. In addition, we take into account of the characteristics of the underlying NAND
flash-based storage device, namely eMMCs.

In this paper, we have considered five tuning parameters of the Ext4 filesystem:
noatime, noauto_da_alloc, journal_async_commit, single flex block group, and the
smaller inode size. These parameters are found to be very effective in decreasing the
metadata overhead and enhancing the efficiency of the Ext4 filesystem operations.
Our evaluation on a real Android-based smartphone shows that the proposed tuning
method improves the performance of Postmark by up to 13% compared to the default
Ext4 filesystem. We plan to extend our study to other storage software stacks such as
I/O schedulers and virtual memory to further optimize the storage performance in
Android-based smartphones.

Acknowledgements. This work was supported by Mid-career Researcher Program
(No. 2010-0026511) and by Next-Generation Information Computing Development
Program (No. 2010-0020730) through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science, and Technology.

References

1. Gartner, Inc., http://www.gartner.com/it/page.jsp?id=1764714
2. eMMC (Embedded MultiMediaCard),

http://en.wikipedia.org/wiki/MultiMediaCard
3. YAFFS (Yet Another Flash File System), http://www.yaffs.net
4. Tso, T.: Android will be using ext4 starting with Gingerbread. The Linux Foundation,

http://www.linuxfoundation.org/news-media/blogs/browse/2010/
12/android-will-be-using-ext4-starting-gingerbread

5. Intel Corporation, Understanding the flash translation layer (FTL) specification,
Application Note AP-684 (1998)

6. Btrfs, http://btrfs.wiki.kernel.org
7. Card, R., Ts’o, T., Tweedie, S.: Design and Implementation of the Second Extended

Filesystem. In: First Dutch International Symposium on Linux (1994)
8. Mathur, A., Cao, M., Bhattacharya, S.: The new ext4 filesystem: current status and future

plans. In: Ottawa Linux Symposium (2007)
9. IOZone, http://www.iozone.org

10. FFSB project, http://sourceforge.net/project/ffsb
11. Katcher, J.: Postmark a new filesystem benchmark, Network Appliances (2002)
12. Chaing, M.-L., Lee, P.C.H., Chang, R.-C.: Using data clustering to improve cleaning

performance for flash memory. Software: Practice and Experience 29(3), 267–290 (1999)

	Tuning the Ext4 Filesystem Performance
for Android-Based Smartphones
	Introduction
	Background
	Ext4 File System
	Tuning the Ext4 Filesystem
	Evaluation Methodology
	The Effect of Each Tuning Parameter
	The Performance of the Tuned Ext4 Filesystem

	Conclusion
	References

