
A Study on the Characteristics of Ceph KStore

Sanghoon Han, Kisik Jeong, Dong-Yun Lee, and Jin-Soo Kim

Sungkyunkwan University, Suwon, Korea

1. Introduction

Ceph is one of the most widely used open-source dis-

tributed object store and file system designed to provide

high reliability, scalability, and performance [1]. Inter-

nally, Ceph uses three types of storage backends:

FileStore, KStore, and BlueStore. Among them, KStore

is very simple which stores all the data and metadata in

a key-value store such as LevelDB and RocksDB. Also,

several attempts are being made to use Ethernet-enabled,

key-value disk drives such as Kinetic Open Storage [2]

as a storage backend for Ceph. However, tuning the

underlying key-value store to maximize the perfor-

mance of Ceph KStore requires considerable efforts

including the deployment of a real Ceph testbed, con-

figuring the key-value store to work with Ceph, and the

repeated tests varying one or more parameters.

This paper proposes an alternative approach where the

underlying key-value stores can be optimized according

to the characteristics of Ceph KStore without running

them on Ceph. For this, we have slightly modified Ceph

to record the trace of key-value operations issued from

Ceph KStore while running a given workload. One can

use these traces to extract valuable information on the

characteristics of Ceph KStore, such as key length, val-

ue length, etc. Also, these traces can be replayed on a

particular key-value store to estimate its performance

under Ceph KStore.

2. Analysis of Key-Value Patterns

As an example of our approach, we first show our

analysis results on the key-value patterns obtained while

a client performs 4KB random writes using fio

benchmark over a 4GB block storage on Ceph.

We find Ceph KStore uses three types of key-value

operations, namely get, set, and rmkey. The set

and rmkey operations are used to change the contents

of database and they are bundled together in a transac-

tion. Each transaction corresponds to a single write re-

quest of a client.

In the Ceph Hammer version (v0.94.9), a transaction

consists of 10 operations, each of which uses a different

key prefix such as “STRIP”, “OBJOMAP”, and “OB-

JATTR.” In particular, the key with “STRIP” means

the actual data, whose value is 4KB in size. The key-

value operations originating from write transactions are

responsible for 93.6% of the total number of key-value

operations.

The trend in the Ceph Jewel version (v10.2.3) is simi-

lar to that in the Hammer version. However, the notable

difference is that the actual data is stored in a unit of

64KB instead of 4KB. Also, the number of operations

in a transaction has been reduced to four or five opera-

tions. In addition, we find that the key prefix has been

changed intoto a more compact form such as “D”, “M”,

and “O” instead of “STRIP”, “OBJOMAP”, and “OB-

JATTR.”.

3. Analysis of Write Amplification

Now we present that replaying the trace gives the al-

most identical results with our evaluations on WAF

(Write Amplification Factor) with two key-value stores

(LevelDB and RocksDB) on two Ceph versions (Ham-

mer and Jewel). WAF represents the ratio of the amount

of data written into the storage to the amount of actual

data written by the client. Since WAF is increased due

to additional writes in the Ceph layer, WAF can be used

to evaluate the efficiency of the Ceph storage backend.

 We use ftrace to analyze the WAF of Ceph

KStore. We distinguish metadata and journaling writes

of the file system by metadata flag and the logical block

number. Then, we assume that the rest of the writes are

generated by the key-value store. The amount of writes

incurred during compaction in LevelDB and RocksDB

has been identified using the log files generated by each

key-value store. The trace replayer is developed by

cloning the KeyValueDB, which is a translation layer

used by Ceph to communicate with the backend key-

value store.

Our evaluation indicates that LevelDB gives lower

WAF values compared to RocksDB in both Ceph ver-

sions. In both LevelDB and RocksDB, the WAF value

is increased by 7~8x when we move from Hammer to

Jewel. This is due to the larger write unit size (64KB) in

Jewel. Finally, the WAF values obtained from the re-

player have been deviated only by 1.5~4.5% from the

actual value.

5. References

[1] Ceph, http://ceph.com/, 2017.

[2] Kinetic Open Storage Project, http://openkinetic.org, 2017.

A Study on the Characteristics of Ceph KStore
Sanghoon Han, Kisik Jeong, Dong-Yun Lee, and Jin-Soo Kim

Sungkyunkwan University, Korea

Motivations

Key-Value Pattern Analysis

FileStore KStore BlueStore

Ceph OSD

KeyValueDB

LevelDBStore RocksDBStore KineticStore

LevelDB

ObjectStore

Trace Log

LevelDBStore RocksDBStore KineticStore

LevelDB

Replayer

Hammer Jewel

LevelDB

RocksDB

Prefix
Key Length Value Length

min max avg min max avg

1 OBJOMAP_[ID] 64 64 64 175 175 175
2 OBJOMAP_epoch 39 39 39 4 4 4
3 OBJOMAP_info 38 38 38 730 730 730
4 OBJOMAP_[ID] 64 64 64 175 175 175

5 OBJOMAP_can_rollback 48 48 48 12 12 12

6
OBJOMAP_rollback_info_
trimmed_to

57 57 57 12 12 12

7 STRIP 30 33 31.916 4096 4096 4096

8 OBJATTR__ 34 34 34 250 250 250
9 OBJATTR_snapset 40 40 40 31 31 31

10 GHOBJTOSEQ 77 78 77.737 155 1178 1171.665

Jewel

Ceph
Record Replay

Prefix
Key Length Value Length

Min Max Average Min Max Average

1 D 18 18 18 4096 65536 34816.1

2 M 42 42 42 182 182 182

3 M 16 16 16 847 847 847

4 O 74 74 74 374 374 374

User Data
4KB/Key

64KB/Key

Replayer Verification (Workload: 4KB Random Write, 4GB, 1 OSD)

Hammer

Regular, Set : 78%

Regular, Set : 52%

Can reproduce previous
behavior of Ceph KStore

Design Overview

0

40

80

120

160

200

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time

0

40

80

120

160

200

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time
Data KeyValueStore Compaction Filesystem metadata Filesystem journal WAF

0

40

80

120

160

200

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time

0

40

80

120

160

200

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time
Data KeyValueStore Compaction Filesystem metadata Filesystem journal WAF

0

5

10

15

20

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time

0

5

10

15

20

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time
Data KeyValueStore Compaction Filesystem metadata Filesystem journal WAF

0

5

10

15

20

25

30

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time

0

10

20

30

0%

20%

40%

60%

80%

100%

W
A

F

Fr
ac

ti
o

n

Time
Data KeyValueStore Compaction Filesystem metadata Filesystem journal WAF

Optimizing Ceph KStore Requires

Replayer

Ceph

Hammer: v0.94.9 Jewel: v10.2.3

Replayer

Ceph

Replayer

Ceph

Replayer

Ceph

WAF
Difference < 5%

Our Approach

 Modifying Ceph to record the trace of key-value
operations issued from Ceph Kstore

 Analyzing key-value pattern of recorded traces
 Implementing Replayer to run the recorded

traces on a particular key-value store
 Comparing WAF of Replayer with actual Ceph

It is difficult to perform quickly and easily

KeyValueDB Clone

Trace Reader

 The deployment of a real Ceph testbed
 Configuring the key-value store to work with Ceph
 Repeated experiments with various

parameters settings

