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ABSTRACT

NAND flash memory is being widely adopted as a stor-
age medium for embedded devices. FTL (Flash Transla-
tion Layer) is one of the most essential software components
in NAND flash-based embedded devices as it allows to use
legacy files systems by emulating the traditional block device
interface on top of NAND flash memory.

In this paper, we propose a novel FTL, called µ-FTL. The
main design goal of µ-FTL is to reduce the memory foot-
print as small as possible, while providing the best perfor-
mance by supporting multiple mapping granularities based
on variable-sized extents. The mapping information is man-
aged by µ-Tree, which offers an efficient index structure
for NAND flash memory. Our evaluation results show that
µ-FTL significantly outperforms other block-mapped FTLs
with the same memory size by up to 89.7%.
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1. INTRODUCTION
As mobile embedded devices such as cellular phones, digi-

tal cameras, and MP3 players become increasingly popular,
demand for NAND flash memory is growing rapidly. The
trend is expected to accelerate in the foreseeable future due
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to the recent proliferation of NAND flash-based Solid State
Disks (SSDs), which are quickly penetrating desktop and
server markets.

NAND flash memory is usually used as a storage medium
in place of Hard Disk Drive (HDD) because of its non-
volatility and large I/O unit. Since NAND flash memory
has no mechanical parts, it has a lot of advantages com-
pared to HDDs such as short read and write latency, low
power consumption, small and lightweight form factor, and
solid state reliability.

In spite of these strengths, it is not straightforward to
replace HDDs with NAND flash memory due to its erase-

before-write nature; if data are once written in NAND flash
memory, it cannot be overwritten until the area containing
the original data is erased. To make matters worse, the
erase unit (called block) is larger than the read and write
unit (called page) by 32 – 128 times.

In order to make NAND flash memory look like a tradi-
tional block device, a software layer called Flash Translation

Layer (FTL) is used to conceal those unfavorable character-
istics from host systems. Normally, FTL redirects incoming
write requests from a host into an empty area on NAND flash
memory, and keeps track of the mapping information from
the logical address used by the host into the physical address
in NAND flash memory. The performance of FTL consid-
erably varies depending on how to manage such logical-to-
physical address mapping. In addition, the amount of RAM
required by a particular address mapping scheme is another
concern in designing FTLs as it is directly related to cost
and energy consumption of embedded devices.

Most FTLs can be categorized into two classes accord-
ing to their mapping granularities: page-mapped FTLs and
block-mapped FTLs. A page-mapped FTL literally maps a
logical address into a physical address in a page unit. It is
highly flexible as a logical page can be written to any phys-
ical page in NAND flash memory, and thus there is much
room for improving the performance of FTL. However, the
amount of mapping information, which has significant im-
pact on the RAM footprint of FTL, becomes enormously
large as each page needs its own mapping entry. On the
other hand, the mapping unit of a block-mapped FTL is a
block. This type of FTL requires much smaller amount of
mapping information than a page-mapped FTL does. How-
ever, a logical page can no longer reside anywhere in flash
memory, but can only be written to the designated page
offset within a physical block. Due to this restriction, block-
mapped FTLs tend to incur more overhead.

Most write requests of realistic workloads exhibit either
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small and random or large and sequential characteristics [5].
For example, write requests originating from file system meta-
data operations or temporary files downloaded while brows-
ing the Internet consist of small and random access patterns.
On the other hand, copying or downloading multimedia files
generate large and sequential write requests covering a wide
range of the logical address space. A block-mapped FTL
can deal with these large and sequential write requests effec-
tively, but pretty poor in handling small and random write
requests. Thus, it is desirable to support multiple mapping
granularities not only for reducing the size of mapping in-
formation but also for enhancing the performance of FTL.

In this paper, we propose a novel FTL called µ-FTL (mu-
FTL or minimally updated-FTL). The characteristics of µ-
FTL can be summarized as follows. First, µ-FTL dynami-
cally adjusts mapping granularities according to the size of
write requests by maintaining mapping information in an
extent-based µ-Tree structure [8]. µ-Tree is a variant of B+-
Tree, offering an efficient indexing scheme on NAND flash
memory. µ-FTL makes use of coarse-grain mapping gran-
ularities for large and sequential write requests, while fine-
grain mapping granularities for small and random requests.
Second, only a small and fixed-size RAM is used as a cache
for mapping entries and per-page validity information, hence
the run-time RAM footprint of µ-FTL is bounded to this
cache size. Finally, µ-FTL divides the whole logical address
space into a set of non-overlapping partitions and forwards
incoming write requests to different physical blocks depend-
ing on the partitions they belong to. This is effective because
each partition has a different degree of “hotness”. Our exper-
imental results show that µ-FTL outperforms other block-
mapped FTLs with the same memory size by up to 89.7%.

The rest of the paper is organized as follows. Section 2
overviews the characteristics of NAND flash memory, flash
translation layer (FTL), and µ-Tree. Section 3 summarizes
related work. In Section 4, the detailed design of µ-FTL
is discussed. Section 5 presents performance evaluation re-
sults, and Section 6 concludes the paper.

2. BACKGROUND

2.1 NAND Flash Memory Characteristics
A NAND flash memory device is composed of a number

of blocks, and a block in turn consists of a number of pages.
The page is a unit of read and write operations, while the
block is a unit of erase operations. Each page has an ad-
ditional spare area, which typically contains housekeeping
information such as error correction code (ECC) and the
associated logical page number.

Currently, two types of NAND flash memory are being
widely used: SLC (Single-Level Cell) NAND [3] and MLC
(Multi-Level Cell) NAND [4]. In SLC NAND, the page size
is 2KB and a block consists of 64 pages. The recently in-
troduced MLC NAND expands its capacity by storing two
bits per each memory cell. Accordingly, the page size of
MLC NAND is doubled to 4 KB, and the number of pages
in a block is also increased to 128. Although the opera-
tional latency of MLC NAND is much longer than that of
SLC NAND, a large portion of NAND flash-based storage
available today are based on MLC NAND due to its low cost-
per-bit. For this reason, we only focus on MLC NAND flash
memory in this paper. Table 1 compares the characteristics
of SLC and MLC NAND flash memory.

Table 1: The characteristics of SLC and MLC
NAND flash memory

read write erase
latency latency latency

SLC NAND [3]
77.8µs 252.8µs 1500µs
(2KB) (2KB) (128KB)

MLC NAND [4]
165.6µs 905.8µs 1500µs
(4KB) (4KB) (512KB)

2.2 Flash Translation Layer (FTL)
FTL bridges the semantic gap between block device in-

terface and flash memory operations. FTL allows legacy
disk-based file systems to be used without any modification,
by emulating the traditional block device interface on top of
NAND flash memory.

Two major factors that affect the performance of FTL
are address mapping mechanism and garbage collection pol-

icy. The address mapping mechanism hides the erase-before-
write nature of NAND flash memory, by redirecting each
write request to other free space and setting up a mapping
entry between the logical page address and the physical page
address. When there is no enough free space, a process called
garbage collection is invoked to reclaim invalid (out-dated or
dead) pages. The garbage collection policy first selects a vic-
tim block, copies its valid (up-to-date or live) pages to other
block, and eventually generates a new free block by erasing
the victim block.

According to mapping granularities, FTLs are classified
as either page-mapped or block-mapped. A page-mapped
FTL maintains a logical-to-physical mapping on a page ba-
sis. Although page-mapped FTLs have potential to improve
the overall performance due to its flexibility, the amount of
mapping information becomes extremely large by keeping a
mapping entry for every single logical page. When a map-
ping entry occupies 4 bytes, the required size reaches up to
32MB for 32GB MLC NAND flash memory. Even worse,
page-mapped FTLs usually keep track of per-page validity
information for all physical pages to isolate invalid pages
from valid ones during garbage collection. This information
further increases memory pressure of page-mapped FTLs.

For block-mapped FTLs, the total amount of mapping in-
formation is relatively small because it is sufficient to keep
mapping entries on a block basis. For 32GB MLC NAND,
the amount of mapping information is reduced to 256KB.
However, block-mapped FTLs incur more garbage collec-
tion overhead as a logical page cannot be located outside
the boundary of the associated physical block. Especially,
block-mapped FTLs are known to suffer from a consider-
able performance degradation for the workload consisting of
small and random write requests.

Several researchers have proposed hybrid mapping schemes
which integrate the advantages of page-mapped FTLs and
block-mapped FTLs. The hybrid mapping scheme comple-
ments block-level mapping with the use of page-level map-
ping in a limited way. Several examples of hybrid mapping
schemes will be discussed in Section 3.

2.3 µ-Tree
µ-Tree [8] is a variant of B+-Tree, tailored to the char-

acteristics of NAND flash memory. B+-Tree is a balanced
search tree, where keys and pointers to children in the next
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Figure 1: B+-Tree vs. µ-Tree

level are stored in interior nodes and all records are stored
in leaf nodes. A simple way of implementing B+-Tree on
NAND flash memory is to use each page as a node for stor-
ing keys and records (Fig. 1(a)). In this case, however, if
there is an update on a record in the leaf node, all the an-
cestor nodes should be also updated since in-place update
is not allowed in NAND flash memory. This results in flash
write operations as many as the height of B+-Tree.

µ-Tree avoids this wandering tree problem by allowing
multiple nodes along the path from the root node to the
leaf node to be in a single page (Fig. 1(b)). Consequently,
any insertion, deletion, or update in the leaf node normally
requires only one flash write operation in µ-Tree.

A small amount of in-memory cache can accelerate the
operation of µ-Tree, further reducing the number of flash
read and write operations. In the current version of µ-Tree,
a read cache and a write cache are separately maintained
on a page basis and those caches are consulted first before
any read or write request reaches NAND flash memory. If
the read cache is full, the least recently used (LRU) page is
discarded from the cache. On the other hand, all the pages in
the write cache are written in bulk into NAND flash memory
in case the write cache becomes full. It is recommended to
refer to [8] for further details on µ-Tree.

3. RELATED WORK
Before we discuss related work, we clarify several termi-

nologies used throughout the paper. Basically, FTLs man-
age three kinds of physical blocks: data block, update block,
and free block. A data block is usually full of valid pages,
but may have invalid pages if those pages have been up-
dated. An update block denotes the physical block being
used as a buffer for incoming write requests. The update
block may have free pages as well as valid and invalid pages.
Finally, a free block consists of free pages only.

DAC [6] is a representative page-mapped FTL. DAC groups
all physical blocks into several regions, and clusters data
with a similar update frequency into the same region. This is
based on the observation that separating hot data from cold
data has a beneficial effect on the performance of systems
having out-of-place update characteristics [12, 7]. Although
DAC shows performance that is hard to beat in many work-
loads, a significantly large amount of RAM is required to
maintain mapping entries for all logical pages.

The log block scheme [10] refines the pure block-mapped
FTL by letting an update block (called log block) act like
a buffer for a particular logical block. For a given write re-
quest, the log block scheme allocates an update block to the
corresponding logical block. Thereafter, subsequent write
requests to the same logical block are directed to the up-

date block. A problem in the log block scheme is that update
blocks can be merged too early before they are fully used,
especially when there are many small and random writes.

FAST [11] is proposed to increase the utilization of update
blocks. Unlike the log block scheme where a single update
block is dedicated to a specific logical block, a global up-
date block is shared among all logical blocks. This strategy
maximizes the utilization of an update block, but makes the
garbage collection process more complex as each page in an
update block may come from a different logical block.

The superblock scheme [9] introduces the notion of su-

perblock to exploit the block-level temporal and spatial local-
ity. A superblock consists of a set of adjacent logical blocks.
In the superblock scheme, the block mapping is still used at
the superblock level, while logical pages within a superblock
can be freely located in one of the physical blocks allocated
to the superblock. The superblock scheme makes use of
spare areas in NAND flash memory to store page-mapping
information so as not to incur any additional overhead in
terms of space and flash memory operations. However, the
limited spare area size actually prevents the superblock size
from exceeding a certain threshold. Although the superblock
scheme outperforms many existing block-mapped FTLs, the
mapping scheme is not as flexible as page-mapped FTLs and
its performance still lags behind DAC.

Chang and Kuo [5] have proposed a flexible management
scheme based on two different kinds of binary trees: LC

tree for address translation and PC tree for garbage collec-
tion. The LC tree provides multiple mapping granularities
to reduce the amount of mapping information. However, the
RAM usage still reaches up to 17MB for 16GB flash mem-
ory without any caching mechanism. In order to bound the
RAM usage, they divide both logical and physical address
space into several groups, and define a virtual group as a pair
of a logical group and a physical group. PC trees and LC
trees are independently maintained for each virtual group,
and some of them are cached in RAM. This caching mecha-
nism, however, incurs a severe cache miss penalty because all
spare areas in the cache-missed group should be read from
flash memory at run time. In µ-FTL, only a few page reads
are sufficient to locate the cache-missed tree node since the
whole mapping information is organized in a more struc-
tured way on NAND flash memory using µ-Tree. Moreover,
the caching mechanism in µ-FTL is more effective as only
the frequently accessed nodes are cached in memory.

4. µ-FTL

4.1 Design Goals
The design goal of µ-FTL is to reduce the RAM usage

as small as block-mapped FTLs, while providing the per-
formance comparable to page-mapped FTLs such as DAC.
This seems to be impossible at first as there is always trade-
off between the RAM usage and the performance of FTL.
µ-FTL achieves this goal by combining the following inno-
vative solutions.

First, the basic idea behind µ-FTL is to use coarse-grain
mapping granularities for large and sequential write requests,
allowing to use fine-grain mapping granularities, if necessary,
for small and random write requests. The decision on the
right mapping granularity is not statically determined by
the logical address. Instead, µ-FTL adjusts mapping gran-
ularities according to the size of incoming write requests
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adaptively. In most cases, a substantial portion of the log-
ical address space is expected to be covered with large and
sequential write requests, hence the amount of mapping in-
formation is kept low similar to other block-mapped FTLs.
Only those requests, that are small in size and scattered ran-
domly all over the entire address space, will be managed by
fine-grain mapping.

Most traditional FTLs keep track of logical-to-physical
mapping information using a table. Although the table is
a simple and easy-to-build data structure which allows for
O(1) lookup performance, it has a problem that the map-
ping granularity should be fixed either as a page or as a
block. In order to support multiple mapping granularities,
a more flexible data structure, such as tree or hash table,
is necessary. µ-FTL takes advantage of µ-Tree, which is
best suited as an efficient index structure for NAND flash
memory. Similar to B+-Tree, µ-Tree organizes the whole
mapping information in a structured way on NAND flash
memory so that any lookup/insertion/deletion/update op-
eration can be performed in O(log n).

Another important feature of µ-FTL is that the required
RAM size is independent of the amount of mapping infor-
mation. In µ-FTL, all the mapping information is stored
in NAND flash memory as a form of µ-Tree, and only the
frequently-accessed mapping entries are cached in the RAM.
Therefore, one can control the total RAM usage easily by
limiting the cache size.

Second, µ-FTL handles per-page validity information effi-
ciently by storing them also in µ-Tree. Per-page validity in-
formation (or bitmap information) is needed during garbage
collection for distinguishing valid pages from invalid pages
in a victim block. The easiest way of checking the validity
of each physical page, without any additional data struc-
ture, is to put a logical page number in the spare area of the
physical page and to lookup µ-Tree to see if the logical page
is still mapped to the particular physical page. However,
this policy incurs a significant overhead because all pages
in the victim block have to be checked individually through
µ-Tree. Another possible way is to keep this information
in RAM, but it occupies the precious RAM space and its
size is in proportion to the total NAND flash memory size.
For 32GB MLC NAND flash memory, the total amount of
bitmap information reaches up to 1MB (with using 1 bit per
physical page).

Although maintaining bitmap information in µ-Tree sim-
plifies overall design, we notice the µ-Tree cache is polluted
by this information, with the cache hit ratio of mapping en-
tries severely impaired. To remedy this problem, we devise
a separate bitmap cache, which buffers updates of bitmap
information before applying them to µ-Tree. The bitmap
cache is implemented using a hash table, as bitmap updates
are sparse over the physical address space.

Finally, µ-FTL statically divides the logical address space
into several partitions. An interesting observation is that a
part of the logical address space written by large and sequen-
tial writes is cold (i.e., rarely updated), while a part of the
logical address space touched by small and random writes
tends to be hot (i.e., frequently updated). This is because
file systems allocate different portions of the logical address
space for different purposes. For example, the logical space
allocated to large multimedia files will be rarely updated,
while the logical space allocated to file system metadata or
temporary Internet files will be frequently overwritten.
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Figure 2: An example of multiple mapping granu-
larities

In µ-FTL, each partition has its own update block and
incoming write requests are forwarded to different update
blocks depending on the partitions they belong to. This
is effective in preventing various data which show different
degree of “hotness” from being mixed in the same physical
block.

4.2 Address Mapping

4.2.1 Extent-based mapping

Each mapping entry in µ-FTL maps various numbers of
pages from 1 to 128 (the block size). Fig. 2 illustrates an
example of using multiple mapping granularities in address
mapping. In Fig. 2(a), we assume a block is composed of four
pages. Each small box represents a page, and each number
in a white and a gray box indicates the logical page number
(LPN) and the physical page number (PPN), respectively.
Each arrow depicts a logical-to-physical mapping. We can
see that LPN 0–3 are mapped at block granularity, while
LPN 4 and LPN 5 are mapped at page granularity. Two
pages starting from LPN 6 are mapped to two consecutive
physical pages starting from PPN 106.

Fig. 2(b) shows the corresponding µ-Tree which represents
the address mapping information of Fig. 2(a). LPNs are used
as keys (white boxes in Fig. 2(b)) and each record (gray
box in Fig. 2(b)) at the lowest level indicates the starting
PPN and the length of the mapped pages. For example, the
µ-Tree record <100, 4> pointed to by a key 0 represents
that four adjacent logical pages LPN 0–3 are mapped to
physically contiguous pages in PPN 100–103.

We call this variable-sized mapping entry an extent. An
extent e can be represented as a tuple e =< l, p, n >, where l

denotes the first LPN, p indicates the first PPN correspond-
ing to l, and n is the number of pages mapped by this extent.
As shown in Fig. 2(b), l is used as a key for µ-Tree and the
record pointed to by l stores the mapping information on p

and n.
Fig. 3 depicts the detailed key and record structures of an

extent used in µ-Tree. The first bit of the key distinguishes
mapping entries from bitmap entries (cf. Section 4.3). The
rest of the key is used to describe the LPN (l). The first 25
bits of a record represent the PPN (p), which can specify 225

different pages (corresponding to 128GB). The remaining 7
bits in the record represent the length (n) of an extent. The
maximum extent length is 128 pages, which is identical to
the number of pages in a block in MLC NAND flash memory.
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Figure 3: The key and record structures of an extent

Note that an extent cannot cross physical block boundaries.
Although the structures shown in Fig. 3 are designed to fit
into 32 bits, they can be extended to 40 bits or further for
larger size of NAND flash memory.

4.2.2 Handling read requests

µ-FTL receives a read request in the form of r =< L, N >,
where L represents the starting page number and N is the
number of pages to read1. In order to service the read re-
quest, µ-FTL first searches for an extent e =< l, n, p > such
that (l = L)∨(l < L∧L < (l+n)). From the extent e, µ-FTL
can locate n physical pages containing the requested logical
pages. In case (l + n) < (L + N), the successive extents
next to e are visited until µ-FTL retrieves the remaining
(L + N) − (l + n) pages.

4.2.3 Handling write requests

Handling write requests is somewhat complicated as they
involve updates to existing entries in µ-Tree. For a given
write request w =< L, N, D >, where the meanings of L

and N are the same as in read requests and D denotes data
to write, µ-FTL carries out the following steps.

First, µ-FTL writes requested data D to the update block
allocated to the partition corresponding to the logical page
number L. Let Nf be the number of free pages in the up-
date block. If the number of free pages is not sufficient to
accommodate all the requested data, i.e., Nf < N , another
update block is allocated to the partition and µ-FTL writes
the remaining data D′ to the new update block by issuing
w′ =< L + Nf , N −Nf , D′ >. This is repeated until all the
requested data are written to update blocks. If µ-FTL is
running out of free blocks, garbage collection is invoked (cf.
Section 4.3).

The second step is to modify the old mapping information
stored in µ-Tree. Assume that, as a result of the previous
step, µ-FTL wants to insert a new extent e =< l, p, n > into
µ-Tree. Let ei =< li, pi, ni > be another extent stored in µ-
Tree. There are several different cases we need to consider:
Case 0 (l ≤ li ∧ (li + ni) ≤ (l + n)): This is the simplest
case. The old extent ei is just deleted from µ-Tree.
Case 1 (li < l ∧ (l + n) < (li + ni)): This is the case where
e is included in ei. Since a part of ei is being updated,
the updated region should be invalidated by splitting ei into
el =< li, pi, (l− li) > and er =< (l+n), (pi + l+n− li), (li +
ni − l − n) >.
Case 2 (li < l ∧ (li + ni) ≤ (l + n)): In this case, the right-
hand side of ei is being updated as a result of e. Hence, the
original ei is modified to e′i =< li, pi, (l− li) >, reducing the
extent length by (li + ni − l).

1In fact, the actual read or write operation in the block
device interface specify the logical sector number and the
number of sectors as parameters. In this paper, we assume
for ease of exposition that they are translated into the logical
page number and the number of pages, respectively.

eA=<0, 100, 4>

w1 =< 1, 2, D1 >

eB=<0, 100, 1> eC=<3, 103, 1>Invalidated

(a) Extent invalidation

eA=<5, 104, 1>

w2=<5, 2, D2>

Deleted eB′=<7, 107, 1>

eB=<6, 106, 2>

Invalidated

(b) Extent invalidation and dele-

tion

Figure 4: Examples of extent invalidation and dele-
tion

Case 3 (l ≤ li∧(l+n) < (li +ni)): This is similar to Case 2
except that the left-hand side of ei is affected by e. The old
extent ei is updated to e′i =< (l + n), (pi + l + n − li), (li +
ni − l − n) >.

Fig. 4 shows examples of extent invalidation and deletion.
In Fig. 4(a), the previous extent eA =< 0, 100, 4 > is split
into eB =< 0, 100, 1 > and eC =< 3, 103, 1 > due to the
new write request w1 =< 1, 2, D1 > (Case 1). In Fig. 4(b),
the extent eA =< 5, 104, 1 > is deleted (Case 0), and the
extent eB =< 6, 106, 2 > is updated to e′B =< 7, 107, 1 >

(Case 3) by the write request w2 =< 5, 2, D2 >. Note that
changing eB to e′B is actually implemented by first deleting
eB from µ-Tree, and then inserting a new extent e′B into
µ-Tree.

As the third step, new extents containing the latest map-
ping information are inserted into µ-Tree. The number of
newly inserted extents is the same as the number of update
blocks used in the first step.

During the insertion of new extents, an extent merge could
occur if a new extent e =< l, p, n > and one of the existing
extents ei =< li, pi, ni > in the same physical block are not
only logically but also physically contiguous, i.e., if (li+ni =
l) ∧ (pi + ni = p). The new extent e is not merged with the
extent ei such that l < li in any case, since they cannot be
physically consecutive due to the restriction that pages are
always written sequentially from the first page to the last
page within an update block.

Finally, as the new data are written, µ-FTL updates the
bitmap information to mark the pages containing the pre-
vious data as invalid. The details on managing the bitmap
information are described in the following subsection.

4.3 Garbage Collection

4.3.1 Garbage collection policy

µ-FTL initiates the garbage collection process when the
number of free blocks becomes two. Due to the possibility of
write cache flush in µ-Tree during garbage collection, µ-FTL
needs to reserve at least two free blocks all the time.

µ-FTL selects a victim block among data blocks (including
µ-Tree blocks) which has the largest number of invalid pages.
Valid pages in the victim block are copied into free pages in
the associated update block. If there is not enough free
space in the update block, µ-FTL allocates a reserved block
as a new update block for the partition and continues to
copy valid pages. Eventually, the victim block is erased and
reclaimed by µ-FTL. µ-FTL repeats this process until the
number of free blocks becomes larger than or equal to the
predefined value (currently, it is set to 12).
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Figure 5: The key and record structures of a bitmap

4.3.2 Garbage collection information

To facilitate the garbage collection process, µ-FTL main-
tains two kinds of information: per-block invalid page counter
and bitmap information (per-page validity information).

The per-block invalid page counter maintains the num-
ber of invalid pages in each physical block. This is used
by µ-FTL to select a victim block quickly. Without this
information, µ-FTL would require to count the number of
invalid pages from the bitmap information for every physical
block, which is an apparently time-consuming task. µ-FTL
assigns 1-byte counter for each physical block, which takes
only 64KB when 32GB MLC NAND flash memory is as-
sumed.

The bitmap information, which is necessary to identify
valid pages during garbage collection, is stored in µ-Tree
as mentioned in Section 4.1. Fig. 5 represents the key and
record structures of a bitmap entry. The first bit of the key
is set to ‘1’ to distinguish it from extents. We need 128 bits
to build the full bitmap for a data block, but the record size
of µ-Tree is configured to be 32 bits. Thus, we divide a data
block into 4 subblocks of the same size (32 pages each), and
allocate a µ-Tree entry for each of them. Accordingly, the
lowest 2 bits in the key specify the subblock, and the next
29 bits point to the physical block.

In order to reduce the number of bitmap entries, µ-FTL
stores bitmap entries only for the subblocks which have at
least one invalid page. In other words, the bitmap for a
fully valid subblock is not stored in µ-Tree. If the search for
a subblock fails, all the pages in the subblock are considered
valid. The measurement result shows that only less than
16% of data blocks have one or more invalid pages for all
traces, and bitmap entries for those blocks occupy less than
20% of µ-Tree entries.

A write request inevitably accompanies the invalidation
of physical pages that contain the previous data. When a
physical page is invalidated, µ-FTL first searches for the
corresponding bitmap entry in µ-Tree. If successful, µ-FTL
updates the bitmap entry. Otherwise, a new bitmap entry
is created and then inserted into µ-Tree. When a block is
erased, at most four bitmap entries are deleted from µ-Tree,
as the block does not have invalid pages any more.

4.3.3 Bitmap cache

After inserting bitmap entries in µ-Tree, we have suffered
from a significant performance degradation. The overall
management overhead is roughly doubled compared to when
µ-Tree consists of extents only. We find out that the cache
overhead caused by µ-Tree’s page reads (on read cache miss)
and page writes (on write cache flush) has been significantly
increased. We have analyzed the cache overhead further ac-
cording to the record type and it turns out that mapping
entries and bitmap entries almost equally contribute to the
overhead. Specifically, almost half of the µ-Tree cache is
occupied by extents, while the rest is taken by bitmap en-

tries, even if only less than 20% of µ-Tree entries are bitmap
entries.

This is because µ-FTL always updates both one or more
extents and a similar number of bitmap entries in µ-Tree for
every write request. As a result, the µ-Tree cache, a pre-
cious resource, is always contended by extents and bitmap
entries. To solve this problem, we have focused on the fol-
lowing characteristics of bitmap updates.

• We do not have to write the latest bitmap information
in µ-Tree whenever a page is invalidated, because the
information is only needed when the garbage collection
process is initiated.

• Within a certain time interval, a very limited number
of physical blocks receive bitmap updates. Namely,
bitmap updates are sparse over the whole physical ad-
dress space.

Based on these observations, we have devised bitmap cache,
a hash table structure for buffering bitmap updates before
applying them to µ-Tree. The hash table is a suitable data
structure for indexing a widely distributed, but sparsely ac-
cessed bitmap entries with the limited number of hash table
entries.

Because a write request usually invalidates several consec-
utive physical pages at once, we use an invalid extent as a
hash table entry which encodes the invalidation of at most
128 contiguous physical pages using only 32 bits. An invalid
extent consists of a physical page number (25 bits) indicat-
ing the first physical page of a particular invalidation and its
length (7 bits). Note that the organization of an invalid ex-
tent is exactly the same as the record structure of an extent.
The difference is that an invalid extent represents physically
adjacent invalid pages, but an extent denotes logically and
physically contiguous valid pages.

The remainder of the target physical block number di-
vided by the number of hash buckets is used as a hash key.
This hash function maps adjacent physical blocks to different
hash buckets, thus can reduce the number of hash collisions
when several physical blocks are sequentially invalidated.

When a few consecutive physical pages are invalidated
due to a write request, the corresponding invalid extent is
inserted into the bitmap cache. During the insertion, the
merge operation between invalid extents may occur as in
the case of an extent insertion (cf. Section 4.2.3).

Invalid extents are deleted from the bitmap cache in the
following three cases. (1) When the size of the bitmap cache
reaches the predefined limit, all invalid extents in the bitmap
cache are flushed to µ-Tree and deleted. (2) When a victim
block is selected by the garbage collection process, all invalid
extents in the chain of the victim block’s hash bucket are
flushed to µ-Tree and deleted. (3) Lastly, as soon as all
the pages in a block become invalid, the block is erased and
the invalid extent of the block is deleted from the bitmap
cache, without being flushed to µ-Tree. Such a block can be
detected instantly by the per-block invalid page counter.

4.4 Logical Address Space Partitioning
As briefly mentioned in Section 4.1, different portions of

the logical address space exhibit different access patterns.
For example, an area for file system metadata (FAT area in
the FAT file system or Master File Table zone in the NTFS
file system) is located in the designated region of the logical
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Figure 6: A disk access pattern of a general PC
usage trace

address space. A part of the logical address space could be
used for downloading large multimedia files such as mp3’s
and movies. In some cases, a user would be able to explicitly
divide the logical address space into several disk partitions
for different usages.

Fig. 6 depicts a disk access pattern of general PC usage
gathered from a 32GB HDD with the NTFS file system dur-
ing five days. Fig. 6 shows which logical sectors are read or
written as time goes by; the x-axis of the graph represents
a request number and the y-axis denotes the correspond-
ing logical sector number. The rectangle in the right side
represents the final organization of disk clusters. This in-
formation is obtained using DiskView [1], which shows not
only the characteristics of each disk cluster, but also the file
name associated with the disk cluster.

From Fig. 6, we can see that contiguous file clusters are
mostly for movies and installed applications. This region
tends to be sequentially written. On the other hand, the
majority of fragmented file clusters are from temporary In-
ternet files. The bottom region of the address space includes
system files and file system metadata.

The region containing contiguous file clusters tend to be
cold as they are rarely overwritten. On the contrary, the
regions for fragmented file clusters and system file clusters
are usually hot since temporary Internet files and file system
metadata are updated frequently.

Traditional page-mapped FTLs do not exploit this hot-
coldness existing in each region of the logical address space,
as all write requests are redirected to the same global up-
date block. Instead, µ-FTL divides the whole logical address
space into several partitions. An update block is allocated
for each partition to prevent data in different partitions from
being mixed in the same physical block. An update block for
each partition is lazily assigned only when a write request
actually arrives at the partition.

4.5 µ-FTL Design Summary
Fig. 7 presents the overall architecture of µ-FTL. For han-

dling a write request, µ-FTL writes data to the correspond-
ing partition’s update block (step (1)), updates extents in
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Figure 7: The overall architecture of µ-FTL

µ-Tree (step (2)), and inserts invalid extents into the bitmap
cache (step (3)). The bitmap cache flushes bitmap updates
to the µ-Tree cache when it becomes full or a victim block is
selected by the garbage collection process (step (4)). µ-Tree
flushes pages if the write cache becomes full (step (5)), and
reads pages when a read cache miss occurs (step (6)).

5. EXPERIMENTAL EVALUATION

5.1 Evaluation Methodology
We have implemented trace-driven simulators for µ-FTL

and other FTLs such as the log block scheme, FAST, the su-
perblock scheme, and DAC. We assume MLC NAND flash
memory is used whose page size is 4KB and the number of
pages in a block is 128. The simulators count the number of
page reads, page writes, and block erases while replaying a
given trace. The actual time needed for performing such op-
erations is calculated based on the timing parameters shown
in Table 1.

We have used real workload traces for performance eval-
uation. The total six traces are obtained from a Microsoft
Windows-based laptop computer by using DiskMon [2]. Half
of them (pic, mp3, and general) model the workload of em-
bedded multimedia devices and the others (web, general,
and sysmark) represent the workload of typical PC usage
scenarios. For multimedia traces, we create a separate 8GB
of FAT32 disk partition, and only the requests coming to the
partition are collected. For PC traces, a single NTFS disk
partition is used which also contains operating systems and
pre-installed applications. Table 2 summarizes the charac-
teristics of each trace used in this paper.

Unless otherwise stated, all experiments are performed in
the following conditions. The partition size is 256 MB (512
logical blocks). The bitmap cache size is set to 32KB for PC
traces and 4KB for multimedia traces. About 3% of the total
physical blocks are reserved for extra blocks. Extra blocks
are internally used by FTL as update blocks and they are not
visible to the host system. When initializing a simulation,
we set all extra blocks as free blocks, and other physical
blocks as fully valid data blocks.

5.2 The Comparison of FTL Performance
Fig. 8 compares the performance of five different FTLs

(the log block scheme, FAST, the superblock scheme, DAC,
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Table 2: The characteristics of multimedia and PC traces
Trace Storage Size Description # of Req’s

pic 8GB
We copy 6GB of pictures into the disk, and then repeat the process of

465,268
deleting and copying 2GB of pictures 10 times. (avg. file size = 1.9MB)

mp3 8GB
The scenario is exactly the same as in pic. In this trace, mp3 files

457,836
are used instead of pictures. (avg. file size = 4.4MB)

mov 8GB
The scenario is exactly the same as in pic. In this case, movie files

430,025
are used instead of pictures. (avg. file size = 681MB)

web 32GB This trace is gathered from one-day long web surfing. 200,606

general 32GB
This trace is obtained from a 5-day long general PC usage. The trace

1,029,053
includes office works, downloads, web surfing, installations, etc.

sysmark 40GB
This trace is collected from SYSmark 2007 Preview. The benchmark

158,591
includes e-learning, office works, video creation, and 3D modeling.
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Figure 8: A performance comparison of FTLs. The values (A+B+C) in the parenthesis represent the size for
per-block invalid page counter (A), the µ-Tree cache size (B), and the bitmap cache size (C) used in µ-FTL.

and µ-FTL) by changing the portion of extra blocks from
1% to 5%. The y-axis in Fig. 8 represents the management
overhead calculated from additional read, write, and erase
operations requested by an FTL (not by the host). The
management overhead actually means the additional time
required by FTL for garbage collection and cache manage-
ment. All the evaluations in this paper use the management
overhead as a performance metric, as many previous work
did [6, 9, 10]. The results of the log block scheme and FAST
are omitted in pic and mp3 since they show very poor per-
formance in these traces.

We have configured µ-FTL so that its RAM usage is com-
parable to other block-mapped FTLs. We assume that each
mapping entry requires 4 bytes in block-mapped FTLs. Since
block-mapped FTLs require one mapping entry for each
block, the total amount of RAM needed is 64KB for 8GB,
256KB for 32GB, and 320KB for 40GB MLC NAND flash
memory.

In Fig. 8, we labeled each trace with values of the form
(A+B+C) to represent the specific RAM usage of µ-FTL.
Each value, A, B, and C, represents the amount of RAM
allocated to the per-block invalid page counter, the µ-Tree
cache, and the bitmap cache, respectively. For example,
µ-FTL uses 16KB for the per-block invalid page counter,
44KB for the µ-Tree cache, and 4KB for the bitmap cache
with the pic trace. The total size, 64KB in this case, is
equal to the amount of RAM used by block-mapped FTLs
for 8GB storage size.

We can see that µ-FTL demonstrates almost the same or
similar performance as DAC with 3% or more extra blocks,
even if the memory footprint of DAC is extremely large.
In pic and mp3 traces, µ-FTL is slightly defeated by DAC
mainly due to the increased cache misses in the µ-Tree cache
and the bitmap cache. There is not much locality in these
traces compared to the number of extents they generate, as
they delete and copy a large amount of files repeatedly. The
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Figure 9: The effect of bitmap cache size

same scenario is also applied to mov, but the cache is used
more effectively in mov as most extents have the full size
(128 pages) and many bitmap entries are removed from the
bitmap cache before being written to µ-Tree. This allows µ-
FTL to exhibit almost the same performance as DAC with
only 1/128 of the RAM usage.

The sysmark trace randomly accesses much larger range
of the logical address space than other traces. DAC and µ-
FTL incur almost no overhead even with 1% extra blocks ow-
ing to their fine-grain mapping granularities (cf. Fig. 8(c)).
For the superblock scheme and FAST, the amount of extra
blocks should be larger than 4%–5% to accommodate the
entire working set properly.

Overall, µ-FTL outperforms the superblock scheme, which
shows the best performance among block-mapped FTLs, by
76.1%, 56.8%, and 89.7% for web, general, and sysmark

traces respectively, and by 40.5%, 19.3%, and 25.2% for pic,
mp3, and mov traces respectively, when 3% of the total phys-
ical blocks are reserved as extra blocks.

5.3 The Effect of Bitmap Cache Size
Fig. 9 shows the impact of bitmap cache on the overall per-

formance in web and pic traces, when we vary the bitmap
cache size up to 64KB. In Fig. 9, the overhead is further cat-
egorized to the mapping cache overhead, the bitmap cache
overhead, and the garbage collection overhead. The map-
ping cache overhead and the bitmap cache overhead denote
the time for handling read cache misses and write cache
flushes in µ-Tree caused by extents and bitmap entries, re-
spectively. The garbage collection overhead represents page
reads, page writes, and block erases occurred during the
garbage collection process.

Since the total amount of RAM is fixed in Fig. 9, the larger
the bitmap cache becomes, the smaller the mapping cache
becomes. Therefore, the overhead is improved as we increase
the bitmap cache size, but it starts to grow beyond 32KB
for web and 8KB for pic due to the increase in the mapping
cache overhead. All PC traces show the best performance at
the bitmap size of 32KB, while all multimedia traces except
for mov at 4KB. At those configurations, using the bitmap
cache improves the overall performance by 52.5% in web

and by 33.3% in pic. The mov trace is an exception which
incurs no bitmap cache overhead even without the bitmap
cache. This is because it is highly likely in mov that all
pages in a block are invalidated simultaneously, making it
unnecessary to insert any bitmap entry to µ-Tree.

The bitmap cache overhead is closely related to the num-
ber of bitmap entries, which in turn depends on the total
storage capacity and the characteristics of the target work-
load. Our measurement results indicate that it is necessary
to allocate roughly 1KB to the bitmap cache per 1GB stor-
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Figure 10: The effect of partitioning

age capacity. In case the workload’s access pattern is pre-
dominantly sequential as in pic, mp3, and mov, it may be
considered to reduce the bitmap cache size to 512 bytes or
less per 1GB storage capacity.

5.4 The Effect of Partitioning
Fig. 10 illustrates the effect of logical address space par-

titioning in web and general traces. These traces are
obtained from 32GB storage, hence the partition size of
32,768MB at the leftmost position corresponds to the case
where the partitioning is not used at all.

When the partition size is 256MB, both traces show the
best performance. At this partition size, the overall perfor-
mance is improved by 23.6% in web and 39.6% in general.
We can observe that most of the improvement comes from
the significant decrease in the garbage collection overhead.

Several different factors affect the garbage collection over-
head either positively or negatively depending on the parti-
tion size. As the partition size decreases, hot data can be
more precisely separated from cold data. Thus, the number
of hot blocks, whose pages tend to become invalid shortly, is
increased. When a block becomes fully invalid, the block is
immediately erased and reclaimed by µ-FTL. This is often
called switch merge [10] and is the most inexpensive way to
generate a new free block. As more free blocks are gener-
ated by the switch merge, the actual garbage collection can
be postponed much longer and the number of valid pages in
a victim block becomes smaller.

For instance, let us consider a situation when we change
the partition size from 32GB to 256MB in general. In
this case, the number of switch merge has increased by
17.4% (from 18,363 to 21,550), which reduces the number
of garbage collection by 29.3% (from 1,109 to 784). Since
the garbage collection process is invoked less frequently, the
number of blocks erased during garbage collection is reduced
by 34.6% and the number of valid pages, which each victim
block owns, is decreased from 30.0 pages to 23.0 pages. Ac-
cordingly, the garbage collection overhead is improved by
46.0% from 594 seconds to 321 seconds.

On the other hand, if the partition size becomes too small,
the garbage collection overhead increases. The smaller the
partition size is, the more update blocks are needed, and
finally the utilization of update blocks decreases. The low
utilization of update blocks makes µ-FTL invoke the garbage
collection process more frequently. When we reduce the par-
tition size further from 256MB to 32MB in general, the
number of garbage collection is increased by 5.8% and the
average number of valid pages in a victim block grows again
to 29.6 pages. Due to these negative effects, the garbage
collection overhead rises by 38.6%.
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Figure 11: The distribution of the average extent
length over the logical address space

For almost all traces we have examined, the performance
has been maximized at the partition size of 256MB, with
both factors being balanced.

5.5 Extent Length Distribution
Finally, we investigate whether µ-FTL effectively adjusts

the extent length according to the different access pattern.
Fig. 11 depicts the distributions of the extent length over
the logical address space after replaying general and mov

traces. We plot the average extent length of a logical block in
a two-dimensional graph. The darker a color is, the longer
an extent length is. The left-bottom pixel corresponds to
the first logical block and the right-top corresponds to the
last logical block. A logical block number first increases
horizontally, and then vertically.

In general, the logical blocks corresponding to contigu-
ous file clusters (cf. Section 4.4) have long extents (denoted
as black in Fig. 11(a)). On the other hand, the logical
blocks associated with fragmented file clusters and system
file clusters have much shorter extents (denoted as gray in
Fig. 11(a)). In case of mov, however, almost all logical
blocks have the maximum extent length (128 pages).

Fig. 12 displays the cumulative distributions of the num-
ber of extents and the amount of space covered for a given
extent length in the general trace. From Fig. 12(a), we can
see that more than 50% of the total extents have the lengths
less than or equal to 8 pages. Only about 10% of the total
extents have the maximum extent length. However, in terms
of the extent size (extent length × extent count) shown in
Fig. 12(b), more than 50% of the logical address space is
covered by the full-sized extents, and only less than 10% of
the address space is mapped by the extents whose lengths
are less than 16 pages.

From the above results, we can confirm that a considerable
range of the logical address space is covered by coarse-grain
extents, while a portion of the address space requiring fine-
grain mapping granularities is mapped by a number of small
extents. By supporting multiple granularities, µ-FTL not
only enhances the performance of FTL, but also reduces the
amount of mapping information.

6. CONCLUSION
Due to the widespread use of NAND flash-based devices

such as cellular phones, digital cameras, MP3 players, flash
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memory cards, and SSDs, the importance of developing an
efficient FTL cannot be overstated.

In this paper, we propose µ-FTL, a novel FTL which in-
curs low management overhead with a small and fixed mem-
ory. By supporting multiple mapping granularities based on
extents, µ-FTL not only enhances the performance but also
reduces the amount of mapping information. The mapping
information is managed by µ-Tree, which provides an ef-
ficient index structure for NAND flash memory. We also
devise the bitmap cache and manage the logical address
space with several different partitions to accelerate the per-
formance of µ-FTL further.

Our experimental results show that µ-FTL significantly
outperforms other block-mapped FTLs with the same RAM
usage. In many cases, µ-FTL shows almost the same per-
formance as DAC, one of page-mapped FTLs whose RAM
usage is extremely large.
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