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Abstract—A critical weak point of Solid State Drives (SSDs)
is the limited lifespan which stems from the characteristics
of NAND flash memory. In this paper, we propose a new
deduplication scheme called block-level content-aware chunking
to extend the lifetime of SSDs. The proposed scheme divides
the data within a fixed-size block into a set of variable-sized
chunks based on its contents and avoids storing duplicate copies
of the same chunk. Our evaluations on a real SSD platform show
that the proposed scheme improves the average deduplication
rate by 77% compared to the previous block-level fixed-size
chunking scheme. Additional optimizations reduce the average
memory consumption by 39% with a 1.4% gain in the average
deduplication rate.

I. INTRODUCTION

Solid State Drives (SSDs) based on NAND flash mem-

ory are quickly gaining popularity. In contrast to hard disk

drives (HDDs), SSDs have several advantages such as high

performance, shock resistance, and low power consumption.

However, one of the critical weak points of SSDs is the

limited lifespan. NAND flash memory requires erase opera-

tions to overwrite data into an already programmed area. As

NAND flash memory cells are gradually worn out by repeated

program/erase cycles, the life expectancy of SSDs is limited

by write traffic, i.e., the amount of data written to NAND

flash memory. The lifespan of SSDs is getting worse as the

NAND technology moves from MLC (Multi-Level Cell) to

TLC (Triple-Level Cell) to reduce the cost per bit [1].

Deduplication is a technique which reduces write traffic by

dividing data into small pieces or chunks and then storing

only the unique chunks. Many data deduplication mechanisms

have been proposed to extend the lifetime of SSDs [2], [3].

However, they commonly partition the incoming data into

fixed-size chunks. This block-level fixed-size chunking suffers

from low deduplication rate1 especially when a portion of a

file is inserted or deleted; in this case, all the chunks after the

modified position become different from the original versions

and thus cannot be deduplicated.

To improve the deduplication rate further, this paper pro-

poses a new deduplication scheme called block-level content-

aware chunking. The proposed scheme divides the data within

1We define the deduplication rate as the aggregated reduction in storage
requirements gained from deduplication technology [4]. Thus, the higher
deduplication rate uses less storage space.

a fixed-size block into a set of variable-sized chunks based on

its contents and avoids storing duplicate copies of the same

chunk. We also explore several optimizations which consider

(1) chunks lied at the block boundary, (2) chunks consisting

of all zeroes, and (3) chunks of small size. To examine the

impact of each optimization on deduplication rate and memory

footprint, we have performed comprehensive experiments on

a real SSD platform.

Our evaluations with four different workloads show that

the proposed scheme improves the average deduplication rate

by 77% over the block-level fixed-size chunking scheme.

After applying all the optimizations, the average memory

consumption is reduced by 39% with an additional gain of

1.4% in the average deduplication rate.

This paper makes following contributions.

• The idea of content-aware chunking is not new in the

deduplication domain. However, it is not used for SSDs

as the file-level information is not available at the device

level. We propose a new approach called block-level

content-aware chunking which applies the content-aware

chunking within each block. Even if the content-aware

chunking is performed for each fixed-size block (e.g.,

4KB), we find a significant improvement in deduplication

rate can be achieved over the traditional block-level fixed-

size chunking.

• For block-level content-aware chunking, we suggest sev-

eral optimizations to further improve deduplication rate

and memory footprint.

• We design the firmware architecture and major data

structures required to implement the proposed scheme in

SSDs. In particular, we have developed a prototype based

on a real SSD platform to demonstrate the feasibility of

our approach.

• We perform extensive experiments with real workloads

to quantitatively evaluate the performance of the block-

level content-aware chunking and the effect of each

optimization.

The rest of this paper is organized as follows. Section II

provides background information. In Section III, the proposed

block-level content-aware chunking scheme is presented with

several optimizations. Section IV shows our evaluation results

and Section V summarizes the related work. Section VI
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concludes the paper.

II. BACKGROUND

A. Flash Translation Layer (FTL)

NAND flash memory is physically organized in flash blocks

and each flash block contains 64∼256 pages. The read and

write operation take place on a page basis, while the erase

operation cleans all the pages within a flash block. The internal

NAND flash memory of an SSD is managed by special

firmware called Flash Translation Layer (FTL). Since in-place

update is not allowed, FTL writes each incoming data into

clean pages and maintains mapping information between the

logical page number (LPN) from the host and the physical

page number (PPN) in NAND flash memory. As the new data

is written, the previous version becomes obsolete and those

obsolete pages are later reclaimed by the garbage collection

(GC) procedure. During GC, FTL selects a victim flash block

and converts it into a clean flash block. Before erasing the

victim flash block, any valid pages still in the victim block

should be copied to other clean pages.

B. Extending the Lifespan of SSDs

SSDs have a limited lifespan as NAND flash memory is

worn out due to repeated program/erase operations. When the

number of erase operations performed on a flash block goes

beyond the number guaranteed by the manufacturer, it is not

recommended to use the flash block anymore. Even worse,

the guaranteed number for each flash block is getting smaller

as the manufacturing technology shrinks in size and moves

towards more than 2-bit MLC. Thus, extending the lifespan

of SSDs is one of the hottest issues in SSDs.

Several different approaches have been studied to extend the

lifespan of SSDs. The first approach is to develop sophisticated

NAND flash management algorithms for FTL. In many cases,

the additional writes caused by GC occupy a large portion of

the total write traffic. Therefore, various mapping schemes and

GC policies have been proposed to improve the performance

and lifetime of SSDs [5], [6]. The second approach is to

add a novel wear-leveling algorithm to FTL. Wear-leveling

algorithms attempt to balance the erase counts over the entire

flash blocks to prolong the time until one of flash blocks

fails [7], [8]. The final approach is to reduce the amount of

actual data in SSDs via compression [9] or deduplication [2],

[3].

C. Deduplication

Deduplication has long been used in backup systems where

many copies of very similar or even identical files are stored.

In such an environment, a file is divided into a set of chunks

and each chunk is compared with already stored chunks. To

make chunk comparisons faster, the fingerprint of a chunk,

generated by a cryptographic hash function such as MD5 [10]

and SHA-1 [11], is used. The probability of having an identical

fingerprint from two different chunks is very small, even less

than hardware bit errors [12]. Although fingerprint collision

is not a serious issue in deduplication, the collision can be
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Fig. 1: Examples of deduplication with various chunking

schemes.

completely eliminated by byte-to-byte comparison of their

contents as is done in [13].

One of the most important issues in deduplication is the

chunking scheme. To save storage space and network band-

width, many backup systems and network file systems use

the chunking scheme such as Rabin fingerprinting [14] where

the chunk boundary is determined only when its contents

satisfy a specific condition [15], [12]. We call this the file-level

content-aware chunking (FILE-CAC). An example of FILE-CAC

is depicted in Figure 1(a) in which the file A is updated to

A’ as the new data is inserted in the middle of the file. Since

the chunks are determined by their contents, only the chunk

a′4 is affected by this insertion and the remaining chunks are

eligible for deduplication.

Unfortunately, FILE-CAC cannot be directly used for SSDs

as storage devices have no information on which sequence

of data blocks belongs to the same file. Although several

deduplication schemes such as CAFTL [2] and CA-SSD [3]

have been recently proposed for SSDs and a commercial SSD

controller is known to support deduplication [16], this is why

they all use the block-level fixed-size chunking (BLK-FSC) as

shown in Figure 1(b). In the same situation as in Figure 1(a),

BLK-FSC is able to deduplicate only the first chunk b1 since the

original data is shifted by the newly inserted data making the

chunks b′2 and b′3 differ from b2 and b3, respectively. Therefore,

it is very difficult for BLK-FSC to achieve a high deduplication

rate.

To increase the deduplication rate further in SSDs, this paper

proposes a novel chunking scheme called block-level content-

aware chunking (BLK-CAC), as depicted in Figure 1(c). In the

following section, we describe the design and implementation

of the proposed scheme in detail.
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Fig. 2: Deduplication process in BLK-CAC.

III. DESIGN

A. Block-Level Content-Aware Chunking (BLK-CAC)

In the block-level content-aware chunking scheme (BLK-

CAC), each block is divided into several chunks according to its

contents as in FILE-CAC. However, since each block is treated

separately similar to BLK-FSC, a chunk cannot span across two

different blocks. Therefore, each chunk ends if its contents

satisfy a specific condition or it meets the block boundary.

In Figure 1(c), assume that the file C, whose contents are

the same as the file A, is stored in three different blocks of the

storage device. Note that the chunk a3 (or a6) in Figure 1(a)

has been split into two chunks c3 and c4 (or c7 and c8) in

Figure 1(c) due to the block boundary. Even if the new data

is inserted into c5, we can see that the chunks c4, c6 and c9

can still be deduplicated after the insertion. In this way, BLK-

CAC can deduplicate a more number of chunks than BLK-FSC.

Especially, BLK-CAC is more effective when a file size is large

as BLK-FSC usually fails to deduplicate those chunks located

after the modified region of the file.

One downside of BLK-CAC is that the number of chunks

is increased compared to BLK-FSC. The larger the number of

chunks, the more memory required as we need to maintain

a fingerprint for each chunk. In Section III-D, we describe

several optimizations designed for reducing the number of

chunks without a significant impact on the deduplication rate.

B. Deduplication Process

Figure 2 illustrates the overall deduplication process in

BLK-CAC which consists of three major phases: chunking,

fingerprinting, and matching. When a write request is issued

from the host, its contents are first divided into fixed-size

blocks. We use the block size of 4KB which is identical to the

block size of the Ext4 file system. In the chunking phase, each

block is split into several variable-sized chunks based on its

contents. We use Rabin fingerprinting for the content-aware

chunking. If the block boundary is met while applying Rabin

fingerprinting, the chunking phase is finished.
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Fig. 3: Mapping and indexing data structures.

In the fingerprinting phase, a 160-bit fingerprint is generated

for each chunk using the SHA-1 hash function. The generated

fingerprint is compared with other fingerprints stored in the

fingerprint store in the matching phase. If there is a matching

fingerprint, the physical address of the matching chunk is

retrieved from the fingerprint store and the mapping is adjusted

accordingly. Otherwise, the chunk is written to NAND flash

memory and the corresponding entry is added to the fingerprint

store.

As the chunk size is variable and typically smaller than the

flash page size, we use a write buffer to coalesce multiple

chunks before writing them into NAND flash memory.

C. Data Structures for Deduplication

Figure 3 depicts major data structures needed for imple-

menting deduplication with BLK-CAC. The mapping table for

translating logical addresses to physical addresses is composed

of the L2P table and L2P elements. When the write buffer

is flushed, the number of chunks and the pointer to an L2P

element is stored in the corresponding entries in the L2P table.

Each L2P element contains the physical flash page number

(PPN), the starting offset, the size of each chunk, and pointers

to link all the L2P elements that point to the same physical

data.

For example, Figure 3 shows that LPN #101 has two chunks.

From the associated L2P element, we can see that the first

chunk is 1024 bytes in size and it is located in the byte offset

0 of PPN #901. The second chunk of LPN #101 and the first

chunk of LPN #102 have been deduplicated, sharing the same

data stored in the byte offset 0 of PPN #501.

In our design shown in Figure 3, the memory space for

L2P elements must be allocated at runtime since the number

of chunks in a block is determined after the chunking phase.

In addition, the dynamic memory allocation for variable-sized

L2P elements has large overheads to manage the additional

metadata such as memory offset and size.

Therefore, we limit the maximum number of chunks in a

block to n (cf. Table I) for ease of memory management. When

the number of chunks reaches n value while chunking a block,

the remaining portion of the block is regarded as one chunk.
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We allocate the memory space for L2P elements in advance

and eliminate the overhead of dynamic memory management.

The fingerprint store provides the mapping information from

fingerprints to their physical addresses. Each entry consists

of the fingerprint of a chunk, the number of L2P elements

pointing to the chunk, and pointers to link those L2P elements.

In Figure 3, the first entry of the fingerprint store has the

fingerprint value of 0xABCABC and it is shared by two L2P

elements. By following the pointers, we can identify that the

corresponding chunk is stored in PPN #501 and its size is

3072 bytes.

The P2L table and the associated P2L elements are used to

find the logical address for the given physical address during

GC. Figure 3 depicts an example where PPN #901 has three

chunks in it and the first chunk is mapped to the first chunk

of LPN #101.

D. Optimizations

This subsection presents several optimization techniques for

BLK-CAC that can further reduce the number of entries in the

fingerprint store and the write traffic to NAND flash memory.

1) Chunks in the Block Boundary: As each unique chunk

occupies an entry in the fingerprint store, it is important to

reduce the number of entries kept in the fingerprint store

to save memory. One possible way is to remove the chunks

lied at the block boundary (called boundary chunks) from the

fingerprint store. This is because those boundary chunks are

formed not based on their contents but due to the presence of

a block boundary. Hence, they are very likely to be changed

when the contents of a file is shifted by the newly inserted

or deleted data. For example, we can see that the boundary

chunks c′7 and c′8 become different from the chunks c7 and

c8, respectively, due to the inserted data on the chunk c′5 in

Figure 1(c). This optimization is more effective for large files

since many boundary chunks are affected by the change in the

file contents.

We should be careful so as not to discard the first boundary

chunk of a file as this chunk is not affected by the change in

the later part of the file. Because the file-level information is

not available in the storage device, it is normally impossible

to identify whether a boundary chunk is the first chunk of a

file. However, there is a way to detect those chunks when the

file size is smaller than the block size using the fact that the

file system initializes the unused space of a block with zeroes.

More specifically, we use a heuristic that the boundary chunk

in the front of a block is not discarded if the last chunk consists

of all zeroes.

2) Chunks Consisting of All Zeroes: The chunks consisting

of all zeroes (called zero chunks) need not be written to NAND

flash since read operations can be served by filling the buffer

with zeroes. There are many such zero chunks because the

unused space within a data block after the end of the file is

filled with zeroes in most file systems including Ext4. Thus, if

there is a region in the block which is composed of successive

zeroes, we treat it as a separate zero chunk. The contents of the

zero chunk is neither deduplicated nor written to NAND flash

Parameters Default values

Block size b 4096 bytes

Average chunk size c 512 bytes (fixed to b

for BLK-FSC)

Min. size of zero chunks z 512 bytes

Min. size of non-zero chunks x 128 bytes

Max. number of chunks / block n 12

TABLE I: Parameters used in experiments

memory. Instead, we simply mark a flag in the corresponding

entry of the L2P element.

One side effect of having zero chunks is that the number

of chunks can be increased. If a chunk had a series of zeroes

in the middle of it, the chunk would be divided into three

different chunks one of which is the zero chunk. Although

the zero chunk itself does not consume any entry in the

fingerprint store, the fingerprints of other two chunks should

be maintained.

We can reduce the side effect of zero chunks by regulating

the minimum size of zero chunks. Because zero chunks of

small size do not increase the deduplication rate significantly,

we simply discard zero chunks whose sizes are less than a

predefined value z (cf. Table I). Due to these special handling

of zero chunks, the amount of write traffic to NAND flash

memory is reduced noticeably.

3) Chunks of Small Size: When the chunk size is small,

the benefit of deduplication is not significant compared to the

overhead of keeping the corresponding entry in the fingerprint

store. Therefore, we avoid storing the fingerprints of chunks

whose sizes are smaller than the predefined threshold x (cf.

Table I).

IV. EVALUATION

A. Methodology

We perform experiments on a PC with Intel Core i7-3550

3.4GHz CPU and 8GB RAM, which is connected to the

Jasmine OpenSSD platform [17] via the SATA2 interface.

The Jasmine platform is an SSD development board which

consists of Indilinx Barefoot SSD controller, 64MB SDRAM,

and two 32GB NAND flash memory modules. For ease of

prototyping, we have modified the firmware of the Jasmine

platform so that it exposes the native flash read, write, and

erase operations, and implemented BLK-FSC and BLK-CAC

schemes as a kernel module in the host system running Linux

2.6.32. The deduplication rate of FILE-CAC is measured using

a file-level simulator.

The average chunk size in FILE-CAC and BLK-CAC is set to

512 bytes, by default. Note that the larger average chunk size

results in less deduplication rate, while the smaller size causes

more memory footprint. For BLK-FSC, the average chunk size

is set to 4KB which is same as the block size of the Ext4 file

system. To accelerate the experiments, the total capacity of

SSD is configured to 4GB. Some parameters and their default

values used in our experiments are summarized in Table I.
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chunking schemes

We use four workloads, APACHE2 [18], EMACS [19], KER-

NEL [20], and WIKI [21]. APACHE2, EMACS, and KERNEL

consist of five (from 2.2.8 to 2.2.22), six (from 23.1 to 24.2),

and two (2.6.32.60 and 2.6.34.14) different versions of the

source tar files, respectively, which are extracted on the Ext4

file system one by one from the lowest version to the highest

version. In WIKI, two large files, which are snapshots of all

Wikimedia Wikis taken on Jan. and Feb. 2012, are copied to

the file system in chronological order.

B. Deduplication Rate

Figure 4 compares the deduplication rate of each chunking

scheme. Note that the theoretical bound for the deduplication

rate of KERNEL and WIKI is 50% as only two versions are

written into the SSD in these workloads. In Figure 4, we can

see that the difference in deduplication rates between FILE-

CAC and BLK-CAC is 11% ∼ 20% in APACHE2, EMACS, and

WIKI. Since FILE-CAC utilizes the file-level information for

the content-aware chunking, the deduplication rate of FILE-

CAC is normally better than that of BLK-FSC or BLK-CAC. In

spite of this, it is surprising that BLK-CAC shows slightly better

deduplication rate for KERNEL. This is because there is a large

amount of zero chunks in KERNEL and BLK-CAC effectively

deduplicates such zero chunks as presented in Section III-D2.

Overall, BLK-CAC reduces the total write traffic by 77% on

average compared to BLK-FSC. Although almost 90% of two

snapshots of WIKI have the same contents, BLK-FSC fails to

deduplicate showing the deduplication rate of only 0.014%.

This is because the contents of many fixed-size chunks are

affected by small insertions or deletions under BLK-FSC.

In the same situation, BLK-CAC achieves the deduplication

rate of 23%. Compared to FILE-CAC, the decrease in the

deduplication rate of BLK-CAC is due to boundary chunks

which are not deduplicated.

The results of BLK-CAC include all the optimizations pre-

sented in Section III-D with the default parameter values

shown in Table I. The effect of each optimization under

different parameter values is discussed in Section IV-E.
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applying various optimizations (normalized to No-opt)

C. Impact of Each Optimization

To investigate the impact of various optimizations on the

deduplication rate, we apply each optimization incrementally.

In Figure 5, No-opt represents the baseline BLK-CAC scheme

where no optimization is performed. In Boundary, we elimi-

nate boundary chunks from the fingerprint store. Additionally,

zero chunks are handled as presented in Section III-D2 in

Boundary+Zero. Boundary+Zero+Small represents the case

where all the optimizations described in Section III-D are

applied.

Figure 5 shows that the average deduplication rate drops

from 45% to 39% when deduplication is not tried for boundary

chunks. However, the special handling of zero chunks recovers

the average deduplication rate to 46%. The impact of handling

zero chunks is noticeable except for WIKI because APACHE2,

EMACS, and KERNEL generate a lot of zero chunks due

to small files. Additional elimination of small chunks has

hardly affected the deduplication rate. Each optimization has

no noticeable impact when the file size is large as in WIKI.

By applying all the optimizations, the deduplication rate is

increased by 1.4% on average.
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F (MB) B Sb (MB) Sa (MB) Cb Ca

APACHE2 152 49,567 194 76 101,140 62,405

EMACS 561 156,266 610 278 394,271 205,097

KERNEL 703 232,584 909 518 849,899 585,723

WIKI 2,144 51964 2,158 1,652 2,836,243 1,734,652

TABLE II: Summary of BLK-CAC results. (F : the total file size, B: the number of 4KB blocks, Sb (or Sa): the total SSD

space used before (or after) deduplication, Cb (or Ca): the total number of chunks in the fingerprint store before (or after)

optimizations.)
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D. Memory Footprint

Figure 6 depicts the number of entries in the fingerprint

store normalized to the value of No-opt. The less number of

fingerprints means that the less memory footprint is needed

for the fingerprint store. We can see that the impact of

removing boundary chunk is quite substantial in reducing

the required size of the fingerprint store. Getting rid of zero

chunks and small chunks from the fingerprint store also helps

to save memory, but the effect is rather limited. The overall

memory consumption of the fingerprint store is reduced by

39% on average when we apply all the optimizations. Table II

summarizes the results of the proposed BLK-CAC scheme with

all optimizations enabled. In Table II, the final deduplication

rate is given by
(Sb−Sa)

Sb

.

E. Effect of Parameter Values

The proposed BLK-CAC scheme relies on three parameters,

namely, the minimum size of zero chunks (z), the minimum

size of non-zero chunks (x), and the maximum number of

chunks in a block (n) (cf. Table I)2. The optimal values of

these parameters are important to get better deduplication rate

and lower memory footprint. This subsection investigates the

impact of these parameters on the overall performance.

1) Minimum Size of Zero Chunks (z): When handling zero

chunks, BLK-CAC regards a series of consecutive zeroes as a

2The block size (b) is usually set to the file system block size. We fix the
average chunk size (c) to 512 bytes which balances deduplication rate and
memory footprint.
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zero chunk only if it is equal to or larger than the minimum

size of zero chunks, z. The larger value of z results in

less number of zero chunks, however it also reduces the

deduplication rate. Thus, we examine the relationship between

the value of z and the deduplication rate.

Figure 7 and Figure 8 depict the cumulative distributions

of the number of chunks and the total amount of space

occupied by zero chunks, respectively. We measure the results

for APACHE2, EMACS, and KERNEL as WIKI has only few

zero chunks. From Figure 7, we can see that 97% of zero

chunks are smaller than 105 bytes. However, these small zero

chunks take only 13% of the total bytes of zeroes as illustrated

in Figure 8. Thus, if we remove small zero chunks, we can

reduce a large number of entries in the fingerprint store while

minimizing its impact on the deduplication rate.

Figure 9 presents the changes in the deduplication rate when

we vary the value of z from 1 byte to 2048 bytes. The results

are normalized to the case where the optimization for zero

chunks is not enabled. Until the value of z increases to 512

bytes, the deduplication rate is almost same with the case

which regards all zeroes as zero chunks (the leftmost point

in each line). However, the deduplication rate of APACHE2

starts to fall evidently when the minimum zero chunk size

becomes 1024 bytes. From Figure 9, we set the value of z

to 512 bytes to avoid a decrease in the deduplication rate. In

this case, we can increase the deduplication rate significantly

while removing a large number of entries corresponding to

zero chunks in the fingerprint store.
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Fig. 10: Changes in the deduplication rate according to the

minimum non-zero chunk size (normalized to the results which

do not consider small chunks)

2) Minimum Size of Non-Zero Chunks (x): As explained

in Section III-D, small chunks make little contribution to the

overall deduplication rate. To eliminate those small chunks as

many as possible, we measure the deduplication rate while

varying the minimum size of non-zero chunks (x) from 1

byte to 512 bytes. Figure 10 depicts the changes in the

deduplication rate whose results are normalized to the case

where small chunks are not specially handled.

Figure 10 shows that the deduplication rate remains the

same until the value of x becomes 128 bytes. When we

increase the value of x further beyond 128 bytes, the dedupli-

cation rate is decreased sharply. This means that eliminating

small chunks whose sizes are less than 128 bytes from

the fingerprint store does not harm the deduplication rate.

Therefore, we choose 128 bytes as the default value of x.

3) Maximum Number of Chunks in a Block (n): The total

size of the mapping table depends on the maximum number

of chunks in a block (n). The cumulative distribution of the

number of chunks in a block is depicted in Figure 11. We can

observe that the contents of most blocks are divided to less

than 12 chunks.
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Fig. 11: The cumulative distribution of the number of chunks

in a block
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Fig. 12: Changes in the deduplication rate according to the

maximum number of chunks in a block (normalized to the

results when there is no such limitation)

Figure 12 illustrates the changes in the deduplication rate

while we vary the maximum number of chunks in a block

from 16 to 6. The results are normalized to the case when

there is no such limitation. As the value of n decreases, the

deduplication rate also diminishes because the last chunk of

a block is not properly deduplicated. There is only about 2%

drop in the deduplication rate until the value of n is larger

than 12. When we decrease the value of n less than 12, the

deduplication rate starts to be affected severely. According to

these results, it is reasonable to set the default value of n to

12.

V. RELATED WORK

As deduplication can improve the performance and lifespan

of SSDs, there have been several approaches to implement

deduplication in SSDs. Berman et al. [22] propose an inte-

grate deduplication and write module in the SSD controller.

However, they only present the basic idea and the expected

benefit through a simple analytical model.

Chen et al. [2] suggest CAFTL (Content-Aware Flash

Translation Layer) to enhance the endurance of SSDs by

removing duplicated writes. To reduce the overhead of garbage
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collection, they utilize 2-level indirect mapping. They also

introduce several techniques to accelerate fingerprinting with

small buffer. Gupta et al. [3] propose CA-SSD (Content-

Addressable SSD) which employs deduplication on SSDs to

exploit value locality. The value locality means that certain

contents of data are likely to be accessed preferentially. Thus,

CA-SSD improves the performance by caching small number

of fingerprints.

Kim et al. [23] develop a mathematical model to calculate

the efficiency of deduplication in SSDs and implement the

prototype on real SSDs. They analyze the trade offs among

design choices to implement deduplication using various com-

binations of hardware and software techniques. Lee et al. [24]

combine several schemes such as deduplication, compression,

and performance throttling to maximize the lifetime of SSDs.

However, all the aforementioned previous work employ

the block-level fixed-size chunking scheme for deduplication

in SSDs. We believe that the use of our proposed block-

level content-aware chunking promises higher deduplication

rate and longer lifespan of SSDs compared to the convention

approach.

VI. CONCLUSION

We propose a novel deduplication scheme called block-

level content-aware chunking to enhance the deduplication

rate in SSDs. The baseline version of the proposed scheme

enhances the average deduplication rate by 77% compared

to the traditional block-level fixed-size chunking, and even

shows the performance similar to the file-level content-aware

chunking in some cases. We also suggest several optimizations

to reduce memory footprint and write traffic. When we apply

all the optimizations, the memory consumption required for

the fingerprint store is reduced by 39% on average with a

slight increase in the average deduplication rate compared to

the baseline version.

We have been very successful in reducing the number of en-

tries kept in the fingerprint store through several optimizations.

Our future work includes studying of the specialized hardware

logic [23] or applying more sophisticated techniques such as

pre-hashing and sampling [2] to accelerate the fingerprinting

and fingerprint matching process. We also plan to investigate a

more efficient mechanism for managing the mapping informa-

tion and the fingerprint store for the block-level content-aware

chunking.
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