Boosting Quasi-Asynchronous 1/O
for Better Responsiveness
in Mobile Devices

Daeho Jeong™, Youngjae Lee*, Jin-Soo Kim*

“Samsung Co., Suwon, Korea
*Sungkyunkwan University



Copy

Copying...
4G.avi

13 %

2/49



v EDARER NG il 72%14 09:41

09:47

Tue, February 10

- : : T
o

Email Camera Play Store Google

= M

T EE

Phone Contacts Messages Internet Apps

3/49



v EDARER NG il 72%14 09:41

09:47

Tue, February 10

: : 1
8 O

Camera Play Store Google

essages Internet Apps

4/49



v EDARER NG il 72%14 09:41

09:47

Tue, February 10

Camera Play Store

Kl 2 & %5

Phone Contacts Messages Internet

5/49



P EOARER Gl 1%k 09:42

T 5 * 2

Keypad Logs Favorites Contacts

Q, Search 8 +

Jeong, Daeho

Time (sec)

“Contacts” start time

6/49



P EOARER Gl 1%k 09:42

T 5 * 2

Keypad

Q, Search 8 +

Logs Favorites Contacts

Time (sec)

Jeong, Daeho




Linux Approaches in 1/0O Scheduling

* Block layer
— Classify I/0 into {SYNC | | ASYNC}

e CFQ /0O scheduler

— SYNC queues have larger time slices than ASYNC
— A SYNC queue per a process
(vs. An ASYNC queue is shared)

— Set a limit for ASYNC requests that can be dispatched
in a single time slice

— A new SYNC req. preempts other ASYNC req.
8/49



page

page

page

page

page

N L

1/0
scheduler

9/49



By kworker,

Especially, when the number

of dirty pages exceeds

the background dirty ratio

scheduler

Async
/0

Async
I/O

Async
/0

Async
1/O

Async
1/O

Async
I/O

Async
I/O

Async
/O

10/49



-

o

What if a process waits for

the completion of asynchronous [/0O?

~

\ /
Task A
_ Wait on Write Back!!
Processing Order == mm m m mm m = >
|/0 Async| | Async| | Async| | Async| | Async| | Async| | Async| | Async
scheduler | /O /0 /0 /0 1/O /O 1/O 1/0

11/49



Quasi-Asynchronous I/0 (QASIO)

* Quasi-Asynchronous I/O

— Issued asynchronously, but should be treated as
synchronous /O

— Detected at run time
— Causes a problem such as priority inversion problem

* Causes unexpected delay
Task A 6

— Similar to priority inversion problem

_ Wait on Write Back!!
Processing Order == mm m m mm m = >

|/0 Async| | Async| | Async| | Async| | Async| | Async| | Async
scheduler | /O /0 /0 /O 1/O /O 1/0

12/49



Outline

Dependencies on QASIO
mpact by QASIO
mplementation Overview

Evaluation
Conclusions

13/49



Dependencies on QASIO

Process B @

Process A e

Indirect dependency

Direct dependency

1/0
scheduler

Async
/O

Async
/O

Async
/O

14/49



Types of Dependencies on QASIO

* Direct Dependencies
-D - When modifying a metadata page

meta °

— D, - When modifying a data page
— Dy, - When guaranteeing data to be written back

— Dyiccara - When completing discard commands

* Indirect Dependencies

— Linangle - When unable to obtain a journal handle

— bicommit - When unable to complete fsync ()

15/49



Types

* Direct Dy
~ Deta - V]
~ Dyata - W
— D, : W

Ddiscard .

* Indirect

o Ijhandle .
— I .

jcommit *

U

Refer to our paper

tor a QASIO ar run rime when a task gets blocked due
to the asynchronous 10, For better responsiveness, QA-
5104 should be given the higher priority than other (e
asynchronous L0s,

4.2 Types of Dependencies on QASIO

Each task can have a direa or an indirecr de pendency on
QASI0s. The direct dependency occurs when the exe-
cution of a task is blocked due to (quasi-) asynchronous
I'Os Figure 3 illustrates the situation where task A has a
direct dependency on a QASI0. To identify when such a
dependency exists, we have conducted an extensive anal-
ysis of the Linux kemel and the dynamic L0 patierns
generated by file system calls. According to our analy-
siz, we have identified the following four types of direct
dependencies on QA S10s:

o When modifving a memadara page (Dga o0 This bype of
dependency can occur when a task invokes a file sys-
tem call which modifies a metadata page (such as in-
odes, group descriptors, block bitmaps, inode bitmaps,
and directory entries in Ext4). The target metadata
page, made dirty by itself or the other tasks, may
be already submitied as an asynchronous O by the
kworker thread.

When modifving a dara page (Dgp): When a task
appends data partially within a data page. it can be
blocked since the target data page may be already
flushed out asynchronously by the bworker thread.
The task cannot proceed its execution until the data
page hits the storage.

When guaranteeing daa ro be wrigen back (Dgn:): A
task needs to wait for the completion of asynchronous
170 when synchronizing or truncating the previously-
issued file datain fsync () ortruncate (). When
performing £=ync (), all the previous boffered writes
ame issued synchronously as long ar they are still in
the page cache. If calling £sync () is late or there
are too many dity pages in the page cache. some
of them can be aleady flushed oot as asynchronous
1=, In this case, £5ync () should wait until those
asynchronously-issued 1A0s are done.

When complering dizcard commands (Dygygg): Cur-
rently. the jhd2? kemel thread issues dizcard com-
mands asynchromousiy for deallocaed blocks, unlike
other journal blocks which are issued synchronously.
Hance, its execution is blocked on every joumal com-
mit until all the discard commands are completed.
This delay in turn can affect the responsiveness of the
foreground task (ef. Tppme )

Sometimes, it is also possible that the execution of a
task is being delayed due to another task that has a direct
dependency on QASI0s. For example, Figure 3 shows

Dimctdependency

e A

Figum 3: Direct and indirect dependency on QASIO

that task B is blocked because task A cannot make any
progress due to the dirct dependency on a QASIOL In
this case, we call that task B has an indirect dependency
on a QASIO. Typically, this situation arises when task A
is Mlocked holding & resource that task B eguires. Unlike
the direct dependency, it is difficult to list all the possi-
ble types of indirect dependencies since the delay due
to QASIOE can be propagated to other tasks in diverse
and complicated ways. However, we found the following
wo types of indirect dependencies relaied to the JHD2
journaling which has a significant impact on the perfor-
MANE.

= When unable ro obrain a journal handle diwe 10 Dmeag
or Didma (1 handre ) In Extd, a task should obtain a jour-
nal handle to modify a metadata page or 2 data page.
As mentioned before, the task can be blocked if the
target page is already issued asynchronously, creating
the Dy, o Dyg, type of dependency on QASTOs.
Sooner or later, the transaction including the joumal
handle is started to be committed but the transaction
is locked because the blocked task holds the joumal
handle. In thiz case, another task which attempts to
perform any file operation is blocked since it fails to
obtain a new journal handle.

When wnable ro complae fsync() due ro Dggod
(Ljomme 31 This type of indirect dependency is ob-
served only for the task that invokes fsync (). The
faync() system call needs to wait until the journal
commit is completely done to ensure that the metadata
of the comesponding file is written into the storage de-
vice. However, the processing time of the journal com-
mit can be significantly prolonged since the jba? ker-
nel thread usually has a direct dependency of Digeprg
due to asynchronously-issued discard commands.

‘Whenever a foreground task imteracting with a user
has a direct or an indiect dependency on QASIOs, its
execution has nondeterministic kicoups and the user can
encounter sloggish responsiveness. Despite that them is
room for additional IA0s in memory and mequest quenes.
the processing of sysem calls is blocked by the stacked

DASIO

on back
ds

ndle

16/49




Types of Dependencies on QASIO

* Direct Dependencies
— Dperg - When modifying a metadata page

— D, - When modifying a data page

— D, - When guaranteeing data to be written back

— Dyiccara - When completing discard commands

* Indirect Dependencies

~ binangie - When unable to obtain a journal handle

— bicommit - When unable to complete fsync ()

17/49



Case Study of D

meta

rename(), write(), unlink(), chmod(), chown(), fsync()

-
-
-
-
-

i L 4

Apps

1. async. bulky write
Page Cache

\ ‘ \ ‘ | [ ‘ |
page l page page l page JJJ

¢ 2. flush out
kworker

|/O Scheduler

18/49



@w

Case Study of D

,.

Apps

meta

inode entries, directory entries,
block bitmaps, inode bitmaps,

group descriptors, super block

Page Cache

page |

page l page l page Jﬂ

metadata <€ JBDZ.
buffer | 3. COMMIT | Journaling

& make “dirty”

kworker

W

|/O Scheduler

19/49



Case Study of D

meta

™ CERTIFIED UsB
,,

Apps

Page Cache

‘ | | JBD2
C - = B metag ‘ .
page l page l page l page J—U buf | Journaling

,‘, 4. flush out & lock buffer

llll ............................. l

|/O Scheduler Async

20/49



Case Study of D

meta

rename(), write(), unlink(), chmod(), chown(), fsync()

. -

””””
-
-
-
-

Apps

Page Cache

‘ ‘ | JBD2
| [ = B metag ‘ '
page l page & page l page JJJ buf ﬁ | Journaling

llll ............................. l

|/O Scheduler Async
/0

21/49



Case Study of D

meta

rename(), write(), unlink(), chmod(), chown(), fsync()

”‘—.
-
-

i g} '3 D
. b ¢ meta

Apps

‘l’ 5. invoke file operations
(lock_buffer())

Page Cache

o | | \ metag¢
page | page | page | page l” buf ﬂ

JBD2
Journaling

T

|/O Scheduler

22/49



Case Study of D

Normal Case

sync

Ul Task

Page Cache

z~\

1/0 Scheduler

23/49



Case Study of D

Normal Case

Ul Task

sync

fsync ()
(flush & wait)

Page Cache

1/0 Scheduler ,

[
\

Sync. Req. ]

24/49



Case Study of D

,.

Apps

sync

Ul Task

O

Page Cache

1. async. bulky wrltel

page

Il

\ [ | |
page page l page l”

2. flush out ¢

kworker

I

|/O Scheduler

25/49



@w

Case Study of D

sync

write()

N
SN

N

,.

Apps

—

3. async. write

Ul Task

()

Page Cache

page |

page l page l page JLU

v

page H

kworker

W

|/O Scheduler

26/49



Case Study of D

sync

~
\\l

_. Ul Task
e o

Apps

Page Cache

page l page l page l page JLU page B

[ 4. fush out
l ll l ............................. l

1/O Scheduler Async

27/49



Case Study of D

sync
q! :: l fSync()
Ul Task ™
DS :
| Apps
. 5. invoke fsync()

(wait_on_page_writeback())
Page Cache .
\ ‘ | [ ‘ | [ ‘ | [ | |
page l page l page l page JJJ page B

T

|/O Scheduler

28/49



Case Study of |

m ™

wri_te()

7
’

Task A

jhandle

JBD2 Journaling

Running Transaction

handle

) 1. 1K partial
write
Page Cache
| \ | \ v
\ [
page l page J—” page
kworker

W

1/O Scheduler

29/49



Case Study of |

m ™

Apps

wrvi_te()

4
’

Task A

jhandle

Page Cache

\“ \“
pagetlpagelU

paI

JBD2 Journaling

Running Transaction

handle

2. flush out J,J

kworker

W

1/O Scheduler

30/49



Case Study of |

‘!:E: :T\‘

Apps

write()

7
’

Task A s

g 3. 1K partial

write

Page Cache

\“ “\
pagelpageJ—U

-]

T

|/O Scheduler

jhandle

JBD2 Journaling

LRun-mngTransactiOn

31/49



Case Study of |

Apps

write()

=

4
’

Task A s

Page Cache

\“
page l page JJJ

9

T

|/O Scheduler

jhandle

JBD2 Jour‘naling

Running Transaction

4. wait_on_page_writeback()

Ddata

32/49



Case Study of |,,nq

@ Task A

Apps
page Cache JBD2 Journaling
= & Jﬂ Running Transaction
i &)
age age |
5. COMMIT &
locked

|/O Scheduler l Ddata I

33/49



Case Study of |,,nq

Other Tasks

Task A

Apps |
jhandle
page Cache JBD2 Journaling
= l JJJ Running Transaction
pa |
(andi]

|/O Scheduler l Ddata I

34/49



How Severe is the delay by QASIO?

* The delay by QASIOs depends on

— The number of outstanding requests
— The maximum number of requests

—1/O performance of underlying storage device
* Afile system call can be blocked for
—OQOver 1 second on an MLC eMMC (S.W.: 57.4 MB/s)

—QOver 4 seconds on a TLC eMMC (S.W.: 26.0 MB/s)
S.W. => Sequential Write Bandwidth

|/0 Async| [Async| | Async| | Async| | Async| | Async| | Async QASIO
scheduler!|| /O /0 /0 1/0 /0 /0 /0

35/49



Degradations by QASIOs
in Real-Life Scenarios

E3 @ &

2 "é“ 350
'8 g 300 | [ |
. o~
D 14 5 250 || [ - £
4 12 20 - ] - R15 | e —
1 et
£ 08 § 150 = N 10 b b -
= 06 S 100 | | - =
04 — 50 I N | 5 I ]
0.2 2
0 »nn 0 0
with bg. 1/0 with bg. 1/0 with bg. 1/0
“Contacts” start time Burst shot performance “Angry Birds” install time
App start time is Shot count is App install time
slowed down by decreased by is increased by
2.4x in the worst 19% 35%

case



How to Boost a QASIO

e Just focus on Direct Dependencies

* Two requirements

— Req.(1): When a task is waiting for an asynchronous
1/O’s completion, the kernel gives information about
QASIO to the 1/0O scheduler

— Req.(2): The I/O scheduler should prioritize them
among asynchronous I/Os based on the hint

37/49



How to Boost a QASIO

e Just focus on Direct Dependencies

* Two requirements

— Req.(1): When a task is waiting for an asynchronous
1/O’s completion, the kernel gives information about
QASIO to the 1/0O scheduler

=> VFS, MM, FS, Block Layer

— Req.(2): The I/O scheduler should prioritize them
among asynchronous I/Os based on the hint

=> Each 1/0O Scheduler

38/49



Implementation Overview

VFS Layer

Page Cache

EXT4 Filesystem

lock_buffer(); wait _on page writeback();

extd4 free_data_callback();

Detect Dyqeq & Dy

Detect D,,.¢4

Detect Drji‘smrd

Block Layer

elv _boost();

CFQ 1/0 Scheduler

next req.—

;adjacent distance:
CFQ Async. /O Request Tree

2 red-black tree
1:1/0 request

39/49



Implementation Overview

VFS Layer

Page Cache

EXT4 Filesystem

lock_buffer(); wait _on _page writeback();

ext4 free data callback();

Detect Dygiq & Dy

Detect D14 Detect Discard
Block Layer
! elv_boost();
CFQ1/0 Scheduler R
: /0 QASIO list
: | (51617
| |
! |
next req__i i |/O Boosting
/o |
T >

;adjacent distanc&i
CFQ Async. I/O Request Tree

s red-black tree
[1:1/0 request

40/49



Evaluations

 Samsung Galaxy S5
— Exynos 5422 (quad Cortex-A15 & quad Cortex-A7)
— 2GB DRAM
— 16GB eMMC storage (S.W.: 54.5MB/s, R.W.: 10.4MB/s)
— Android platform version 4.4.2 (KitKat)
— Linux kernel version 3.10.9

e Evaluation methodology

— Microbenchmarks, Real-life scenarios, Android I/O
benchmarks

41/49



Microbenchmarks

* Five microbenchmarks (M1 ~ M5)

* M1
— |terates the creation of a 4KB file, 500 times
— performs £fsync () to each created file
—creat () >write (4KB) -> fsync () ->close ()
— Mimics the 1/O pattern of DB

42/49



Microbenchmarks

 The normalized total elapsed time

12— " NONE —
data ¥ Deyne T——
Dmety Tmmm

—

o
o

The elapsed time (sec)
o =]
a o

o
N

M1 M2 M3 M4 M5

The total elapsed time is reduced by up to 83.1%,
43/49



Microbenchmarks

* The latency of key file system calls

M1 M2 M3 M4 M5
Opt creat () fsyne() creat () fsyne() write () truncate () fsyne()
Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
NOMNE 119.57 1435.54 98.24 1119.62 109.01 1397.64 172.05 1417.82 0.19 1813.54 62.60 1632.15 13.27 13.87
ALL 1.02 [ J‘FJ'.]:'I] J5.6d 144.69 390 2252 6Y.24 208.83 0.10 [ ITT.JII] 12.85 33457 6.85 711

97.3%\

\

90.2%\

44/49




Real-life scenarios

* Scenario A: Launching the “Contacts” App

2 0.5
1.8 Ddata+Dsync O]
1.6 04 - Diiscarda 3 — )
T 14 %) D ()
812 oz [ e
o 1 o
£ 038 €02 [N\ —
= 06 = —
0.4 0.1 || L/ —
0.2
0 0
NONE NONE ALL NONE ALL
with /W with with
bg.l/0  bg.l/O bgl/O  bg./O
"Contacts" start time Total wait time

The worst case launch time is reduced by up to 44.8%\,
The total wait time by D, _,,and D, IS reduced

by 96.1%, and 87.4%, ;
sl



Real-life scenarios

e Scenario B: Burst Mode in the “Camera” App

6
E 350 Ddata"'Dsync Ol
N 300 > ] Ddiscard 7]
8250 o 1 8 meta
= 200 | e b - o3F | -
c
3150 | | 4 ELL |l i
© 100 | oA | 4 F
° 50 - }e b — L i N 7]
G 0 0 ol
NONE ALL NONE ALL
Burst shot performance Total wait time

The shot count is improved by up to 14.4% 1
The total wait time by D, is reduced by 98.4%4,

46/49



Real-life scenarios

* Scenario C: Installing the “Angry Birds” App

. 2 DgatatDsync - 2
T —s N I:)discard ]
920 [ N% ------ - ’8‘15— ------ Dnets HE-
) ) )
qE,15 = | e — g 1 B i IO ]
=10 | | ] - B
05 (| | -
5 I e o —
0 0 ﬁ
NONE NONE ALL NONE ALL
/w w w w
bg.l/O  bg.l/O bg.l/0 bg. /O
"Angry Birds" install time Total wait time

The app install time is improved by up to 11.5%4,

47/49



Android 1/0 benchmarks

Antutu Score

120%1 102%1T @ 17.1%
DT N A E— SN -
l~ S
N'h -g 15 ol ’_” ____________________________ =1 |
[
""""""""""""" e 10 [ ] e —
e
_________________________ 8 Y N S — ]
-l
®
NONE ALL NONE ALL NONE ALL NONE ALL
with with " Y with with
bg. /0 bg. /O " bg. /O  bg. /O
(a) Antutu benchmark P (b) RLBench benchmark

48/49



Conclusions

* A new type of I/O, QASIO

— Seemingly asynchronous, but has the synchronous property
— Types of dependency on QASIO

e Novel scheme to detect and boost QASIO

— The worst case latency of a file system call, 98.4%,
— The worst case “Contacts” app start time, 44.8%,

e Future work

— Analyze the impact of QASIO on other types of systems
— Devise another solutions optimized for each type of QASIO

49/49



Al

Thank You

Daeho Jeong (daeho43@gmail.com)
Youngjae Lee (yjlee@csl.skku.edu)
Jin-Soo Kim (jinsookim@skku.edu)



