
Advil: A Pain Reliever for the Storage Performance
of Mobile Devices

Je-Min Kim and Jin-Soo Kim
College of Information & Communication Engineering

Sungkyunkwan University

Suwon, 440-746, South Korea

Email: jmkim@csl.skku.edu, jinsookim@skku.edu

Abstract—Recently, mobile devices are demanding more per-
formance in computing power, network, and storage. Among
these components, storage is one of the most important com-
ponents which directly influence end-user experience. The poor
random write performance is particularly painful to mobile
devices, but this situation is expected to continue due to limited
cost and power budget in embedded flash-based storage.

This paper proposes a novel software layer called Advil to
relieve the random write performance of mobile devices. Advil
filters out small random writes and logs them sequentially into a
small buffer space (called reserved area), in a transparent way to
file systems and flash-based storage devices. To take advantage
of the fact that the data invalidated in the reserved area does not
have to be synchronized to the original location, Advil identifies
hot data and keeps them in the reserved area. The amount of
hot data is dynamically adjusted according to the change in the
workload characteristics. In addition, Advil selectively performs
page padding and block padding when the data is moved to the
original location to increase the efficiency in the underlying flash-
based storage. Our evaluation results show that Advil improves
the storage write performance of realistic smartphone workloads
up to three times.

I. INTRODUCTION

Mobile devices, as exemplified by smartphones, tablets, and

e-readers, are everywhere today. Gartner forecasts that the

installed base of smartphones and browser-equipped enhanced

phones is expected to surpass the total number of personal

computers (PCs) in use by 2013 [1]. DisplaySearch also re-

veals that 73 million tablets were shipped in 2011, accounting

for 25.5% share of all mobile PC (i.e., tablets, notebook PCs,

and mini-notebook PCs) shipments [2]. The recent mobile

devices are demanding more computing power, larger amounts

of memory, faster network, and higher storage performance to

run heavier applications which were executed only on PCs in

the past. Among these components, storage devices are known

to be one of the most important components which directly

influence end-user experience [3].
Almost every mobile device now comes with flash-based

storage devices, such as eMMCs (Embedded MultiMediaC-

ards) and microSD cards, to store operating system image,

applications, and user data. This is because flash-based storage

devices have many attractive features including shock resis-

tance, small form factor, and low power consumption, while

hard disk drives are too fragile, bulky, and power hungry.
In terms of performance, however, flash-based storage de-

vices exhibit unique performance characteristics. Most notably,

the write performance falls behind the read performance by

several times and the random write performance is extremely

poor. In our evaluation with the latest Samsung Galaxy S II

(GT-I9100) smartphone, we find that writes are slower than

reads by up to four times and random writes perform worse

than sequential writes by a factor of up to 29 (cf. Section V-B).
To fully understand the storage performance of mobile

devices, we need to understand the internal architecture of

flash-based storage devices and the characteristics of the

underlying storage medium, NAND flash memory. In NAND

flash memory, reads and writes are performed on a page
basis. It is one of the inherent characteristics of NAND flash

memory that writing (or programming) a page takes longer

time than reading a page. Moreover, the programmed page

cannot be overwritten by a subsequent write unless the larger

area containing the page is erased in advance. This group of

pages erased together by a single erase operation is called a

block (or flash block1). Usually, each page ranges from 2KB

to 8KB in size and a flash block consists of 64 ∼ 256 pages.
Due to its inability of performing in-place updates, NAND

flash memory cannot be directly accessed via the traditional

block-level storage interface. Instead, most flash-based devices

are equipped with the firmware called FTL (Flash Translation

Layer) whose role is to emulate the block-level interface on

top of NAND flash memory, hiding the existence of erase

operations. The storage performance of mobile devices greatly

depends on the space management policy adopted in FTL.
In this paper, we primarily focus on improving the random

write performance of mobile devices. Kim et al. show that

many mobile applications are write dominant and influenced

by their storage device performance [3]. In particular, they

observe that mobile web browsers generate more random write

requests than other applications. Therefore, the poor random

write performance is extremely painful to end-users of mobile

devices.
There have been various approaches to addressing the poor

random write performance in flash-based storage devices. One

is to make the random write performance better by devising a

sophisticated space management policy inside FTL [4], [5].

Another approach is to use flash-aware file systems over

1In order to avoid confusion with the general term “block” which is used
in operating systems to represent a unit of I/O, this paper uses the term “flash
block” to indicate the unit of erase operation in NAND flash memory.

2012 IEEE 15th International Conference on Computational Science and Engineering

978-0-7695-4914-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCSE.2012.66

429

NAND flash memory, elminating the need for FTL [6], [7],

[8], [9]. These file systems transform random writes into

sequential ones in a log-structured manner, hence the random

write performance is greatly improved.
Unfortunately, it is hard to incorporate previous approaches

into mobile devices. The problem lies in the fact of the

flash-based storage devices, such as eMMCs and microSD

cards, have strict limitations on cost and power consumption

making them very resource-constrained. For example, eMMCs

currently in use have no internal DRAMs which may allow

for write buffering and flexible mapping in FTL. For FTLs,

DRAMs are considered essential to improve the random write

performance, but eMMCs will live without DRAMs during

the foreseeable future. Using a flash-aware file system is not

an option either. Although YAFFS2 [6] has been used in

previous Android-based smartphones, now the file system is

changed to Ext4 in the latest Android kernel. Mobile device

manufacturers are reluctant to adopt flash-aware file systems

either because their implementations are not mature or because

they are limited in performance, functionality, and scalability.
In this paper, we propose Advil (A Device driVer for

Improving Lame storage performance), a novel software ap-

proach for improving the random write performance of mobile

devices without any modification to the existing file systems

and/or FTLs. Advil is a block-level device driver which

transforms random write requests to sequential write requests

by interposing itself between file systems and flash-based

storage devices.
Advil prepares a small buffer area (called reserved area)

for each target partition (called original area) in the flash-

based storage device. The reserved area needs not be in the

same storage device with the target partition and it is logically

divided into two regions, log region and hot region. When

random write requests are issued from the upper file system,

Advil writes them to the log region of the reserved area

sequentially. When the log region of the reserved area is

exhausted, Advil appends hot data in the log region into the hot

region of the reserved area, whereas the cold data is moved to

the original location. The size of the hot region is dynamically

adjusted according to the amount of hot data for the given

workload. Advil also tries to move cold data to the original

area on a flash block basis, selectively padding missing parts.
The key contributions of this paper can be summarized as

follows.

• We propose a software-only technique to improve the

random write performance of mobile devices, which

is transparent to file systems and flash-based storage

devices. By inserting an Advil module into the kernel,

the existing mobile devices with slow eMMCs can benefit

from Advil immediately.

• We also propose a scheme which keeps hot data in the

hot region of the reserved area as long as possible in

order to reduce the amount of write traffic between the

reserved area and the original area. When the hot data is

overwritten while it is in the reserved area, the previous

version needs not be moved to the original area. Since the

DRAM

Microphone

Camera

Sensors

SoC

Cache

SD/MMC

Interface

eMMC

FTL

NAND

Flash

External SD

FTL

NAND

Flash

3G/4G RF

MMU

...

Core1 Core2

Fig. 1. The general architecture of mobile devices

amount of hot data varies over time, Advil also changes

the size of the hot region adaptively.

• When moving cold data, Advil makes an effort to gen-

erate write sequences that are more beneficial to the

underlying FTL. More specifically, Advil evicts the cold

data belonging to the same flash block at once to the

original area. If needed, missing pages in the victim flash

block are read from the original area, and then written to

the original location again with other cold data. This flash

block-level flush is effective in reducing the overhead in

the underlying FTL.

• We have implemented Advil on a real Android-based

smartphone and performed extensive evaluations with

synthetic and realistic workloads. Our evaluation results

show that Advil improves the overall write bandwidth by

1.7 ∼ 3.0 times for typical smartphone workloads.

The rest of the paper is organized as follows. Section II

overviews the storage architecture of mobile devices and the

internal architecture of flash-based storage devices. Section

III discusses related work. Section IV describes the design

and implementation of Advil. The performance of Advil is

presented in Section V. Finally, Section VI concludes the

paper.

II. BACKGROUND

A. The Storage Architecture of Mobile Devices

Fig. 1 illustrates the simplified architecture of a mobile

device which consists of a mobile SoC (System-on-a-Chip),

DRAMs, camera, microphone, various sensors, and flash-

based storage devices. The mobile SoC contains several pro-

cessing cores, cache, graphics processing unit (GPU), 3G/4G

wireless radio controller, etc. Two types of flash-based storage

devices are widely used in mobile devices: an eMMC (Embed-

ded MultiMediaCard) chip for internal storage and a microSD

(micro Secure Digital) card for optional, external storage.

An eMMC chip integrates a controller, a small-sized SRAM,

and NAND flash memory on the same silicon die. Due to

the on-chip controller which provides FTL functionalities,

the eMMC chip looks like a traditional block device to

the mobile operating system. This simplifies the design of

mobile devices, leading to a much shorter time-to-market.

The external microSD card complements the limited storage

430

capacity of eMMC. Currently, up to 64GB of microSD card

in the SDXC (Secure Digital eXtended Capacity) format is

available in the market. Similar to eMMCs, microSD cards

has its own controller which is used to run FTL firmware.

The performance of microSD cards is expressed as speed class
rating. The speed class rating is the official unit of speed

measurement and the class number guarantees a minimum

write speed as a multiple of 1 MB/s [10]. Hence, the class 10

microSD card, which is the highest speed class rating, supports

10 MB/s as a minimum sequential write bandwidth.

Recent flash-based storage devices are internally composed

of a number of independently operated channels and mul-

tiple NAND flash memory chips per channel to maximize

parallelism during read/write operations [11]. In this case,

several pages in different NAND flash memory chips are

often combined together to form a clustered page [12]. The

actual read and write operations are performed in a unit of the

clustered page, which is several times larger than the page size

of NAND flash memory. Similarly, several flash blocks from

different NAND chips constitute a clustered block, which are

erased together by a single erase operation.

B. Flash Translation Layer (FTL)

FTL is the firmware layer usually resides in flash-based stor-

age devices including eMMCs, microSD cards, USB thumb

drives, and SSDs (Solid State Drives). FTL hides the pecu-

liarities of NAND flash memory and gives an illusion of a

storage device compatible to hard disk drives. For this, FTL

internally maintains a number of pre-erased, spare flash blocks

and redirects incoming write requests to these flash blocks.

As the data of the given sector is written into different pages

every time, FTL keeps track of the mapping information from

the logical address to the physical page number on which the

up-to-date data is stored.

Depending on the granularity of the mapping information,

FTLs are classified into three categories: block-mapping FTL,

page-mapping FTL, and hybrid-mapping FTL. Block-mapping

FTLs maintain the mapping information at flash block level,

while page-mapping FTLs at the individual page level. Page-

mapping FTLs allow for more flexible space management,

resulting in the increased random write performance at the

expense of greater memory use for storing the mapping

information. Hybrid-mapping FTLs attempt to mitigate the

memory requirement by managing the page-level mapping

information only for a small number of spare flash blocks

(called log blocks), while the rest of the flash blocks are

managed at flash block level. Embedded flash-based storage

devices such as eMMCs and microSD cards are known to

use a variant of hybrid-mapping FTLs [3] since they do not

have enough DRAM space to store the page-level mapping

information due to limited cost and power budget.

Once the number of spare flash blocks falls below the

threshold, FTL invokes a procedure called garbage collection
(GC) to reclaim the space occupied by obsolete data. During

garbage collection, FTL selects a victim flash block and

converts it to a new spare flash block. When some of valid

pages still remain in the victim flash block, they are copied to

spare flash blocks before the victim flash block is erased.

III. RELATED WORK

Advil is motivated by the earlier work called ReSSD

proposed by Lee et al. [13]. ReSSD is a software layer

which aims at improving the small random write perfor-

mance of SSDs. ReSSD logs small random writes into the

reserved area sequentially, and then moves them to the original

location using ordered-sequential writes. Ordered-sequential

writes indicate the write pattern where the write requests are

arranged in increasing order of their logical addresses. As

ordered-sequential writes are more favorable to SSDs, ReSSD

performs well when many small-sized random writes exist in

the workload.

We strive to improve ReSSD further in two ways. First,

Advil adds a scheme that holds the hot data in the reserved

area without flushing them to the original area. Since the hot

data will be overwritten again in the near future, this can avoid

unnecessary traffic from the reserved area to the original area.

Second, Advil employs more aggressive techniques called

page padding and block padding to minimize random writes

to the original area. Even if we use ordered-sequential writes,

it is inevitable to have many holes between requests when we

move the cold data in the reserved area to the original area.

The page padding fills sector-level holes inside a clustered

page with the data read from the original area. If the page

padding is not performed, flash-based storage devices will

suffer from read-modify-write cycles for several small-sized

requests belonging to the same clustered page. Similarly, the

block padding fills page-level holes within a clustered block

to increase the efficiency in the underlying FTL.

Many algorithms to separate hot data from cold data have

been proposed in the context of FTLs in order to reduce the

garbage collection overhead. Lim et al. proposes one of hybrid-

mapping FTLs called the FASTer FTL [14]. The FASTer FTL

uses the “one-chance” algorithm where the hot data in the log

blocks are given a second chance before they are removed

from the log blocks. ComboFTL proposed by Im et al. [15]

uses a more general “N -chance” algorithm called GCLOCK

where the hot data in the SLC (Single Level Cell) NAND

area are ruled out N times before they are moved to the MLC

(Multi Level Cell) NAND area. The hot/cold data separation

algorithm used in Advil is similar to that of the FASTer FTL,

but it is different from previous approaches in that the amount

of hot data kept in the reserved area is dynamically changed

according to the workload characteristics.

The block padding technique has been first suggested in the

BPLRU (Block Padding Least Recently Used) scheme by Kim

et al. [16]. BPLRU reads some pages that are not in the buffer

from the original location and then writes all pages belonging

to the same flash block sequentially. They find this strategy

is effective in reducing the GC overhead in hybrid-mapping

FTLs. Although the block padding technique in BPLRU is

proposed to efficiently manage the data in the buffer memory,

the same technique is used by Advil when the cold data is

431

eMMC
or microSD

Reserved
Area

Filesystem

(Virtual Block Device)

eMMC

Advil

Original Area

Block I/O

Fig. 2. The mobile device architecture with Advil

flushed from the reserved area to the original area. In fact,

Advil goes one step further and proposes the page padding

technique where the holes within a clustered page are also

padded. Since the clustered page size sometimes goes beyond

32 KB even for eMMCs and microSD cards, the page padding

technique is very effective when small random writes prevail.

IV. ADVIL

A. Overall Architecture

Fig. 2 illustrates the architecture of mobile devices with

Advil. The original area indicates the target partition on which

a file system is built. In this paper, we assume that the original

area is one of the partitions allocated in the internal eMMC

storage, which is used for storing applications and user data.

Advil’s goal is to improve the random write performance

directed to the original area. Advil is implemented as a virtual

block device driver and interposes itself between the file

system and the block device driver of the target partition. Advil

requires a small amount of dedicated storage space called the

reserved area. The reserved area can be allocated in the same

storage device as the original area or in the separate storage

device such as the external microSD card.

Fig. 3 depicts the overall architecture of Advil with three

basic components: router, mover, and filler. When write re-

quests are issued from the file system, the router sifts out

small random writes and appends them to the reserved area

sequentially. Other write requests are forwarded to the original

area as before. For a given write request, the router examines

the request size and the starting logical sector address. If

the request size is smaller than 8 KB and the logical sector

address does not immediately follow the previous request,

the request is considered as a small random write. Whenever

a request is written into the reserved area, Advil maintains

a bookkeeping record in a red-black tree (RB-tree) which

describes the original address in the original area and the

modified address in the reserved area for the request. When

there is a read request from the file system, the router first

searches for the RB-tree to see if there is a record matching

Original Area

Reserved Area
Previous

section

Currnet

section

VFS

Mover

Filler
hot data

migration

cold data

migration

Page

Padding

Block

Padding

Router

Small Random I/O Large or Sequential I/O

log region

log region
hot

region

hot

region

Fig. 3. The overall architecture of Advil

the request. If the record is found, Advil sends the requested

data from the reserved area. Otherwise, the requested data is

read from the original area.

The reserved area is physically divided into two reserved
sections with an equal size. Each reserved section in turn

consists of two regions: log region and hot region. One of

reserved sections is designated as the current section. Small

random writes newly issued from the file system are written

into the log region of the current section sequentially. If there

is no free space in the log region of the current section, the

current section is switched to the other section and the mover

is activated in the background.

The mover’s role is to make the previous section empty

before the current section becomes full. If the data in the

previous section is considered hot, it is migrated to the hot

region of the current section. Otherwise, the data is considered

cold and migrated to the original area. The size of the hot

region is varied adaptively according to the amount of hot data

in each section. The hot data management policies in Advil

are described in more detail in Section IV-B. When the cold

data is migrated to the original area, the filler performs page

padding and/or block padding to maximize the efficiency in

the underlying FTL. The detailed descriptions on page padding

and block padding are given in Section IV-C.

B. Hot Data Management

If the data is overwritten while it is in the reserved area, the

old version of the data needs not be migrated to the original

area. Therefore, if we identify the hot data (i.e., the data

that will be overwritten in the future) and keep those in the

reserved area, the write traffic between the reserved area and

the original area can be reduced.

Advil identifies hot data using the weighted average of write

count. Since the data belonging to the same clustered page is

flushed together to the original area (cf. Section IV-C), Advil

maintains the write count in the granularity of the clustered

page size of the eMMC device. Whenever the data is written

into the log region of the reserved area, Advil increases the

write count for the corresponding clustered page by one. When

the mover is activated, it fills the hot region of the current

section with the data selected from the previous section in

432

Previous section

Current section

Switch

invalidated page

hot page

cold page

new page

Log region

flushed to

 the original area

Hot region

(Nhot_next)

Hot region

(Nhot) Log region

Fig. 4. Hot data management in Advil

descending order of write count. After this operation, the write

count is halved to give more weight to recent accesses.

Fig. 4 shows the situation where the mover is activated as

the reserved section denoted as the previous section becomes

full. We can see that incoming small random writes are written

into the log region of the current section. At the same time, the

mover chooses hot data from the previous section and migrates

them to the hot region of the current section. Other cold data

are handled by the filler and they are eventually flushed to the

original area.

Initially, the size of the hot region (Nhot) is set to 30%

of the size of the reserved section. Advil varies the size of

the hot region every time the mover is invoked to reflect the

change in the amount of hot data. This is done by keeping

track of the number of invalidated clustered pages in each

reserved section. A clustered page is invalidated when there

are more than one write request to the clustered page. If the

amount of invalidated clustered pages is larger than the current

hot region size (Nhot), the next hot region size (Nhot next) is

increased by δ. Otherwise, Nhot next is decreased by δ. In the

experiment, we use the value δ = 2%. Fig. 4 illustrates the

case where the hot region size is changed from four to five

pages as Advil makes a decision that the amount of hot data

is increasing.

C. Page and Block Padding

Write requests smaller than the clustered page size incurs

overhead in flash-based storage devices. For example, consider

an example shown in Fig. 5. We assume the clustered page

size is 32 KB and each small rectangle denotes a 4 KB data

block. Fig. 5 depicts the case when data blocks 1, 2, 4, 5, and

7 are flushed from the reserved area. It requires three write

requests to the device, namely (1, 2), (4, 2), and (7, 1), where

(x, y) denotes the starting block address (x) and the length

of the request in blocks (y). As embedded flash-based devices

such as eMMCs and microSD cards have no internal buffer

RAM, each write request is handled separately, one at a time.

This means that the same clustered page is written three times

inside the device. To remedy this problem, we propose the

Padding from Original Area

Page Padding

Hole

Dirty block

Padded block

Clustered Page
(e.g., 32KB)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Fig. 5. An example of page padding

Clustered Block
(e.g., 4MB)

Block

Padding

Padding from Original Area

Hole

Dirty clustered page

Padded clustered page

0
1

2
3
4
5

0
1

2
3
4
5

Fig. 6. An example of block padding

page padding technique which fills the holes (block 0, 3, and

6 in Fig. 5) between dirty blocks with the data read from the

original area. Once the holes are filled, we can issue a single

write request (0, 8) and this request is handled more efficiently

inside the device.

Similarly, block padding is also useful as suggested in

BPLRU [16]. Fig. 6 depicts an example of block padding in

Advil. For the given clustered block, missing clustered pages

are read from the original area and then written as a whole

only if the number of dirty clustered pages is larger than the

predefined threshold (64 clustered pages, by default). The GC

cost inside the flash-based device is usually improved as a

result of this block padding, since all the previous pages within

the clustered block are invalidated at once.

V. PERFORMANCE EVALUATION

A. Experimental Setup

We evaluate the performance of Advil on Samsung Galaxy

S II (GT-I9100) smartphone. GT-I9100 is one of the latest

Android-based smartphones running Android version 2.3.4

(Gingerbread) based on the Linux kernel 2.6.35.7. GT-I9100 is

equipped with 1.2 GHz dual-core ARM Cortex-A9 processor,

1 GB RAM, and 16 GB internal eMMC storage. We also use

a 32 GB, class 10 microSD card from Samsung as the external

storage. In all experiments, Advil uses a 12 GB partition on

the eMMC device as the original area and a small 256 MB

partition on the microSD card as the reserved area.

Advil is implemented using a linux kernel module called

device-mapper which provides a generic framework for group-

ing local block devices and redirecting block I/O requests.

433

Capacity Clustered Page Size Clustered Block Size

eMMC 16 GB 32 KB 4 MB

microSD 32 GB 16 KB 2 MB

TABLE I
THE SPECIFICATION OF EMMC AND MICROSD

Sequential (MB/s) Random (MB/s)

Unit size read write read write

4KB 7.22 0.80 3.52 0.36

eMMC 32KB 24.25 6.17 19.78 3.58

4MB 44.48 10.56 42.25 10.63

4KB 4.36 1.07 3.97 0.56

microSD 16KB 9.11 3.31 8.60 1.59

2MB 16.83 7.71 16.82 7.71

TABLE II
THE BASIC PERFORMANCE OF EMMC AND MICROSD

The clustered page size and the clustered block size, which

Advil needs to know to perform page and block padding,

are estimated using the methodology proposed in [12]. This

information is summarized in Table I.

The performance of Advil is evaluated using three bench-

marks (sequential write, random write, and Postmark) and

two realistic workloads (Phone 6H and WebBench). In the

sequential and random write benchmarks, a 1 GB file is

written sequentially or randomly with the request size of 4

KB. Postmark is a benchmark tool which aims at measuring

the performance of create, read, append, and delete operations

with many small files. In our experiment, we have configured

Postmark with 160,000 files, 20,000 directories, and 60,000

transactions varying the file size from 4 KB to 8 KB. For

the realistic workloads, we first obtained the storage access

traces of the representative smartphone usage scenarios on

the Linux kernel block layer using blk_trace and then

replayed them on the real device. In Phone 6H, we launch

a set of Android applications using the MonkeyRunner [17]

automation script during the total six hours. The trace of

WebBench has been obtained by visiting top 50 web sites

ranked in [18]. WebBench is based on the WebView which is

a standard web browser on Android-based mobile devices.

B. Basic Storage Performance

Table II compares the sequential and random bandwidth

of the storage devices used in this paper when read/write

operations are performed in 4 KB, their clustered page size

(16KB or 32KB), and their clustered block size (2MB or

4MB). The sequential bandwidth obtained when the request

size equals to the clustered block size can be regarded as the

maximum read or write bandwidth of the device: 44.48 MB/s

(reads) and 10.56 MB/s (writes) for eMMC and 16.83 MB/s

(reads) and 7.71 MB/s (writes) for microSD.

We can see that the sequential write bandwidth is lower

than the sequential read bandwidth by 2.2 ∼ 4.2 times due

0

0.5

1

1.5

2

2.5

3

3.5

Sequential

Write

Random

Write

Postmark Phone_6H WebBench

N
o

rm
a

li
ze

d
 B

a
n

d
w

id
th

Original

ReSSD

Advil

Fig. 7. Performance comparison of the original device, ReSSD, and Advil

to the characteristics of NAND flash memory. The small

random write performance with the request size of 4 KB is

extremely unsatisfactory. It merely achieves 3.4% (eMMC) ∼
7.3% (microSD) of the maximum write bandwidth. Although

the microSD card used in this paper has a class 10 rating, the

actual sequential write bandwidth is far lower than the nominal

bandwidth of 10 MB/s. We suspect this is due to the interface

overhead.

C. Overall Performance

Fig. 7 compares the overall performance of ReSSD and

Advil normalized to the performance of the original device.

We can observe that Advil always performs better than ReSSD.

Advil improves the overall write bandwidth by a factor of 1.4

(in Postmark) ∼ 3.0 (in WebBench) for all workloads except

the sequential write. Sequential writes bypass the Advil layer,

thus the slightly degraded performance in the sequential write

benchmark is due to the device-mapper’s overhead.

Note that the internal storage (eMMC) outperforms the

external storage (microSD) in most cases as shown in Table II.

Advil improves the write performance of realistic workloads

(Phone 6H and WebBench) up to three times by dedicating

only 2% of the space (256 MB for 12 GB partition) in the

slower microSD card.

D. Effect of Hot/Cold Separation and Padding

Compared to ReSSD, Advil’s two distinct features are (1)

to keep the hot data in the reserved area, and (2) to perform

page and block padding when the data is migrated to the

original area. To evaluate the effectiveness of these features,

we compare the performance of three versions of Advil as

shown in Fig. 8. The leftmost bar (labeled as None) denotes

the version of Advil where no features are added, which is

the same as ReSSD. The middle bar (labeled as Padding only)

indicates the version where only page and block padding are

performed. The third bar (labeled as Padding+Hot/Cold) is the

complete version of Advil used in Section V-C.

434

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Random Write Postmark Phone_6H WebBench

N
o

rm
a

li
ze

d
 B

a
n

d
w

id
th

None

Advil (Padding only)

Advil (Padding+Hot/Cold)

Fig. 8. Performance comparison of None, Advil (Padding only) and Advil
(Padding+Hot/Cold)

We can observe that padding is very effective for all

workloads, especially for the random write benchmark. In

the random write benchmark, many holes are scattered over

clustered pages as every write request is small (4 KB in size)

compared to the clustered page size (32 KB for eMMC). In

this case, the page padding can be very useful to enhance the

overall performance.

Special handling of hot data lowers the write bandwidth

slightly for the random write benchmark and Postmark. The

common characteristic of these two workloads is that there

are not many hot data. Therefore, it appears that the proposed

hot/cold separation technique does not provide any significant

benefit, but brings unnecessary overhead in these workloads.

However, it gives additional performance improvement by

more than 3% for the realistic workload, Phone 6H.

E. A Comparison of Storage Write Patterns

In this subsection, we investigate how Advil changes the

storage write pattern to the underlying eMMC device. Fig. 9(a)

and Fig. 9(b) present the logical sector numbers (LSNs)

touched for the first 5,000 write requests when the Phone 6H

workload is executed on the eMMC device without Advil and

with Advil, respectively. Each point (x, y) represents that y is

the starting LSN for the x-th write request. Note that Advil

filters out small random writes and logs them in the separate

reserved area. The graph in Fig. 9(b) shows only the write

requests issued to the original area, not including ones to the

reserved area.

From Fig. 9(a), we can observe that Phone 6H generates a

large number of random writes for the wide range of LSNs,

although there is also a region (LSNs between 1.40E+06 to

1.45E+06) where the data is written sequentially. However,

Advil removes the most of random writes as shown in

Fig. 9(b). Sequential writes denoted as (1) in Fig. 9(b) bypass

the Advil layer, but other small random writes are completely

absorbed into the reserved area until the write request number

(a) Without Advil

(b) With Advil

Fig. 9. A comparison of storage write patterns when the Phone 6H workload
is executed on the eMMC device (a) without Advil and (b) with Advil

reaches 2,266. At this point, one of the reserved section

becomes full and the mover is initiated. The write requests

marked as (2) represent the cold data evicted from the reserved

section by the mover. Although it is not clear in the figure,

most of them are 4MB (the clustered block size for eMMC)

due to block padding or a multiple of 32KB (the clustered

page size for eMMC) due to page padding.

VI. CONCLUSION

This paper proposes Advil to relieve the poor small random

write performance in flash-based storage which is widely used

in mobile devices. Advil is a virtual block device driver in

the kernel and transforms random write requests to sequential

write requests with the help of a small dedicated buffer space

known as the reserved area. To reduce the traffic between the

reserved area and the original area, Advil identifies hot data

and keeps them in the reserved area. The amount of hot data

stored in the reserved area is dynamically resized according

to the variation in the workload. In addition, when the cold

data is migrated from the reserve area to the original area,

435

page padding and block padding are selectively performed to

increase the efficiency in the underlying flash-based storage

device. According to our evaluation results on a real mobile

device, we find that Advil improves the write bandwidth of

realistic smartphone workloads up to three times.

Advil has not yet implemented any mechanism that can

recover data from unpredictable power failure. However, Advil

can be extended to perform checkpointing its mapping in-

formation periodically or whenever the mover finishes its

task. The information on the original location of the data

in the reserved area needs to be checkpointed, whose size is

estimated about 1MB per 128MB of the reserved area. After

the sudden power outage, Advil can roll back to the latest

checkpoint and reconstruct its mapping information in the

RB-tree. Our evaluation also reveals that a more sophisticated

hot data management policy is needed to reduce the overhead

when there is no write locality in the workload. We leave these

issues as future work.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-

tion of Korea (NRF) grant funded by the Korea Government

(MEST) (No. 2010-0026511). This work was also supported

by the IT R&D program of MKE/KEIT (No. 10041244,

SmartTV 2.0 Software Platform).

REFERENCES

[1] C. Pettey and L. Goasduff, “Gartner highlights key predic-
tions for it organisations and users in 2010 and beyond,”
http://www.gartner.com/it/page.jsp?id=1278413, 2010.

[2] H. Himuro and R. Shim, “Displaysearch quarterly mobile pc shipment
and forecast report,” 2012.

[3] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smart-
phones,” in Proceedings of the 10th USENIX Conference on File and
Storage Technologies, 2012.

[4] A. Gupta, Y. Kim, and B. Urgaonkar, “Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating System, 2009.

[5] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song, “A log buffer-
based flash translation layer using fully-associative sector translation,”
ACM Transactions on Embedded Computing Systems, vol. 6, no. 3, p. 18,
2007.

[6] Aleph One, “Yaffs: Yet another flash file system,” http://www.yaffs.net/.
[7] D. Woodhouse, “Jffs: The journalling flash file system,” in Proceedings

of the Ottawa Linux Symposium, 2001.
[8] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Mo-

riai, “The linux implementation of a log-structured file system,” ACM
SIGOPS Operating Systems Review, vol. 40, no. 3, pp. 102–107, 2006.

[9] C. Min, K. Kim, H. Cho, S. Lee, and Y. Eom, “Sfs: Random write
considered harmful in solid state drives,” in Proceedings of the 10th
USENIX Conference on File and Storage Technologies, 2012.

[10] Wikipedia, “Secure digital,” http://en.wikipedia.org/wiki/SDCard.
[11] J. Kang, J. Kim, C. Park, H. Park, and J. Lee, “A multi-channel

architecture for high-performance nand flash-based storage system,”
Journal of Systems Architecture, vol. 53, no. 9, pp. 644–658, 2007.

[12] J. Kim, D. Jung, J. Kim, and J. Huh, “A methodology for extracting
performance parameters in solid state disks (ssds),” in Proceedings of the
IEEE International Symposium on Analysis & Simulation of Computer
and Telecommunication Systems, 2009.

[13] Y. Lee, J. Kim, and S. Maeng, “Ressd: a software layer for resuscitating
ssds from poor small random write performance,” in Proceedings of the
ACM Symposium on Applied Computing, 2010.

[14] S. Lim, S. Lee, and B. Moon, “Faster ftl for enterprise-class flash
memory ssds,” in Proceedings of the International Workshop on Storage
Network Architecture and Parallel I/Os, 2010.

[15] S. Im and D. Shin, “Comboftl: Improving performance and lifespan of
mlc flash memory using slc flash buffer,” Journal of Systems Architec-
ture, vol. 56, no. 12, pp. 641–653, 2010.

[16] H. Kim and S. Ahn, “Bplru: a buffer management scheme for improving
random writes in flash storage,” in Proceedings of the 6th USENIX
Conference on File and Storage Technologies, 2008.

[17] Android Developer Tools, “Monkeyrunner for android developer,”
http://developer.android.com/guide/developing/tools/index.html.

[18] Kantar Media, “Kantar media compete releases ranking of top
250 websites for july 2011,” http://www.marketwire.com/press-
release/Kantar-Media-Compete-Releases-Ranking-of-Top-250-Websites-
for-July-2011-1554603.htm.

436

