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ABSTRACT
NAND flash-based solid state drives (SSDs) are replacing
magnetic disks because of their fast random access perfor-
mance, shock resistance, and low power consumption. How-
ever, the number of program and erase cycles that can be
performed on NAND flash is limited. To overcome this lim-
itation, SSDs require a sophisticated wear-leveling algorithm
which distributes program/erase cycles evenly across all flash
blocks. While most of existing wear-leveling algorithms are
only based on the erase counts of flash blocks, our empirical
study indicates that the erase count alone is not a good wear
index which tells us how much a flash block is worn out.

This paper proposes a new wear index for MLC NAND
flash memory which takes into account more diverse prop-
erties of NAND flash memory. To show the effectiveness of
the proposed wear index, we also develop a wear-leveling
algorithm, named Equalizer. In our evaluation with three
realistic workloads, Equalizer based on the proposed wear
index improves the effective lifetime of SSDs by up to 145%
compared to the existing wear-leveling technique based on
the erase count.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; B.7.1 [Integrated Circuits]: Types and
Design Styles—Memory technologies

General Terms
Design, Reliability, Measurement

Keywords
NAND flash memory, wear-leveling, lifetime, reliability, stor-
age system

1. INTRODUCTION
NAND flash-based storage devices are being widely used

from MP3 players, digital cameras, and mobile phones to

.

laptops, desktops, and large-scale server systems due to their
small form factor, fast random access performance, shock re-
sistance, noiselessness, and low power consumption. A NAND
flash memory chip consists of an array of flash blocks, each
of which is comprised of a number of pages. Within a flash
block, the program operation should be preceded by the
erase operation as in-place update is not allowed in NAND
flash memory. In order to overcome this erase-before-write
limitation, flash memory requires a software layer called
flash translation layer (FTL) to maximize performance and
lifetime [6, 8, 10, 11].

To reduce the cost of flash memory, NAND manufacturers
are aggressively shrinking down the cell size and advancing
their technologies from single-level cell (SLC) to multi-level
cell (MLC) which stores more than one bit per cell. Unfor-
tunately, shrinking the cell size and storing multiple bits per
cell lead to undesirable situations where the bit error rate is
severely increased and a lesser number of program and erase
operations can be performed on each flash block. In modern
flash-based storage devices, bit errors are corrected by pow-
erful error correction codes (ECCs) such as Reed-Solomon
and BCH up to a certain number of bits.

NAND manufacturers usually specify the number of pro-
gram/erase cycles that can be performed on a flash block
without error in the data sheet. We call this number the
guaranteed program/erase (P/E) cycle of the NAND flash
chip. If a flash block is used beyond the guaranteed P/E
cycle, NAND manufacturers do not ensure the reliability of
the flash block. Unreliable flash blocks may result in error
during later read, program, or erase operations. The actual
value of the guaranteed P/E cycle varies from NAND chip
to NAND chip, depending on the cell size, the type of flash
memory, the manufacturing process, etc.

As defined in [11], we use the term“lifetime”of flash mem-
ory to refer to the amount of total bytes that can be writ-
ten to flash memory until the first error occurs among flash
blocks. The worst-case lifetime can be achieved when pro-
gram and erase operations are only performed on a single
flash block. We can extend the lifetime of flash memory by
using all flash blocks uniformly. Hence, existing FTLs adopt
a wear-leveling algorithm which attempts to erase all flash
blocks evenly to prolong the time we encounter the first er-
ror in one of flash blocks. Usually, traditional wear-leveling
algorithms are based on the following assumptions: (1) A
flash block becomes unreliable suddenly if it is used more
than the guaranteed P/E cycle. (2) All flash blocks have the
same lifetime, i.e., they all die at the same time.

In our experiments with real flash memory chips, how-
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ever, all the flash blocks could perform program and erase
operations reliably even beyond the guaranteed P/E cycle.
Moreover, each flash block experiences the first error dur-
ing flash operations at different P/E cycles. This suggests
that the erase count is insufficient to accurately measure
how much a flash block is worn out and thus, the traditional
wear-leveling algorithms based on the erase count alone are
meaningless and hard to maximize the lifetime of flash mem-
ory.

In this paper, we strive to discover a new measure that
predicts the remaining lifetime of a flash block more accu-
rately than the erase count to extend the lifetime of flash-
based solid state drives (SSDs). We call this measure the
“wear index” and diversify it to include not only the erase
count but also other intrinsic characteristics of MLC NAND
flash memory. In order to demonstrate the effectiveness of
the proposed wear index, we develop a new wear-leveling
algorithm, called Equalizer, that evens out the wear index
(instead of the erase count) over the entire flash blocks. In
this way, Equalizer defers the time when the first flash block
dies. The contributions of this paper can be summarized as
follows:

• We reveal the various error characteristics of MLC
NAND flash memory according to repeated program,
read, and erase operations through in-depth experi-
ments with real flash memory chips.

• We examine several different wear indices based on the
intrinsic characteristics of MLC NAND flash memory.
As a result of this study, we propose a new wear index
which considers the programming latency as well as
the conventional erase count.

• We design and implement a dynamic wear-leveling al-
gorithm called Equalizer. Although Equalizer is based
on Rejuvenator [11], Equalizer outperforms Rejuvena-
tor by up to 36% in three realistic workloads when we
use just the erase count for wear-leveling.

• Compared to the erase count-based Rejuvenator, we
show that Equalizer extends the effective lifetime of
SSDs by up to 145% in three realistic workloads by
applying the proposed wear index.

The rest of this paper is organized as follows. Section 2
gives background and motivation. The previous studies on
NAND flash memory characteristics and wear-leveling algo-
rithms are described in Section 3. Section 4 provides the var-
ious error characteristics of MLC NAND flash memory we
found empirically from real flash memory chips. In Section 5,
we present the proposed wear index and the Equalizer algo-
rithm. The experimental results are discussed in Section 6.
Finally, Section 7 concludes the paper.

2. BACKGROUND

2.1 NAND Flash Memory
NAND flash memory is comprised of a large array of

transistors with floating gates [14]. The basic operations of
NAND flash memory are read, program, and erase. The pro-
gram operation is achieved by supplying a high voltage to
the control gate so that the electrons trapped into the float-
ing gate prohibit current flow. On the contrary, the erase

Specification Value

Guaranteed P/E Cycle 3,000 cycles

Blocks Per Chip 4,152 blocks

Unit Size
Page 8KB (+ spare 640 bytes)

Block 1MB (128 pages/block)

Latency

Page Read 250 (µs)

Page Program 1,300 (µs)

Block Erase 1,500 (µs)

Table 1: Specification of a 35nm 2-bit MLC NAND
flash memory chip
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Figure 1: MLC NAND flash memory architecture

operation removes the electrons from the floating gate by
applying a high voltage across source and drain. The floating
gate which is insulated by oxide gives NAND flash memory
the non-volatile characteristic where the electrons trapped
into the floating gate do not leak after power off. However,
bit errors can occur due to the deterioration of the tunnel
oxide over repeated program and erase cycles [12].

A NAND flash memory chip consists of thousands of flash
blocks and a single flash block is in turn composed of 64∼128
pages. Each page has extra hundreds of bytes called spare
area, which is used for storing ECCs, bad block indicator,
etc. The unit of the read and program operation is a page,
while the erase operation erases the whole flash block at
once. Once a page is programmed, the page cannot be over-
written unless the entire flash block containing the particular
page is erased in advance. This characteristic is called the
erase-before-write limitation of flash memory. There are two
flavors of NAND flash memory: single-level cell (SLC) and
multi-level cell (MLC). MLC NAND allows to store multi-
ple bits per cell whereas SLC NAND stores only a single bit
per cell. Recent flash-based storage devices tend to adopt
MLC NAND flash memory, as it provides higher capacity
with lower cost. Table 1 presents the specification of a 35nm
2-bit MLC NAND flash chip used in this paper.

As shown in Figure 1(a), MLC NAND flash memory is or-
ganized into two types of pages: least significant bit (LSB)
page and most significant bit (MSB) page. A single cell log-
ically represents two distinct bits, one in the LSB page and
the other in the MSB page, and those two pages that share
the same word line (W/L) are called paired pages. Within
paired pages, the LSB page must be programmed before the
MSB page, as illustrated in Figure 1(b). While the LSB page
programming only produces two different cell distributions,
cells are distributed in four different levels after program-
ming the MSB page that logically correspond to 11, 01, 10,
and 00. Since reading or programming MSB pages requires
more sophisticated sensing and voltage manipulation, LSB
pages exhibit shorter latencies than MSB pages in both read
and program operations [5].



2.2 Solid State Drives
Solid state drives (SSDs) are storage devices that support

the block I/O interface compatible with hard disk drives
(HDDs). Unlike HDDs that are constructed from rotating
magnetic disks, SSDs use NAND flash memory as a storage
medium. SSDs require a software layer called flash trans-
lation layer (FTL) that converts read and write requests
from the host into read, program, and erase operations of
flash memory. Typically, FTL stores new data into the un-
written page and maintains its mapping information inter-
nally. This out-of-place update scheme produces many in-
valid pages which contain the obsolete data. Recycling these
invalid pages is achieved by the garbage collection (GC) al-
gorithm in FTL. The GC algorithm first selects a victim
flash block to be reclaimed and copies live pages in the vic-
tim block into other unwritten pages. When this is done, the
victim flash block is erased and then reused by FTL.

The dedicated hardware ECC engine recovers original data
from bit errors that may occur in flash memory. During the
program operation, the ECC engine generates an ECC code
and stores it in the spare area of the page. Whenever a page
is read from flash memory, the ECC engine detects and cor-
rects bit errors, if any, using the ECC code located in the
spare area. The data still remains corrupted in case of un-
correctable ECC errors, i.e., when the number of bit errors
exceeds the maximum number of bits that can be corrected
by the ECC engine.

2.3 Guaranteed P/E Cycle and Lifetime
NAND flash memory allows only a limited number of pro-

gram/erase cycles for a flash block. In the data sheet, NAND
flash manufacturers specify the guaranteed P/E cycle, i.e.,
the minimum number of program/erase cycles that can be
performed without any error. For example, the guaranteed
P/E cycle is specified as 3,000 for the MLC NAND flash
chip used in this paper (cf. Table 1).

We measure the lifetime of flash memory as total bytes
written (TBW), the amount of written data until the first er-
ror occurs in one of flash blocks [11]. The worst-case lifetime
can be obtained when only a single block is programmed and
erased repeatedly. Instead, many FTLs adopt wear-leveling
algorithms based on the erase count which try to program
and erase all flash blocks evenly. In this case, the guaranteed
lifetime, TBW guaranteed , can be defined as follows under

the assumption that no flash blocks are used beyond the
guaranteed P/E cycle:

TBW guaranteed = BytesPerBlock∗NumBlocks∗G PEcycle,

(1)
where BytesPerBlock , NumBlocks, and G PEcycle represent
the flash block size, the number of flash blocks, and the
guaranteed P/E cycle, respectively. In reality, there is no
reason to stop using flash memory just because we reach the
guaranteed P/E cycle. Since most FTLs have the facility
that can detect the failure of a flash block at run time, the
wear-leveling algorithms work fine until one of flash blocks
fails. Therefore, the actual lifetime given by the erase count-
based wear-leveling algorithm, TBW ec based , is:

TBW ec based = BytesPerBlock ∗NumBlocks ∗MinPEcycle,
(2)

where MinPEcycle denotes the erase count of the flash block
which fails first. In our experiments, however, each flash
block has failed at different P/E cycles. For a flash block b,

let PEcycle(b) be the P/E cycle in which the flash block ex-
periences the first error. If the wear-leveling algorithm knows
PEcycle(b) exactly, the best-case lifetime of flash memory,
TBW best , is calculated as follows:

TBW best =

NumBlocks∑
b=1

BytesPerBlock ∗ PEcycle(b). (3)

In Section 4, we show that there is a significant gap between
TBW ec based and TBW best . Therefore, the questions are
how we can estimate PEcycle(b) accurately for the individ-
ual flash block and use them in the wear-leveling algorithm.
These are issues tackled in this paper to maximize the life-
time of SSDs.

2.4 The Jasmine OpenSSD Platform
Investigating the error characteristics of NAND flash mem-

ory requires a hardware environment that provides an ac-
curate means to measure various parameters such as read
latency, program latency, erase latency, bit error count, etc.
For this purpose, we use the Jasmine OpenSSD platform
available from the OpenSSD project [16]. The OpenSSD
project is an open, community-driven project in collabo-
ration with Indilinx, which aims to promote research and
education on the SSD technology by providing open SSD
hardware platforms.

The Jasmine OpenSSD platform consists of an ARM7TDMI
embedded processor, 96KB internal SRAM, and 64MB ex-
ternal mobile SDRAM. The ECC engine supports both Reed-
Solomon and BCH with the ability to correct up to 16-bit
errors per 512-byte sector. When reading a page, the number
of bits corrected by the ECC engine can be reported to the
firmware. Although the controller supports various NAND
flash memory chips from Samsung, Hynix, Toshiba, Micron,
etc., the Jasmine OpenSSD platform currently supports only
a single type of NAND flash memory, whose specification is
summarized in Table 1.

3. RELATED WORK
There have been many empirical studies to reveal the

inherent characteristics of NAND flash memory [4, 5, 7].
Grupp et al. [7] investigate the characteristics of flash mem-
ory such as power consumption, reliability, and performance
of basic operations, using various flash chips across manufac-
turers, cell types, and technology nodes. They show that pro-
gram latencies are shortened, but bit errors are increased ex-
ponentially as their flash chips are worn out. Boboila et al. [4]
find that the erase latency is increased over program/erase
cycles contrary to the program latency. In addition, they
perform program and erase cycles over and over again until
either of flash operations fails in order to verify the guar-
anteed P/E cycle. The experimental results show that flash
chips survive significantly longer than their guaranteed P/E
cycles, even almost hundred times. All of these studies have
observed the changes in performance and reliability over re-
peated program and erase cycles. Our study goes one step
further and tries to utilize these properties to predict the
actual wear of each flash block more accurately than the
traditional measure based on the erase count.

The lifetime of flash memory can be prolonged by en-
hancing the wear-leveling algorithm. The wear-leveling al-
gorithms are classified into two categories: dynamic wear-
leveling and static wear-leveling. Dynamic wear-leveling is



usually performed when new data is written to flash mem-
ory, by allocating the clean flash block with the lowest erase
count for storing frequently-updated hot data and the clean
flash block with the highest erase count for cold data. While
dynamic wear-leveling can be achieved without any addi-
tional overhead, the flash block containing cold data can
remain for a long time even if this block has the lowest erase
count. Static wear-leveling compensates this by periodically
moving cold data to the clean flash block with the higher
erase count at the expense of copying the entire block.

Most wear-leveling algorithms perform both dynamic and
static wear-leveling. The dual-pool algorithm [6] groups flash
blocks into two pools: hot pool and cold pool. Initially, flash
blocks are randomly assigned to one of pools. For dynamic
wear-leveling, hot data is stored into the hot pool, and cold
data into the cold pool. Whenever the gap between the max-
imum erase count of the hot pool and the minimum erase
count of the cold pool becomes larger than a certain thresh-
old, the static wear-leveling algorithm swaps the correspond-
ing flash blocks between two pools after exchanging their
valid data.

Rejuvenator [11] partitions flash blocks into higher-numbered
lists (HNLs) and lower-numbered lists (LNLs) based on the
erase count. Dynamic wear-leveling is achieved by writing
hot data into LNLs and cold data into HNLs. In Rejuvena-
tor, the difference between the maximum erase count and
the minimum erase count is kept under the threshold value
τ . If the difference becomes larger than τ , Rejuvenator per-
forms static wear-leveling by performing garbage collection
on the flash blocks with the minimum erase count in LNLs.
The value of τ is decreased as flash blocks get worn out to
minimize the wear-leveling overhead in the early stage of the
lifetime. Moreover, the sizes of HNLs and LNLs are adap-
tively expanded or shrunk according to the given workload.

These wear-leveling algorithms, which try to keep the dif-
ference in the erase counts of flash blocks below a certain
threshold, assume that all the flash blocks fail at the same
time. However, our experimental results with real flash mem-
ory chips show that each flash block faces an error at differ-
ent P/E cycles. Thus, we propose a new wear-leveling algo-
rithm which evens out the degree of worn-out among flash
blocks instead of the erase count. This enables that long-
lived flash blocks receive a relatively larger amount of data
than short-lived flash blocks. Consequently, the lifetime of
flash memory can be extended much longer than the one the
traditional wear-leveling algorithms used to achieve.

4. ERROR CHARACTERISTICS OF MLC
NAND FLASH MEMORY

4.1 Methodology
To examine the intrinsic characteristics of flash memory,

we have performed a series of experiments with MLC NAND
flash chips from a major manufacturer on the Jasmine OpenSSD
platform. As shown in Table 1, each chip has 4,152 flash
blocks and the guaranteed P/E cycle is specified as 3,000. We
measure the performance and reliability of flash blocks over
repeated test cycles. Each test cycle for a flash block con-
sists of programming all pages sequentially, verifying them
by read operations, and then erasing the block for the next
iteration. The data patterns written to flash memory are
randomly generated for each program operation.
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Figure 2: The distribution of the maximum number
of P/E cycles for one hundred flash blocks

The operation latencies are measured using the 10ns reso-
lution timer available from the Jasmine OpenSSD platform.
For each read operation, we also keep track of the number
of bit errors corrected by the ECC engine using the facility
provided by the platform. The hardware ECC engine is con-
figured to correct the maximum 16-bit errors per 512-byte
sector using the BCH algorithm.

4.2 Lifetime of Flash Blocks
The first experiment we have performed is to obtain the

distribution of PEcycle(b), the maximum number of P/E
cycles that can be used without any error for each flash
block b. We choose one hundred flash blocks randomly within
a flash memory chip and run the program, read, and erase
cycles on those flash blocks repeatedly until we encounter the
first error. As illustrated in Figure 2, each block has failed far
beyond the guaranteed P/E cycle of 3,000. From Figure 2, we
can see that PEcycle(b) is not affected by the location of the
flash block, and the actual values of PEcycle(b) differ from
flash block to flash block. Among the tested flash blocks, the
first error has occurred in the flash block #3,882 at 4,999
cycle. The average of PEcycle(b) is 8,524 cycles with the
standard deviation of 1,318.

Recalling the equations shown in Section 2.3, the guaran-
teed lifetime of this flash memory chip is as follows.

TBW guaranteed = 1MB ∗ 4, 152 ∗ 3, 000 = 11.88TB. (4)

If we generalize the results obtained from one hundred flash
blocks into the whole flash memory chip, the actual lifetime
achievable by the wear-leveling algorithm based on the erase
count is:

TBW ec based = 1MB ∗ 4, 152 ∗ 4, 999 = 19.79TB. (5)

The lifetime is maximized if the wear-leveling algorithm ex-
hausts each flash block b up to its PEcycle(b). In this case,
the lifetime of flash memory is given by

TBW best = 1MB ∗ Σ4,152
b=1 PEcycle(b) = 34.42TB. (6)

Compared to TBW ec based , we can see that the lifetime
can be improved further by a factor of 1.74 if we utilize all
the flash blocks to the maximum.

The traditional wear-leveling algorithms based on the erase
count treat all the flash blocks equally, as if they had the
same health at the same age (or erase count). As a result,
the lifetime of flash memory is bounded by the lifetime of the
weakest flash block. Instead, our approach is to give more
data to long-lived flash blocks so that all the flash blocks
with different PEcycle(b) can end their lives almost at the
same time. The challenge in this approach is how to estimate
the health of individual flash block accurately. In the follow-
ing subsections, we investigate several parameters of NAND
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flash memory that can be monitored at run time and dis-
cuss whether they can be used to differentiate flash blocks
according to their health levels.

4.3 Error Patterns Within a Flash Block
During the experiment in the previous subsection, we no-

tice that the first error within a flash block has occurred
always in read operations. To observe the error patterns af-
ter the first error has occurred, we have performed extra
program, read, and erase cycles on flash blocks. When a
read or program error occurs on a page, we have immedi-
ately excluded the page for the remaining test cycles so that
it is not programmed or read again. We run the test cycles
until the flash block is completely failed, i.e., until the flash
block experiences an erase error or all the pages within the
flash block have either program errors or read errors. In this
way, we have collected error patterns for randomly-chosen
one hundred flash blocks.

Figure 3 plots the cumulated number of error pages due
to read errors or program errors until the flash block is com-
pletely failed by an erase error. We only show the results for
the flash block #1,102 as the error patterns in other flash
blocks are very similar. Ever since the flash block encoun-
ters the first read error at 9,416 cycle, the number of error
pages increases steadily until 40,000 cycle from which the in-
crease slows down. Finally, the flash block has failed around
100,000 cycle due to an erase error. Before the flash block
failure, almost half of the pages within the block resulted in
read errors and most of them were MSB pages.

It is worth noting that no program errors occurred until
the flash block dies. We observed the same results across
all the flash blocks tested. Considering that the program
operation has its own verification steps [15], read errors are
caused by the data corrupted after they are written, possibly
due to program interference from other pages [13].

4.4 Bit Error Count
To better understand read errors, we have collected the
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Figure 5: Latency changes in read operations in the
flash block #1,598

number of bit errors on each page as the test cycle proceeds.
Figure 4 presents the changes in the number of bits corrected
by the ECC engine in the first MSB page (page #2) of the
flash block #1,598. Similar to the previous studies [5, 7],
the bit error count increases rapidly beyond the guaranteed
P/E cycle. Note that each page is composed of 16 sectors
and the ECC engine can correct errors up to 16 bits per
sector. In the tested flash block, the read error has occurred
around 7,000 cycle, which means that more than 16 bits
become corrupted in one of the sectors at this point. The
same trend was observed in other pages as well.

From Figure 4, it seems that the occurrence of a read
error can be predicted by monitoring the increasing number
of corrected bits after each read operation. However, the
main problem of this approach is that monitoring the bit
error count of a page is possible only when there is a read
request on the page. An unexpected read error may occur if
a page is written continuously with its contents being read
very rarely.

4.5 Read Latency
Figure 5 shows the latency changes during read opera-

tions. We denote the read latency as zero when a read op-
eration terminates with the uncorrectable ECC error. As
described in Section 4.3, the first MSB page (page #2) dies
first within the flash block and MSB pages are more fragile
than LSB pages. Also we can see that reading MSB pages
takes longer than LSB pages by almost 10%.

It is somewhat surprising that the read latency remains
stable during the lifetime of each page. There is one excep-
tion; soon after an MSB page fails, the read latency of the
paired LSB page suddenly drops by almost 15%1. This is
because programming MSB pages narrows the cell margin
of the associated LSB pages due to the program interfer-
ence [13]. This makes the read operation require additional
sensing steps to determine the logical value. Conversely, LSB
pages can be read faster if the paired MSB pages are no
longer programmed.

4.6 Program Latency
Next, we examine the program latency as a function of

program, read, and erase cycles. As illustrated in Figure 6(a),
the latency of programming an MSB page constantly de-
creases to around 2,400µs, at which point a read error is
encountered during the read operation on the same page.
The electrons become easier to be trapped into the floating
gate as the cell ages by repeated program and erase cycles [4,

1
In the NAND flash memory chip used in this paper, page #0 (LSB)

and #2 (MSB) form a paired page and so do page #1 (LSB) and #4
(MSB).
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7]. As a consequence, programming the aged pages requires
lesser number of iterations to complete the operation than
before. The same phenomenon was observed in other MSB
pages across all flash blocks.

Figure 6(b) presents the program latencies for LSB pages.
Basically, the program speed of LSB pages is four times
faster than that of MSB pages. In contrast with MSB pages,
the program latencies of LSB pages only decrease to around
650µs. As soon as MSB pages die due to read errors, the
program latencies of the paired LSB pages begin to decrease
again with the same reason described in Section 4.5.

Figure 6(a) suggests that the occurrence of a read error on
an MSB page can be predicted by monitoring whether the
program latency on the page reaches a certain threshold.
Since the failure of a flash block is caused by the read error
on the first MSB page, this can be a very effective means to
measure the current health of a flash block.

4.7 Erase Latency
Finally, Figure 7 depicts the latency changes in erase op-

erations until the flash block #1,598 becomes useless due to
an erase error. The erase latency increases from 1,500µs to
7,000µs over the cycles and the overall trend is very simi-
lar to the change in the cumulated number of error pages
within the flash block. This result is exactly the opposite
phenomenon of what we have observed in Section 4.6; as
the cell ages, the erase operation requires more iterations to
remove the trapped electrons from the floating gate [4].

4.8 Summary
We summarize our findings on the error characteristics of

MLC NAND flash memory. First, flash blocks in the same
chip have different lifetimes. Second, the main cause of death
for flash blocks is the read error on their first MSB pages.
Program errors have not been observed, and erase failure oc-
curs long after the first read error. Third, it is likely that the
death of a flash block due to the read error can be predicted
by monitoring the bit error count during read operations or
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flash block #1,598

the latency changes during program operations. Other al-
ternatives, such as the read latency, the erase latency, and
the conventional erase count, are difficult to be used for this
purpose. Based on these observations, we define several wear
indices in Section 5 that can predict how long each flash
block will remain alive.

Due to the restriction of the Jasmine OpenSSD platform,
our study is performed only on one type of MLC NAND flash
memory chips. Referring to the previous study [7], however,
the trends of the flash memory characteristics are similar
across various flash memory chips regardless of manufactur-
ers, cell types, etc. We believe that the characteristics of
flash memory presented in this section also hold for other
MLC NAND flash memory chips, as those characteristics all
originate from the basic structure of flash memory (i.e., the
transistor with the floating gate insulated by oxide) and the
common internal programming algorithm such as incremen-
tal step pulse programming (ISPP) [15].

5. EXTENDING THE LIFETIME OF SSDS

5.1 Diversifying Wear Index
We use the term wear index to indicate the relative health

of each flash block quantitatively. Formally, the wear index
W (b, t) is defined as a value in [0, 1], which estimates the
degree of wear for the flash block b at t-th P/E cycle. The
value of 1.0 indicates it is very likely that the flash block re-
sults in error during any of read/program/erase operations.
The conventional wisdom was to define the wear index as a
function of the erase count alone. However, as described in
Section 4, it is too inaccurate to fully utilize the potential
lifetime of flash memory. In this subsection, we introduce
several wear indices that may be used to predict the lifetime
of a flash block more accurately.
Wear index based on the erase count The tradi-
tional scheme based on the erase count can be emulated us-
ing the notion of wear index. The traditional wear-leveling
algorithms assume that the flash block wear is proportional
to the erase count (or the P/E cycle) and the flash block be-
comes fully worn out if the erase count reaches the guaran-
teed P/E cycle (G PEcycle). The corresponding wear index
can be defined as follows:

WEC(b, t) = min(
t

G PEcycle
, 1). (7)

This wear index treats all flash blocks with the same erase
count equally, and more importantly, does not differentiate
one from another once the erase count reaches the guaran-
teed P/E cycle.



Wear index based on the bit error count As de-
scribed in Section 4.3, the first error encountered by each
flash block was all read errors. A read error occurs when
the number of bit errors exceeds the maximum number of
bits correctable by the ECC engine. Because the corrected
bit count increases during read operations as the flash block
wears, we can define the wear index based on the bit error
count as follows:

WErr(b, t) = max(
NCorBit (b, t)

NMaxCorBit
,WErr(b, t− 1)), (8)

where NMaxCorBit is the maximum bit count that can be
correctable by the ECC engine and NCorBit (b, t) denotes the
maximum number of corrected bits during read operations
for the pages in the flash block b. Note that WErr can be
updated only when the host reads the data belonging to the
flash block b. This weakness can be compensated by adjust-
ing the wear index whenever the valid pages in b are copied to
another block during garbage collection. Nonetheless, some
flash blocks may still have no opportunity to determine the
up-to-date wear index value.
Wear index based on the program latency As shown
in Section 4.6, a read error on a page can be also predicted
by observing how much the program latency to the page ap-
proaches to a certain threshold value. Thus, the wear index
based on the program latency can be modeled as follows:

WP (b, t) = max(
TMaxProg − TProg (b, t)

TMaxProg − TMinProg
,WP (b, t−1)), (9)

where TMaxProg and TMinProg represent the initial program
latency measured at the very beginning and the threshold
latency when the pages suffer from read errors, respectively.
TProg (b, t) means the shortest latency during program oper-
ations for the pages in the flash block b.

In contrast with WErr, WP can be updated whenever FTL
writes data to the flash block either by the write request
from the host or during garbage collection. Hence, WP can
forecast the occurrence of a read error more accurately than
WErr. Note that WP requires the preliminary profiling step
for the given flash memory chip to determine the parameters
such as TMaxProg and TMinProg .

5.2 Proposed Wear Index
To understand the behavior of wear indices defined in the

previous subsection, we simulate them using the real data
collected from the flash memory chip. Figure 8 plots the
changes in their values for the flash block #236 over the re-
peated program/read/erase cycles. The constant values are
set as follows: G PEcycle = 3,000 cycles, NMaxCorBit = 256
bits, TMaxProg = 2,894µs, and TMinProg = 2,417µs. In this
flash block, a read error has occurred at 7,393 cycle.
WEC increases linearly until the erase count reaches the

guaranteed P/E cycle. Afterwards, it is fixed to 1.0. Even
if the flash block lives less than half of its life, WEC over-
estimates that the flash block is completely worn out. On
the contrary, WErr tends to underestimate the lifetime; it
reaches at most 0.6 even when the flash block dies due to
the read error.

Compared to WEC and WErr, WP is relatively accurate,
approaching to 1.0 at the end of the lifetime of this flash
block. However, one undesirable property of WP is that the
wear index value grows rapidly at the very early stage of
the lifetime. In Figure 8, WP already shows the value of
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Figure 8: The behavior of diverse wear indices for
the flash block #236.

0.4 when the flash block is used only for 1,000 cycles. The
rapidly increased wear index value may incur unnecessary
static wear-leveling overhead at the beginning of the lifetime.

The ideal wear index is the one whose value is linearly
increased during the entire lifetime of a flash block, reaching
1.0 when the flash block dies. To model the ideal wear index,
this paper proposes the following wear index W :

W (b, t) = β ·WEC(b, t) + (1 − β) ·WLogP (b, t), (10)

where WLogP (b, t) = max(0, LogαWP (b, t) + 1).

The proposed wear index first takes the log of WP (with the
log base α) and then calculates the weighted sum with WEC .
WLogP has been introduced for two reasons. First, WLogP

forces the wear index to increase more smoothly where α
regulates the gradient of WLogP . Second, WLogP is set to
zero in the region that LogαWP (b, t) + 1 has negative val-
ues. This corresponds to the region of the lifetime that WP

rapidly grows. Therefore, WLogP makes the value derived
from WP not contribute to W in the early stage. Instead,
by taking the weighted sum with WEC , the values of W dur-
ing this early stage of the lifetime are determined solely by
WEC . Figure 8 also shows the graph for the proposed wear
index W . We use the values of α = 1.5 and β = 0.5 for W .
We can see that the proposed wear index W closely matches
the ideal wear index.

5.3 Equalizer
We develop a new wear-leveling algorithm named Equal-

izer that evens out the wear index of flash blocks. Equal-
izer is largely based on Rejuvenator, the latest wear-leveling
algorithm proposed by Murugan and Du [11]. The overall
architecture of Equalizer is depicted in Figure 9. First, the
hot/cold data detector separates the incoming data into hot
data and cold data, using the LRU window with the write
address and the access count. Then, hot data is stored into
the hot partition, while cold data into the cold partition.
Each flash block belongs to either the hot partition or the
cold partition according to its wear index. The flash blocks
in the hot partition have lower wear indices than those in the
cold partition. In each partition, the new data is written to
its active log block sequentially. To achieve better garbage
collection performance, the hot partition and the cold parti-
tion are managed by the page-level mapping [8] and by the
hybrid mapping [10], respectively.

Equalizer enhances Rejuvenator in two ways by adopting
the global free list and the wear index-aware merge. The
global free list manages free flash blocks that are generated
by garbage collection from both partitions. If a partition
lacks a free block, the global free list allocates a free block
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to the partition. The global free list supplies the free block
with the minimum wear index to the hot partition, since the
wear index of the flash block in the hot partition is likely to
be increased due to its hot data. Similarly, the global free
list provides the free block with the maximum wear index
for the cold partition. To facilitate this allocation policy, free
blocks in the global free list are sorted by the wear index.

After a flash block is allocated from the global free list,
each partition triggers garbage collection if the number of
remaining free blocks falls below a certain threshold. The
victim block to be reclaimed is chosen from the partition
who initiates garbage collection. For the hot partition, the
greedy policy is used, i.e., the flash block having the mini-
mum number of valid pages is chosen as the victim block.
In case of the cold partition, the full merge operation is
performed on the victim block, which is chosen among log
blocks in a round-robin manner [10].

During this full merge operation, the wear index-aware
merge aims to recycle the flash block with the lowest wear
index among data blocks. In hybrid mapping, a log block can
be associated with a number of data blocks. To merge the
log block, the existing algorithm copies the valid pages from
one of the associated data blocks into a free block. Then,
the data block is used as a free block for the next merge
operation. This is repeated until all the valid pages in the
log block are merged with the corresponding data blocks.
The full merge operation finally produces two free blocks:
the victim log block and the data block merged last with the
victim log block. If we generate free blocks with lower wear
indices during the full merge operation, those blocks can
be allocated to the hot partition later, which is helpful for
dynamic wear-leveling. Thus, the wear index-aware merge
performs the full merge operation with the associated data
blocks in a descending order of wear index in order to convert
the data block with the lowest wear index into the free block.

For static wear-leveling, Equalizer maintains the gap be-
tween the maximum and the minimum wear index among
flash blocks below the threshold τ . As the average wear in-
dex of flash blocks increases, Equalizer decreases τ to tightly
control the gap. If the gap exceeds τ , Equalizer performs
garbage collection for the flash blocks that have the mini-
mum wear index. When the wear index is based on the erase
count such as WEC , this increases the minimum wear index
immediately. However, there is no guarantee that the mini-
mum wear index is increased as a result of garbage collection
if other kinds of wear indices are used. For example, the wear
index based on the bit error count, WErr, can be unchanged
while performing garbage collection. Similarly, the wear in-
dex based on the program latency, WP , is not affected since
no program operations are performed on the victim block

Traces

Financial,
Exchange,

hplajw,

JEDEC

NAND Flash 

Emulator

Wear Index

Manager

Equalizer

NAND Flash 

Error Model 
Program latency,
bit error count

Read
/Write

Figure 10: Overview of the SSD Simulator

during garbage collection. In these cases, the gap is not re-
duced and garbage collection will be performed over and over
again. To remedy this problem, we temporarily increase the
wear index of the victim block during static wear-leveling.
The original wear index is restored and is newly updated
naturally when the actual wear index of the flash block is
measured later.

6. EVALUATION

6.1 Evaluation Methodology
Since it is estimated that more than 70 days are needed

to get completely worn out a 4GB flash memory chip, we
have constructed a trace-driven SSD simulator to evaluate
the proposed approach. Figure 10 depicts the overall archi-
tecture of the simulator.

The NAND Flash Error Model indicates the data we have
collected from a real NAND flash chip in Section 4. It in-
cludes the information on the program latency and the bit
error count for each P/E cycle from one hundred of real
flash blocks. Based on this model, the NAND Flash Emula-
tor mimics the total 4GB of virtual flash memory chip con-
sisting of 4,192 virtual flash blocks. It makes the k-th virtual
flash block follow the performance and error characteristics
of (k%100)-th real flash block stored in the NAND Flash
Error Model. Those characteristics are used by the Wear
Index Manager to compute the wear index value for each
virtual flash block. The Equalizer module performs address
mapping, garbage collection, and wear-leveling according to
the algorithm described in Section 5.3. Besides Equalizer,
we have also implemented Rejuvenator for comparison.

We use disk access traces from three realistic workloads
and one synthetic workload. financial is the OLTP (On
Line Transaction Processing) trace collected from a large fi-
nancial institution [3]. The exchange trace was collected
for a month from Microsoft Exchange Server which was
used for mailing purpose [1]. The hplajw trace from HP
Lab. includes the personal workstation workload such as
sending e-mails and editing documents [2]. Finally, jedec
is the synthetic workload trace we have generated based on
the JESD218 document [9]. This workload is proposed by
JEDEC for evaluating the endurance of SSDs, modeling the
behavior of enterprise servers.

We use the effective lifetime as a metric to evaluate differ-
ent wear-leveling policies. The effective lifetime is measured
as the total user bytes written (TUBW), i.e., the amount of
the total user data written to flash memory excluding the
amount of data written due to garbage collection and wear-
leveling. When measuring the effective lifetime, the traces
are repeated until one of flash blocks dies.

The SSD simulator exposes only 93% of the total flash
memory capacity to the outside world and uses the remain-
ing 7% of flash blocks to enhance the garbage collection effi-
ciency. However, we reduce the total flash memory capacity
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Figure 11: Comparison of Rejuvenator and Equalizer
with WEC .

to 700MB for the hplajw trace since it requires at most
634MB. The LRU window size in Equalizer is set to 1,024.
Although the wear index is defined as a real value between 0
and 1, we represent it with an integer value after scaling to
the range between 0 and 3,000 to avoid floating-point arith-
metic. Initially, τ is set to 300 and it is linearly decreased
down to 30 as the maximum wear index value approaches
to 3,000. The wear index of the victim flash block is tem-
porarily increased by one during static wear-leveling unless
the wear index is based on the erase count (cf. Section 5.3).

6.2 Rejuvenator vs. Equalizer
Before evaluating the effectiveness of the proposed wear

index, we first compare the performance of Equalizer with
the baseline algorithm, Rejuvenator, in the same condition.
This can be done by using the erase count-based wear index
(WEC) for Equalizer. For fair comparison, we also use the
same parameters for both Rejuvenator and Equalizer. Fig-
ure 11 compares the effective lifetimes of four workloads un-
der three different wear-leveling schemes. The leftmost bar
is the effective lifetime achieved by Rejuvenator. The mid-
dle bar shows the result of Equalizer with the global free
list only. Finally, the rightmost bar is the result of Equalizer
which implements both the global free list and the wear
index-aware merge. In Figure 11, the effective lifetime is
measured only for 3,000 cycles – the guaranteed P/E cycle
of flash memory.

Since we represent the wear index as an integer value be-
tween 0 and 3,000, Equalizer with WEC works exactly the
same as Rejuvenator. The difference only comes from the
enhancements made by Equalizer: the global free list and
the wear index-aware merge. We find that the global free
list is quite effective in improving the effective lifetime. On
average, Equalizer with the global free list improves the ef-
fective lifetime by 15% compared to Rejuvenator. Adding
the wear index-aware merge further extends the effective
lifetime by 3%. This is because both the global free list and
the wear index-aware merge are helpful for dynamic wear-
leveling, which tries to allocate a free block with higher wear
index to cold data and one with lower wear index to hot data.

In this experiment, the amount of total bytes written by
each workload is the same as TBW guaranteed = 11.88TB

(cf. Section 4.2), since the simulation runs only for the guar-
anteed P/E cycle. Hence, the difference between TBW guaranteed
and the effective lifetime shown in Figure 11 is due to the
overhead incurred by garbage collection and wear-leveling.

6.3 Equalizer with the proposed wear index
In this subsection, we examine how much Equalizer with

the proposed wear index (W ) extends the effective lifetime
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Figure 12: Comparison of Rejuvenator, Equalizer
with WEC , and Equalizer with the proposed wear
index (W ).

compared to the conventional wear-leveling algorithms based
on the erase count. Figure 12 displays the effective lifetimes
for Rejuvenator, Equalizer based on the erase count (WEC),
and Equalizer based on the proposed wear index (W ). Unlike
the previous experiment, we run the simulation until one of
flash blocks dies and this is why the effective lifetimes of Re-
juvenator and Equalizer with WEC are increased compared
to the results shown in Figure 11.

Equalizer with the proposed wear index (W ) outperforms
Rejuvenator and Equalizer with WEC by 95% and by 63%
on average, respectively. The greatest improvement has been
made in the exchange trace; the effective lifetime is ex-
tended by 145% compared to Rejuvenator. The total bytes
written to flash memory by the proposed approach was 33.71
TB on average, which corresponds to 98% of TBW best , the
best-case lifetime described in Section 4.2. This suggests that
every flash block is almost fully utilized until near the end
of its lifetime, with no one being dead early. Two techniques
make this possible. First, the proposed wear index based
on the erase count and the program latency estimates the
health of each flash block accurately. Second, Equalizer man-
ages flash blocks effectively using the proposed wear index;
it tries to write more data to long-lived flash blocks, but less
data to short-lived flash blocks to postpone the time they
are worn out as much as possible.

6.4 Equalizer based on diverse wear indices
Now we evaluate the impact of diverse wear indices in-

troduced in Section 5.1 on the effective lifetime. Figure 13
illustrates the changes in the effective lifetime under the var-
ious wear indices. These results are obtained by measuring
the effective lifetime whenever the average erase count of all
flash blocks is advanced by one thousand cycles.

With the wear index based on the erase count (WEC),
Equalizer always terminates near 4,999 cycle where one or
more flash blocks fail according to our NAND flash model.
Among the wear indices evaluated in Figure 13, WEC shows
the worst effective lifetime for the given average erase count.

The wear index based on the bit error count (WErr) per-
forms even worse than WEC ; Equalizer with WErr reaches
at most 4,000 cycle, and sometimes only 3,000 cycle as can
be seen in the financial trace. We find that the finan-
cial trace contains only 15.4% of read requests, which is
the lowest ratio among the workloads. Since WErr can only
be updated by read operations, the accuracy of WErr will
be impaired if there are not enough read requests in the
workload.

In contrast, the wear indices WP and W , which rely at
least in part on the program latency, show relatively good
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Figure 13: The effective lifetime with diverse wear indices
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Figure 14: Average and maximum wear index values

performance. This is because the failure of a flash block can
be predicted accurately by monitoring the program latency.
The use of the proposed index W results in 13% higher ef-
fective lifetime on average than the case with WP , the wear
index solely based on the program latency. Especially, WP

achieves the lower effective lifetime compared to W during
the first 1,000 cycles. As we discussed in Section 5, this is
related to the fact that WP increases rapidly during this pe-
riod, incurring unnecessary wear-leveling overhead. On the
other hand, the effective lifetime under the proposed wear
index W increases steadily during the entire lifetime of flash
memory.

Figure 14 plots the average wear index values at the end of
the lifetime. The maximum wear index values among all the
flash blocks are also displayed with the upper error bar. It
is a good wear index if its value reaches 1.0 when one of the
flash blocks ends its life. Although the value of WEC always
ends up with 1.0, WEC can hardly be a good wear index as
its value becomes 1.0 as soon as each flash block is used over
the guaranteed P/E cycle. However, we can see that both
WP and W are relatively good wear indices, approaching to
1.0 when the lifetime of flash memory ends. On the other
hand, WErr is not accurate at all. WErr remains near 0.3 on
average, and becomes 0.6 at most.

7. CONCLUSION
The traditional wear-leveling algorithms try to distribute

program/erase cycles evenly across all flash blocks. This is
based on the assumption that all flash blocks become unre-
liable at the same time. However, our analysis with a real
MLC NAND flash memory chip shows that the assumption
is not true; flash blocks even in the same chip had different
lifetimes.

To extend the lifetime of SSDs, this paper presents two
techniques. First, we propose a new wear index that can pre-
dict how much a flash block is worn out. Second, we develop
a new wear-leveling algorithm called Equalizer, which man-
ages flash blocks effectively according to their wear indices.
In this way, we can make every flash block be fully utilized
until near the end of its lifetime, with no one being dead

early. Our evaluations with three realistic workloads show
that the proposed approach extends the effective lifetime of
SSDs by up to 145% compared to the existing wear-leveling
algorithm based on the erase count. In future work, we are
interested in investigating the error characteristics of MLC
NAND flash memory using more diverse chips from different
manufacturers.
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