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Abstract
Providing quick system response for mobile devices is
of great importance due to their interactive nature. How-
ever, we observe that the latency of file system opera-
tions increases dramatically under heavy asynchronous
I/Os in the background. A careful analysis reveals that
most of the delay arises from an unexpected situation
where the file system operations are blocked until one
or more asynchronous I/O operations are completed. We
call such an I/O – which is issued as an asynchronous I/O
but has the property of a synchronous I/O as some tasks
are blocked on it – Quasi-Asynchronous I/O (QASIO).

We classify the types of dependencies between tasks
and QASIOs and then show when such dependencies oc-
cur in the Linux kernel. Also, we propose a novel scheme
to detect QASIOs at run time and boost them over the
other asynchronous I/Os in the I/O scheduler. Our mea-
surement results on the latest smartphone demonstrate
that the proposed scheme effectively improves the re-
sponsiveness of file system operations.

1 Introduction
Mobile devices such as smartphones and tablet PCs have
become one of the most popular consumer electronics
devices. According to the Gartner’s survey, the world-
wide shipments of mobile devices are estimated at 2 bil-
lion units in 2013 and are expected to be nine times
higher than those of traditional PCs by 2015 [7].

A key feature in providing satisfactory user experi-
ences on mobile devices is fast responsiveness. Since
most applications running on mobile devices interact
with users all the time, quick system response without
any noticeable delay is of great importance. In spite of
the increase in storage capacity and significant improve-
ment in its performance, storage is still often blamed for
impairing end-user experience in mobile devices [9].

Several efforts have been made to understand the I/O
characteristics of popular mobile applications and their
implications on the underlying storage media, NAND
flash memory [9, 12]. Based on such investigations, var-
ious optimizations have been proposed for the I/O stack

of the mobile platform including file systems, I/O sched-
ulers, and block layers [10, 8, 11, 18]. However, previous
approaches mostly view the problem from the perspec-
tive of increasing throughput or enhancing the lifetime
of NAND flash memory.

In this paper, we focus on the latency of file system op-
erations such as creat(), write(), truncate(),
fsync(), etc. under heavy I/O load. We observe that
when the system has lots of I/O requests issued asyn-
chronously, the latency of these file system operations
increases dramatically so that the responsiveness of ap-
plications is severely degraded. In our evaluations with
one of the latest Android-based smartphones, the time to
launch an application has been slowed down by a factor
of 2.4 in the worst case when a large amount of file writes
is in progress in the background.

This problem is projected to become worse in the fu-
ture as the peripherals of mobile devices continue to
adopt newer and more advanced technology. For ex-
ample, the latest smartphones are equipped with Wi-
Fi 802.11ac (1Gbps) and USB v2.0 (480Mbps) mod-
ules which can generate the I/O traffic of several tens of
megabytes per second. It is very likely for a user to run
an application while downloading some large files in the
background through Wi-Fi or USB connections. In this
case, the responsiveness of the foreground task will be
affected significantly by massive asynchronous I/O oper-
ations.

Some degree of delay is inevitable when the fore-
ground task accesses files under heavy asynchronous
I/Os as long as they share the same storage device. Sur-
prisingly, however, we find out that most of the delay
arises from an unexpected circumstance where the file
system operations are unintentionally blocked until one
or more asynchronous I/O operations are finished. This
phenomenon contradicts the conventional wisdom that
an asynchronous I/O operation can be performed at any
time as no one waits for it. Since asynchronous I/Os
have lower priority than synchronous I/Os and handling
of asynchronous I/Os is optimized not for latency but
for throughput, the responsiveness of the foreground task
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can be highly affected when it has to wait for the com-
pletion of asynchronous I/Os. Our measurement with a
high-end smartphone shows that a single invocation of a
seemingly benign creat() or buffered write() sys-
tem call can take more than 1 second, when its execution
is blocked due to pending asynchronous I/Os (cf. Ta-
ble 2). It is common that the worst case delay of these
system calls increases to several seconds for low-end
smartphones with worse storage performance.

To address this problem, we introduce a new type
of I/O operations called Quasi-Asynchronous I/O (QA-
SIO). QASIOs are defined as the I/O operations which
are issued asynchronously, but should be treated as syn-
chronous I/Os since other tasks are blocked on them.
Note that some of asynchronous I/Os are promoted to
QASIOs at run time when a task gets blocked on them.
Since the execution of the blocked task depends on QA-
SIOs, QASIOs should be prioritized over (true) asyn-
chronous I/Os for better responsiveness. To the best of
our knowledge, this work is the first study to discuss
the dependency between file system operations and asyn-
chronous I/O operations.

We propose a novel scheme to detect QASIOs and
boost them in the Linux kernel. First, we analyze three
problematic scenarios where the responsiveness of appli-
cations is severely degraded due to QASIOs through ex-
tensive investigation across the entire storage I/O stack of
the Linux kernel encompassing virtual file system (VFS),
page cache, Ext4 file system, JBD2 journaling layer, I/O
scheduler, and block layer. Then, we classify the types of
direct or indirect dependencies between file system oper-
ations and QASIOs. We also present how to detect each
type of dependency in the Linux kernel. Finally, we de-
vise a mechanism to dynamically prioritize QASIOs in
the CFQ I/O scheduler, a de-facto I/O scheduler in the
Linux kernel.

We have implemented and evaluated the proposed
scheme on one of the latest Android-based smartphones,
Samsung Galaxy S5. Our evaluation results with mi-
crobenchmarks show that the worst case latency of
creat(), fsync(), and buffered write() is re-
duced by up to 98.4%, 87.1%, and 90.2%, respectively.
In real workloads, the worst case launch time of the CON-
TACTS application is decreased by 44.8% under heavy
asynchronous I/Os.

The rest of this paper is organized as follows. Sec-
tion 2 explains some background to understand how the
Linux kernel handles file I/O operations. Section 3 de-
scribes three problematic scenarios and Section 4 intro-
duces QASIOs. The design and implementation details
of how to detect QASIOs and boost them in the Linux
kernel are presented in Section 5. Section 6 demon-
strates evaluation results and Section 7 discusses the re-
lated work. Finally, Section 8 concludes the paper.

2 Background
2.1 I/O in the Android Platform
Android is one of the most widely used mobile platforms
in the world. Android provides an application framework
that allows a plenty of apps to operate simultaneously.
An Android app consists of different type of components
such as Activity, Service, Broadcast Receiver, and Con-
tent Provider which have an individual entry point and
needs to be executed as a separate task. An app pro-
vides not only user interfaces, but also various back-
ground services performed by the request of the other
components of the app or even by the other apps through
Intents [2]. Recently, Android devices begin to support
multi-window mode [16] beyond simple multi-tasking.
The multi-window mode allows a user to divide one dis-
play screen into two and perform different tasks on each
screen. For these reasons, a large number of tasks can
run simultaneously at any moment in the Android sys-
tem, yielding a large amount of I/Os at the same time.

2.2 Linux Kernel I/O Path
The Linux kernel is the core of the Android platform,
which is responsible for managing system resources such
as CPUs, memory, and various I/O devices. In partic-
ular, the storage I/O stack is one of the most complex
parts in the Linux kernel as each file system operation is
processed with the help of various layers such as virtual
file system (VFS), Ext4 file system, page cache, JBD2
journaling layer, I/O scheduler, and block layer. In this
subsection, we briefly describe a step-by-step procedure
for processing a write() system call as shown in Fig-
ure 1. We choose the write() system call because it is
slightly more complicated to handle compared to other
system calls as it manipulates data and metadata at the
same time. We assume that the default ordered journal-
ing mode is used in the Ext4 file system.
1. Invoke a write() system call: A task passes the
file descriptor, the address of the user data buffer, and
the write size to the kernel through write(). This in-
formation is transmitted to the VFS layer. VFS updates
necessary fields (such as timestamps and file size) of the
file metadata (i.e., inode) by obtaining a JBD2 journal
handle. The journal handle is obtained each time the
metadata is modified to record the updated metadata in
the journaling area. Then, VFS copies the requested data
into the corresponding page in the page cache. The call-
ing task returns from write() as soon as its data is
copied into the page cache.
2. Make pages of file data dirty: The pages of file data
written by VFS are marked as dirty. The Linux kernel
accumulates these dirty pages up to a certain threshold.
3. Flush out dirty pages: If a dirty page stays for more
than the expiration time or the amount of dirty pages

2
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Figure 1: The processing of the write() system call in the Linux kernel

exceeds the background dirty ratio, they are forcibly
flushed. The kworker kernel thread is executed period-
ically or synchronously in order to satisfy these require-
ments and asks the Ext4 file system to flush dirty pages
if necessary.
4. Perform Ext4 delayed block allocation: By de-
fault, Ext4 performs block allocation when the file data
is flushed from the page cache. During block alloca-
tion, Ext4 needs to modify file system metadata such as
block bitmaps and group descriptors. Since these meta-
data should be also written into the journaling area, Ext4
obtains the journal handle of the running transaction and
requests to the JBD2 module to manage them. Note that
Ext4 associates a buffer head with each metadata page.
5. Submit dirty pages of file data: After block alloca-
tion, Ext4 submits dirty data pages to the block layer as
asynchronous I/Os.
6. Commit JBD2 journaling: The running transaction
is changed to the committing transaction after a predeter-
mined time or a certain amount of buffer heads is gath-
ered by the jbd2 kernel thread. The metadata pages be-
longing to the committing transaction are submitted as
synchronous I/Os by jbd2, because they must be written
into the storage device rapidly for ensuring the file sys-
tem integrity.
7. Flush out dirty metadata: After journal commit
completes, the metadata pages included in the commit-
ting transaction are changed to the dirty state again,
which enables checkpointing the metadata pages. Fi-
nally, kworker flushes out these metadata as asyn-

chronous I/Os.
8. Make a request: Physically adjacent pages with the
same I/O property among the submitted I/O requests are
merged into one request through the block layer. These
requests are forwarded to the I/O scheduler.
9. Dispatch a request: CFQ is the default I/O sched-
uler in the Linux kernel. CFQ has separate queues for
synchronous I/Os and asynchronous I/Os. Synchronous
I/O requests generated from a process is entered into the
synchronous CFQ queue which is provided for each pro-
cess. On the other hand, the asynchronous CFQ queue is
shared by processes having the same I/O priority. Since
most asynchronous I/Os are submitted by kworker (I/O
priority 4) as shown in Figure 1, they are put into the
same asynchronous CFQ queue. When dispatching a re-
quest, CFQ first selects a CFQ queue and then processes
I/O requests in the selected queue in the order of logi-
cal sector number. Note that all the synchronous queues
have higher priority than asynchronous queues in CFQ.

3 Problem and Motivation
This section presents three real-life scenarios as motivat-
ing examples which show reduced responsiveness under
heavy asynchronous I/Os. The performance results of
these scenarios are obtained from our test device (refer
to Section 6 for details).

Scenario A: Launching the CONTACTS App:
The app start delay is a simple metric which shows the
responsiveness of mobile devices. We observe that the

3
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start time of the CONTACTS app gets slower and varies
with a large standard deviation when a 4GB file is created
in the background simultaneously. With 500 times of
repeated tests, the worst case app start time increases by
140.0% over that of the normal case where there is no
background I/O traffic.

Scenario B: Burst Mode in the CAMERA App:
The burst mode in the CAMERA app is a continuous high-
speed shooting mode and is supported by many smart-
phones nowadays [19]. Our test device, Samsung Galaxy
S5, shoots up to 30 shots by touching and holding on the
shot icon. The next burst shot is possible shortly after the
images taken by the first burst shot are processed. When
the image size of each shot is large (8MB in the tested
case), the intermittent delays occur between shots after
the first burst shot. Finally, the burst shot performance is
degraded by 19.0% than the ideal performance.

Scenario C: Installing the ANGRY BIRDS App:
The final scenario is to install the ANGRY BIRDS app
downloaded from the Google Android market, when a
4GB file is written in the background. Since down-
loading the package file depends on the network perfor-
mance, we measure the time to install the app from the
package file pre-downloaded in the local storage. We
observe that the average installation time increases by
35.0% when there are asynchronous I/Os in the back-
ground.

The underlying problem:
Many synchronous I/Os, such as read()’s or
write()’s followed by fsync(), are issued during
installing or launching an app. As mentioned in Sec-
tion 2.2, the CFQ I/O scheduler gives higher priority to
these synchronous I/Os over asynchronous I/Os. In spite
of this, it is inevitable for the foreground task to expe-
rience some delay under heavy asynchronous I/Os for
the following reasons. First, there can be a contention
in holding a lock to modify the file system metadata.
Second, it is possible that another asynchronous I/O is
already in progress in the storage device when a syn-
chronous I/O is dispatched. Third, there can be no room
in memory or request queues for additional I/Os.

However, after investigating the three scenarios care-
fully, we find out that file system operations issued by
the foreground task are significantly delayed by another
reason. Although the specific condition is slightly dif-
ferent, the root cause of the problem is the same; the
progress of a file system operation is blocked by undis-
patched asynchronous I/Os. This is an unexpected situa-
tion in the Linux kernel, resulting in an unpleasant conse-
quence that the foreground task waits for the completion
of asynchronous I/Os queued in the I/O scheduler. Since
those asynchronous I/Os are not dispatched yet, the de-
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Figure 2: The classification of I/O requests

lay could be long as they may be served last by the I/O
scheduler. In the next section, we show when this hap-
pens in more detail.

4 Quasi-Asynchronous I/O (QASIO)
This section defines a new type of I/O called quasi-
asynchronous I/O (QASIO) and describes the types of
dependencies on QASIOs. We also revisit the problem-
atic scenarios shown in Section 3 to demonstrate how
those scenarios are related to QASIOs.

4.1 Definition of Quasi-Asynchronous I/O
The Linux kernel traditionally categorizes I/O requests
into the following two classes:

• Synchronous I/O: An I/O request is called syn-
chronous when the calling task is blocked until the I/O
request is completed. For this reason, the I/O sched-
uler such as CFQ treats synchronous I/Os in prefer-
ence to asynchronous I/Os for better responsiveness.
Typically, synchronous I/Os are created by read(),
fsync(), and sync() system calls. However,
write()’s can be made synchronous by opening a
file with the O SYNC flag. The jbd2 kernel thread also
generates synchronous I/Os when it commits journal
data.

• Asynchronous I/O: Writing data to a file opened with-
out the O SYNC flag creates asynchronous I/Os. Asyn-
chronous I/Os are flushed together by the kworker
thread to maximize I/O throughput. They are handled
in low priority in the I/O scheduler because no tasks
waits for them. In this way, tasks can freely enjoy the
benefits of the buffered I/O. Asynchronous I/Os are
also produced when the file system metadata is writ-
ten into the original location after journal commit.

In this paper, we introduce a new class of I/O called
quasi-asynchronous I/O (QASIO) as depicted in Figure 2.
A QASIO is defined as the I/O which is seemingly asyn-
chronous but has the synchronous property because one
or more tasks are waiting for its completion. This seems
to be impossible in theory, but we show in the next sub-
section that it happens frequently in practice. Note that
whether an I/O request is synchronous or asynchronous
is determined when it is submitted to the block layer.
In contrast, an existing asynchronous I/O is promoted

4
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to a QASIO at run time when a task gets blocked due
to the asynchronous I/O. For better responsiveness, QA-
SIOs should be given the higher priority than other (true)
asynchronous I/Os.

4.2 Types of Dependencies on QASIO
Each task can have a direct or an indirect dependency on
QASIOs. The direct dependency occurs when the exe-
cution of a task is blocked due to (quasi-) asynchronous
I/Os. Figure 3 illustrates the situation where task A has a
direct dependency on a QASIO. To identify when such a
dependency exists, we have conducted an extensive anal-
ysis of the Linux kernel and the dynamic I/O patterns
generated by file system calls. According to our analy-
sis, we have identified the following four types of direct
dependencies on QASIOs:

• When modifying a metadata page (Dmeta): This type of
dependency can occur when a task invokes a file sys-
tem call which modifies a metadata page (such as in-
odes, group descriptors, block bitmaps, inode bitmaps,
and directory entries in Ext4). The target metadata
page, made dirty by itself or the other tasks, may
be already submitted as an asynchronous I/O by the
kworker thread.

• When modifying a data page (Ddata): When a task
appends data partially within a data page, it can be
blocked since the target data page may be already
flushed out asynchronously by the kworker thread.
The task cannot proceed its execution until the data
page hits the storage.

• When guaranteeing data to be written back (Dsync): A
task needs to wait for the completion of asynchronous
I/Os when synchronizing or truncating the previously-
issued file data in fsync() or truncate(). When
performing fsync(), all the previous buffered writes
are issued synchronously as long as they are still in
the page cache. If calling fsync() is late or there
are too many dirty pages in the page cache, some
of them can be already flushed out as asynchronous
I/Os. In this case, fsync() should wait until those
asynchronously-issued I/Os are done.

• When completing discard commands (Ddiscard): Cur-
rently, the jbd2 kernel thread issues discard com-
mands asynchronously for deallocated blocks, unlike
other journal blocks which are issued synchronously.
Hence, its execution is blocked on every journal com-
mit until all the discard commands are completed.
This delay in turn can affect the responsiveness of the
foreground task (cf. I jcommit ).

Sometimes, it is also possible that the execution of a
task is being delayed due to another task that has a direct
dependency on QASIOs. For example, Figure 3 shows
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Figure 3: Direct and indirect dependency on QASIO

that task B is blocked because task A cannot make any
progress due to the direct dependency on a QASIO. In
this case, we call that task B has an indirect dependency
on a QASIO. Typically, this situation arises when task A
is blocked holding a resource that task B requires. Unlike
the direct dependency, it is difficult to list all the possi-
ble types of indirect dependencies since the delay due
to QASIOs can be propagated to other tasks in diverse
and complicated ways. However, we found the following
two types of indirect dependencies related to the JBD2
journaling which has a significant impact on the perfor-
mance.

• When unable to obtain a journal handle due to Dmeta
or Ddata (I jhandle): In Ext4, a task should obtain a jour-
nal handle to modify a metadata page or a data page.
As mentioned before, the task can be blocked if the
target page is already issued asynchronously, creating
the Dmeta or Ddata type of dependency on QASIOs.
Sooner or later, the transaction including the journal
handle is started to be committed but the transaction
is locked because the blocked task holds the journal
handle. In this case, another task which attempts to
perform any file operation is blocked since it fails to
obtain a new journal handle.

• When unable to complete fsync() due to Ddiscard
(I jcommit ): This type of indirect dependency is ob-
served only for the task that invokes fsync(). The
fsync() system call needs to wait until the journal
commit is completely done to ensure that the metadata
of the corresponding file is written into the storage de-
vice. However, the processing time of the journal com-
mit can be significantly prolonged since the jbd2 ker-
nel thread usually has a direct dependency of Ddiscard
due to asynchronously-issued discard commands.

Whenever a foreground task interacting with a user
has a direct or an indirect dependency on QASIOs, its
execution has nondeterministic hiccups and the user can
encounter sluggish responsiveness. Despite that there is
room for additional I/Os in memory and request queues,
the processing of system calls is blocked by the stacked

5
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Figure 4: Dependencies on QASIOs in Scenario A

asynchronous I/Os in the request queue. More serious
problem is that the lag due to QASIOs occurs not only
in fsync(), but also such system calls as creat(),
chown(), unlink(), and even buffered write(),
where a user does not expect any delay. Depending on
the storage performance, we observe that a single invo-
cation of the creat() system call takes up to several
seconds due to its dependency on QASIOs.

4.3 Revisiting Problematic Scenarios
We now take a closer look at the problematic scenar-
ios in Section 3 and its relationship with QASIOs. Ta-
ble 1 summarizes the major dependencies on QASIOs
observed in each scenario.

4.3.1 Scenario A: Launching the CONTACTS App

When an app’s UI shows up in the Android platform,
several file system calls are made to update its states
into databases (e.g., SQLite) or files (e.g., xml files) per-
sistently. In our test device, launching the CONTACTS
app is accompanied by a series of system calls such
as rename(), write(), fsync(), and unlink().
These system calls all need to update the metadata.
Therefore, they can have the Dmeta type of dependency
on QASIOs under bulky asynchronous I/Os, when they
try to modify the metadata page which is being written
back.

The UI task of the CONTACTS app has another indi-
rect dependency of I jcommit to QASIOs. At the end of
each journal commit, the jbd2 kernel thread has a direct
dependency (Ddiscard) due to the asynchronously-issued
discard commands. If the journal commit is delayed due
to Ddiscard , the fsync() system call performed by the
UI task is delayed as well since it cannot return until the
metadata modification of the synchronized file is com-
pletely committed. Therefore, the UI task has two kinds
of dependencies on QASIOs as depicted in Figure 4.

4.3.2 Scenario B: Burst Mode in the CAMERA App

After the first burst shot completes, several services are
executed through the Intents transferred from the An-
droid platform. One of them is the thumbnail maker task
which generates thumbnails of the taken images. Since
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Figure 5: Dependencies on QASIOs in Scenario B
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Figure 6: Dependencies on QASIOs in Scenario C

the thumbnail size is very small, the thumbnail maker
task writes data in a small size (e.g., 1KB) repeatedly.
This results in partial writes to the same data page, which
can be blocked if the target data page is already being
written back. Hence, the thumbnail maker task can have
the Ddata type of dependency on QASIOs.

Since the thumbnail maker is running in the back-
ground, it should not affect the responsiveness of the
foreground CAMERA task. However, the problem is that
the CAMERA task has an indirect dependency of I jhandle
to QASIOs via the thumbnail maker as shown in Fig-
ure 5. The thumbnail maker obtains a journal handle of
the running transaction before copying the thumbnail im-
age data to the data page, and falls into a sleep by the
Ddata dependency. After a certain period of time, the
journal commit is started but the jbd2 thread falls into
the locked state since the thumbnail maker went asleep
due to Ddata with holding the journal handle of the trans-
action to be committed. When the CAMERA wants to
acquire a journal handle to write additional images for
the subsequent burst shots, it is eventually blocked. This
is because the JBD2 journaling module does not give out
any journal handle under the condition that the commit-
ting transaction is locked.

4.3.3 Scenario C: Installing the ANGRY BIRDS App

The dependencies on QASIOs arisen in this scenario are
illustrated in Figure 6. The App installer task issues a
number of buffered write() system calls in order to
save the extracted data of the downloaded app to the app
repository. To prevent data loss on sudden power fail-

6
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ures, the App installer task invokes fsync() so that
all the written data are flushed into the storage device.
The fsync() system call is meant to write the data
pages belonging to the corresponding file synchronously.
However, when a large file is written in the background,
the page cache is filled with dirty pages. In this case,
the data pages to be fsync()’ed can be flushed out
asynchronously by the kworker thread before the App in-
staller invokes the fsync() system call. This leads to
the Dsync type of dependency on QASIOs.

For the same reason as in scenario A, this scenario also
has an indirect dependency of I jcommit during fsync()
due to asynchronously-issued discard commands.

5 Boosting QASIOs
In this section, we explain how to detect QASIOs effi-
ciently at run time and boost them for better responsive-
ness during file system operations.

5.1 Design
When a task has a direct or an indirect dependency on a
QASIO, its execution is blocked until the corresponding
QASIO completes. This situation is somewhat similar
to the priority inversion problem in scheduling where a
high priority task cannot make any progress as a low pri-
ority task has a resource it requires. In this case, as the
priority inheritance protocol does, the best way we can
do to minimize the waiting time of the task is to give a
higher priority to the QASIO and complete it quickly.

However, it is not easy in the current design of I/O
schedulers since they do not know the presence of QA-
SIOs and thus they have no idea of which one to boost.
The various dependencies between tasks and QASIOs
are formed dynamically at run time across various up-
per layers such as VFS, page cache, and Ext4 file system.
This suggests that we have to have a run time mechanism
which can detect QASIOs in the upper layers and notify
the I/O scheduler to prioritize them.

The requirements for boosting QASIOs can be sum-
marized as follows:

• Req.(1): When a task is blocked waiting for the com-
pletion of an asynchronous I/O, the kernel should be
able to give a hint about the existence of QASIO to the
I/O scheduler.

• Req.(2): Upon the receipt of the hint from the kernel,
the I/O scheduler should prioritize them among asyn-
chronous I/Os.

The Req. (1) is independent of the I/O scheduler used
in the kernel, but Req. (2) needs to be re-implemented
for each I/O scheduler. In this paper, we only show the
implementation based on the CFQ I/O scheduler. How-
ever, the design can be easily applied to the other I/O

Table 1: The major dependencies on QASIOs in each
scenario discussed in Section 4.3. (This table shows the
major dependencies only. Sometimes other dependen-
cies can occur as well. (B) represents that the depen-
dency is associated with the background task, but the
foreground task also has an indirect dependency on QA-
SIOs.)

Direct Indirect
Scenario Dmeta Ddata Dsync Ddiscard I jhandle I jcommit

A � �(B) �

B �(B) �

C � �(B) �
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Figure 7: Implementation overview for detecting and
boosting QASIOs in the Linux kernel

schedulers. Figure 7 overviews our implementation for
detecting and boosting QASIOs in the Linux kernel.

5.2 Detecting QASIOs
In this subsection, we present how QASIOs can be de-
tected at run time in the Linux kernel. Since an indirect
dependency on a QASIO occurs only when there is an-
other direct dependency on the same QASIO, we only
focus on detecting direct dependencies on QASIOs. If
the direct dependency is resolved, the associated indirect
dependency is terminated as well.

As we have seen in Section 4.2, there are four types of
direct dependencies on QASIOs. Each can be detected
as follows:

• Detecting Dmeta: In Ext4, a task accesses a meta-
data page through the associated buffer head struc-
ture. Before a task modifies a metadata page, it ob-
tains an exclusive lock to the metadata page using the
lock buffer() kernel function. However, if the
buffer head is already submitted to the block layer,
the state of the buffer head is changed into the locked
state and the execution of the task that attempts to ac-
quire the same lock is suspended. Note that failing

7
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to obtain the lock does not necessarily mean that the
target metadata page is submitted as an asynchronous
I/O. Therefore, we have to double check whether the
locked buffer head is being processed as an asyn-
chronous I/O before making a decision.

• Detecting Ddata and Dsync: The dependency types of
Ddata and Dsync can be detected in the same loca-
tion in case of Ext4. When a task wants to guaran-
tee some data to be written back for synchronizing
or truncating a file or to perform a partial write to
a data page, it checks whether the previously-issued
I/O has reached the storage device using the kernel
function wait on page writeback(). If neces-
sary, the task waits in this function until the previous
I/O is finished. Similar to the Dmeta case, we should
check whether the previous I/O is submitted as an
asynchronous I/O.

• Detecting Ddiscard : The kernel function
ext4 free data callback() is registered
to the JBD2 journaling module as a callback func-
tion. This function is called whenever the block
deallocation is required at the end of journal commit.
Unlike the above two cases, the jbd2 kernel thread
submits asynchronous discard operations directly in
the callback function and then falls asleep waiting
for the completion of those I/Os. Since it is obvious
that jbd2 generates QASIOs, no additional check is
necessary.

To detect QASIOs in lock buffer() and
wait on page writeback() functions, we should
be able to quickly confirm whether the buffer head
or the page, now being accessed, is issued as an
asynchronous I/O. Since the Linux kernel has no
way to represent this information, we added a special
buffer head flag and modified the submit bh() and
ext4 bio write page() functions so that they set
the flag when submitting asynchronous I/O requests.
submit bh() and ext4 bio write page() are
used to submit a buffer head and a data page, respec-
tively, to the underlying block layer. This special flag is
unset after the I/O completes.

Algorithm 1 outlines how the actual detec-
tion of QASIOs is implemented in the func-
tion wait on page writeback(). In the
original implementation, a task simply waits in
wait on page writeback() until the writeback of
the target page completes. Instead, we check whether
the target page is submitted as an asynchronous I/O
(lines 1–2) and if it is the case, we send the sector
number of the detected QASIO to the I/O scheduler
(lines 3–4). Note that even if the I/O scheduler is notified
of the presence of a QASIO, it may fail to find it in the
request queue (line 5) for the following two reasons.

Algorithm 1 A modified algorithm for
wait on page writeback() for detecting Ddata
and Dsync

1: while the target page is already submitted do
2: if the page is issued as async. I/O then
3: extract the start sector number from the page
4: send the start sector number to I/O scheduler
5: if I/O scheduler fails to find the I/O then
6: set a timer of several clock ticks
7: end if
8: end if
9: wait until the page I/O completes or the timer expires

10: end while

First, the I/O request can be already dispatched to the
storage device by the low-level device driver. In this
case, we have no choice other than wait for the I/O
completion. The second case is that the I/O request is
staying temporarily in the plug list of the task, not in the
request queue of the I/O scheduler. The plug list keeps
I/O requests generated by a task for a short period time
on the stack space of the task in order to increase the
possibility of creating a larger request and to decrease
a lock contention in the I/O scheduler [3]. Since the
plug list is a private area that cannot be searched, we
keep checking periodically until all the I/O requests in
the plug list are flushed to the request queue. QASIOs
can be detected similarly in lock buffer() and
ext4 free data callback() functions.

5.3 Prioritizing QASIO
Since QASIOs should be processed urgently, we give
a higher priority to QASIOs than all the (true) asyn-
chronous I/Os, but not more than any other synchronous
I/Os. This is because we do not want that the boosting
of QASIOs interferes with the responsiveness of syn-
chronous I/Os. The actual implementation of handling
QASIOs proceeds as follows.

Once a QASIO is detected, the information on the QA-
SIO (i.e., start sector number) should be delivered to the
I/O scheduler. For this purpose, we have added a new
interface called elv boost() in the elevator layer of
the Linux kernel (cf. Figure 7). elv boost() is an ab-
stract interface which invokes a pre-registered function
specific to each I/O scheduler, cfq boost req() in
our case with the CFQ I/O scheduler.

For each asynchronous queue, we maintain a separate
list of I/O requests called QASIO list as shown in Fig-
ure 7. In cfq boost req(), we traverse red-black
trees of all the asynchronous queues and look for the I/O
request which contains the received sector number of the
QASIO. If it is found, an entry for the QASIO is inserted
into the corresponding QASIO list.

In the original CFQ scheduler, whenever an asyn-
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chronous CFQ queue is selected for dispatching a re-
quest, CFQ finds the nearest request, specified by the
next req pointer, from the last processed request in
the red-black tree and then sequentially dispatches I/O
requests from that position. In our implementation, how-
ever, CFQ checks the QASIO list first and then dis-
patches QASIO requests if any. Moreover, if the QA-
SIO list is empty, the current asynchronous queue yields
the chance of I/O dispatching to another asynchronous
queue which has a non-empty QASIO list. In this way,
QASIOs are dispatched before any other asynchronous
I/O requests.

6 Evaluation
This section presents the evaluation results with five mi-
crobenchmarks, three real-life scenarios, and two I/O
benchmarks for Android.

6.1 Methodology
Our evaluation has been conducted on one of the lat-
est smartphones, Samsung Galaxy S5, equipped with
Exynos 5422 (including quad Cortex-A15 and quad
Cortex-A7 ARM CPUs and Mali-T628 MP6 GPU), 2GB
DRAM, and 16GB eMMC flash storage. It runs the An-
droid platform version 4.4.2 (KitKat), with the Linux
kernel 3.10.9. In Android, the dirty page expiration time
is set to 2 seconds and the background dirty ratio to 5%
by default.

In order to investigate the impact of QASIOs on the
latency of various file system operations, we have used
the following in-house microbenchmarks:

• M1: M1 iterates the creation of a 4KB file 500
times. In each iteration, M1 opens the same file with
creat(), and then writes 4KB of data to the file
using the buffered write(). Finally, it performs
fsync() and closes the file with close(). Note
that this microbenchmark mimics the storage I/O pat-
terns of a database system such as SQLite [12].

• M2: M2 is the same as M1 except that the file size is
increased to 1MB and the number of iterations is set
to 200. The file data (1MB in size) is written using a
single write() system call.

• M3: M3 creates a new file with creat() and re-
peats a 1KB-sized write() until the file size reaches
300MB.

• M4: In each iteration, M4 truncates the 2MB file
created in the previous iteration to zero length us-
ing truncate(), recreates the same sized file using
write(), and then closes the file with close().
This is repeated 500 times. The file for the first itera-
tion is created manually before the execution.

• M5: M5 creates a single 4KB file by performing
creat(), write(), fsync(), and close(),

while another task truncates an existing 8GB file and
writes 8GB of data again to the file.

We run all the microbenchmarks except M5 while a
8GB file is written in the background in order to gener-
ate asynchronous I/O operations. In addition to these mi-
crobenchmarks, the proposed scheme is evaluated with
real-life scenarios discussed in Section 3 and two rep-
resentative I/O benchmarks in Android, Antutu and RL-
Bench.

6.2 Microbenchmarks
Figure 8 compares the total elapsed time of each mi-
crobenchmark according to the type of dependency
boosted. The results are normalized to NONE in which
no special handling is performed for QASIOs. Each
Ddata+Dsync, Dmeta, and Ddiscard represents the case
where only the specified type of dependency is detected
and boosted. Note that Ddata and Dsync types cannot be
boosted separately, as they are detected in the same lo-
cation (cf. Section 5.2). Finally, ALL means that all
kinds of optimizations are applied for QASIOs. Table 2
presents the latency of key file system operations before
and after applying the optimizations for QASIOs. Over-
all, we can see that boosting QASIOs improves the total
elapsed time by up to 83.1%. The proposed scheme also
reduces the worst case latency of each file system opera-
tion by up to 98.4%. The detailed analysis on the result
of each microbenchmark is as follows.

In M1, when all the dependency types are boosted,
the total elapsed time is reduced by 83.1% as the aver-
age latency of creat() and fsync() is improved by
99.1% and 63.7%, respectively. In each iteration of M1,
creat() modifies metadata pages and also incurs dis-
card operations as it creates the file with the same name.
Hence, creat() and fsync()will have the Dmeta and
I jcommit dependency, respectively. This is why the most
of reduction in the total elapsed time comes when Dmeta
and Ddiscard types are boosted.

The M2’s results show the similar trend as M1 ex-
cept that boosting Ddata+Dsync is as effective as Dmeta or
Ddiscard . As the file size becomes larger, it is likely that
kworker flushes out some of data pages asynchronously
before fsync() is called. Consequently, unlike in M1,
fsync() will have the Dsync dependency in M2.

In M3, the most dominant operation affecting the over-
all performance is the buffered write(). From Table 2,
we can observe that the latency of write() is reduced
by 47.4% on average and by 90.2% in the worst case.
write() suffers from the Ddata dependency since 1KB
of data is written into a data page partially. Therefore, the
most of performance improvement is achieved by boost-
ing the Ddata type of dependency as Figure 8 illustrates.

In M4, the key file system operation affected by QA-
SIOs is truncate(). If the file data is already issued

9



200  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
T

h
e
 e

la
p
s
e
d
 t
im

e
 (

s
e
c
)

M1 M2 M3 M4 M5

NONE
Ddata + Dsync

Dmeta

Ddiscard
ALL

Figure 8: The normalized total elapsed time of each mi-
crobenchmark according to the dependency type boosted

asynchronously, truncate() should wait for the com-
pletion of those asynchronous I/Os. Hence, boosting the
Dsync type of dependency is most helpful for M4.

In case of M5, jbd2 has the Ddiscard type of depen-
dency on asynchronously-issued discard commands as
another task truncates a large file. In this case, calling
fsync() to synchronize just 4KB of data takes 13.27
seconds on average due to the I jcommit dependency. How-
ever, when we boost the Ddiscard type, the latency is de-
creased to 6.85 seconds.

Since QASIOs are prioritized over other asynchronous
I/Os in the I/O scheduler, boosting QASIOs can have
a negative impact on the throughput of asynchronous
I/Os. To investigate this effect, we have measured the
throughput of creating a 8GB file in the background
while performing the M1 microbenchmark. According
to our measurement results, the throughput is decreased
by 15.4%, from 46.2MB/s to 39.1MB/s. We believe this
is acceptable considering that the total elapsed time of
the foreground task in M1 is improved by 83.1%.

6.3 Real-life Scenarios
Figure 9 depicts the impact of boosting QASIOs in three
real-life scenarios described in Section 3. On the right
side of Figure 9, we also show the total time spent on
waiting for the completion of QASIOs. These times
are measured in the kernel functions described in Sec-
tion 5.2 where each type of dependency is detected. In
Figure 9(a) and (c), the phrase “with bg. I/O” indicates
the case where a 4GB file is created in the background
simultaneously in order to generate asynchronous I/Os.

In Scenario A, we have measured the time to launch
the CONTACTS app. Under heavy asynchronous I/Os,
the launch time is increased by 29.4% on average. In
the worst case, the app start is slowed down by a factor
of 2.4. However, boosting QASIOs effectively reduces
the worst case launch time by 44.8%. Similar to the M1
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Figure 9: Results of three real-life scenarios

microbenchmark, the most of improvement comes from
boosting Dmeta and Ddiscard , as the CONTACTS task has
the Dmeta and I jcommit dependency on QASIOs. The total
wait time on the corresponding kernel function of Dmeta
and Ddiscard has been reduced by 96.1% and 87.4%, re-
spectively.

In Scenario B, we can see that the shot count in the
burst mode is improved by 14.4% on average when we
boost QASIOs. The thumbnail maker has the Ddata de-
pendency on QASIOs, however the total wait time due
to Ddata is reduced by 98.4%. As the direct dependency
between the thumbnail maker and QASIOs is resolved
quickly, the burst mode performance of the CAMERA app
has been improved as well.

Finally, the average installation time of the ANGRY
BIRDS app is slowed down by 35.0% under the heavy
asynchronous I/Os in the background. However, we ob-
serve that the average installation time is improved by
11.5% through the boosting of QASIOs. As mentioned
in Section 4.3.3, the ANGRY BIRDS app has the Dsync
and I jcommit dependency on QASIOs. Accordingly, the
most of reduction in the installation time comes from
boosting the Dsync type. Boosting Ddiscard and Dmeta also
contributes to reducing the installation time since some
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Table 2: The latency of key file system operations in each microbenchmark. (The time unit is millisecond for M1 –
M4, while it is second for M5)

Opt
M1 M2 M3 M4 M5

creat() fsync() creat() fsync() write() truncate() fsync()

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
NONE 119.57 1435.54 98.24 1119.62 109.01 1397.64 172.05 1417.82 0.19 1813.54 62.60 1632.15 13.27 13.87
ALL 1.02 39.15 35.64 144.69 3.90 22.52 69.24 298.83 0.10 177.40 12.85 334.57 6.85 7.11

metadata modifications and discard operations are per-
formed during the app install procedure.

6.4 I/O Benchmarks for Android
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Figure 10: Results of Antutu and RLBench

Finally, we have evaluated the proposed scheme with
two famous I/O benchmarks for Android, Antutu [6]
and RLBench [15]. Antutu is a comprehensive Android
benchmark which provides several modes for measuring
the performance of CPU, memory, storage system, etc.
In this evaluation, we use the Database IO mode that es-
timates the storage I/O performance with database work-
loads. The Antutu benchmark reports the final score as a
result of the performance measurement, where the higher
score means the better performance.

RLBench is a benchmark for measuring the perfor-
mance of Android devices under SQLite workloads.
Since it makes SQLite generate storage I/O intensive
workloads, the RLBench’s result is closely related to the
storage I/O performance in general. Unlike Antutu, RL-
Bench shows the elapsed time to process the predefined
set of SQL queries, hence the lower time means the better
performance.

The results of Antutu and RLBench are displayed in
Figure 10. We run each benchmark with (labeled as
“with bg. I/O”) and without asynchronous I/O opera-
tions. The asynchronous I/Os are generated by writing
a 4GB file in the background while running the bench-

marks.
In Antutu, the base score is measured at 1,785 when

there is no asynchronous I/O operations in the back-
ground. Due to asynchronous I/Os, the score is de-
creased to 1,289. However, the proposed scheme im-
proves the score to 1,421 which is smaller than the base
score by 20.4%. An interesting observation is that boost-
ing QASIOs improves the performance of Antutu by
about 12.0% even when there is no asynchronous I/Os in
the background. This means Antutu itself issues asyn-
chronous I/Os and its performance is also affected by
QASIOs.

The result of RLBench also shows that the proposed
scheme successfully improves the storage I/O perfor-
mance. When there are asynchronous I/O operations in
the background, the elapsed time is reduced by 17.1% by
boosting QASIOs.

7 Related Work
Mobile devices usually employ NAND flash memory as
the media of the main storage system. Kim et al. show
that the storage performance is a limiting factor for the
performance of several common applications for mo-
bile devices through extensive experiments with various
flash storage systems [9]. Since NAND flash memory
shows very different characteristics compared to hard
disk drives, prior work attempts to revisit various oper-
ating system mechanisms and policies which have been
optimized for rotating media. As a result of these efforts,
several file systems [4, 13] and I/O schedulers [14, 17]
have been proposed which are optimized for the charac-
teristics of flash storage.

Recently, many researches have focused on optimizing
the I/O stack of the Linux kernel in accordance with the
I/O characteristics of SQLite, a lightweight transactional
database engine provided by the Android platform. Since
most applications heavily utilize SQLite to keep their
application-specific data persistently, the overall perfor-
mance of mobile applications is known to highly depend
on the SQLite’s performance. In particular, Lee et al.
have observed that running SQLite on top of the Ext4 file
system produces very inefficient I/O patterns to the stor-
age system [12]. Based on the observation, Jeong et al.
propose the elimination of unnecessary metadata journal-
ing, external journaling, and a polling-based I/O mecha-
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nism to improve the journaling efficiency [8]. Similarly,
Shen et al. propose the enhanced journaling mechanism
for the Ext4 file system in the SQLite environment to
solve the so-called journaling of journal problem [18].

In this paper, we focus on the fact that the respon-
siveness of file system operations is severely degraded
when the system has lots of storage I/O operations asyn-
chronously issued. This is an inherent problem in han-
dling I/O requests, being independent of file systems and
I/O schedulers. Therefore, our approach is largely or-
thogonal to previous researches. Note that the proposed
scheme reduces the latency of fsync() successfully,
which is known to be performed frequently by SQLite.
Therefore, boosting QASIOs will be also helpful in im-
proving the performance of SQLite as exemplified in the
result of RLBench.

The recent Linux kernel allows to update data pages
while they are under writeback by disabling the stable
pages feature, which successfully eliminates any Ddata
dependency [5]. However, this can be unacceptable in
future mobile devices since the hardware-supported en-
cryption during I/O is seriously being considered. Also,
the Ddiscard dependency can be removed if a userspace
program issues a fstrim command in a batch manner at
convenient times when the device is idle, as introduced
in the recent Android platform [1]. However, this may
not be a complete solution since the I/O performance of
the underlying flash storage can be suddenly degraded if
discard commands are not issued at a proper time.

8 Conclusions

This paper introduces a new type of I/O called Quasi-
Asynchronous I/O (QASIO). The QASIO is the I/O oper-
ation which is seemingly asynchronous but has the syn-
chronous property since one or more tasks are blocked
until the I/O operation is completed. As the system han-
dles asynchronous I/Os in the perspective of maximizing
throughput not latency, the responsiveness of the blocked
tasks is significantly degraded. In particular, in mobile
devices where most applications interact with users all
the time, the quality of user experiences suffers from
QASIOs.

In order to address this problem, we propose a
novel scheme to detect QASIOs and boost them in the
Linux kernel. We have implemented and evaluated the
proposed scheme on the latest Android-based smart-
phone, Samsung Galaxy S5. By performing various
microbenchmarks, real-life scenarios, and Android I/O
benchmarks, we confirm that boosting QASIOs is effec-
tive in improving the responsiveness of file system oper-
ations. We plan to analyze the effect of boosting QASIOs
on more diverse platforms including servers and low-end
smartphones.
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