
HPMR: Prefetching and Pre-shuffling in Shared

MapReduce Computation Environment

Sangwon Seo1, Ingook Jang1,
1Computer Science Department

Korea Advanced Institute of Science

and Technology (KAIST), South Korea

{sangwon.seo,jik,maeng}@kaist.ac.kr

Kyungchang Woo2,
2Search Engineering

Yahoo! Inc, Seoul

South Korea

kc@yahoo-inc.com

Inkyo Kim3, Jin-Soo Kim4,
3Advanced Software Center

Samsung Advanced Institute

of Technology, South Korea

inkyo.kim@samsung.com

and Seungryoul Maeng1

4School of Info. and Comm.

Sungkyunkwan University

South Korea

jinsookim@skku.edu

Abstract—MapReduce is a programming model that supports
distributed and parallel processing for large-scale data-intensive
applications such as machine learning, data mining, and scientific
simulation. Hadoop is an open-source implementation of the
MapReduce programming model. Hadoop is used by many
companies including Yahoo!, Amazon, and Facebook to perform
various data mining on large-scale data sets such as user search
logs and visit logs. In these cases, it is very common to share
the same computing resources by multiple users due to practical
considerations about cost, system utilization, and manageability.
However, Hadoop assumes that all cluster nodes are dedicated
to a single user, failing to guarantee high performance in the
shared MapReduce computation environment.

In this paper, we propose two optimization schemes, prefetch-
ing and pre-shuffling, which improve the overall performance
under the shared environment while retaining compatibility with
the native Hadoop. The proposed schemes are implemented in
the native Hadoop-0.18.3 as a plug-in component called HPMR
(High Performance MapReduce Engine). Our evaluation on the
Yahoo!Grid platform with three different workloads and seven
types of test sets from Yahoo! shows that HPMR reduces the
execution time by up to 73%.

I. INTRODUCTION

Internet services, such as search engines, on-line portals,

e-commerce sites, and social networking sites, have recently

emerged as an important class of computer applications,

delivering their contents to more than millions of users. These

services not only deal with enormous volumes of data, but

also generate a large amount of data which needs to be

processed every day. MapReduce is a programming model

that supports distributed and parallel processing for large-

scale data-intensive applications such as machine learning,

data mining, and scientific simulation. MapReduce divides a

computation into multiple small tasks and let them run on

different machines in parallel. It is highly scalable because

thousands of commodity machines can be used as an effective

platform for distributed computing. In addition, the MapRe-

duce programming model is designed to be accessible to the

widest possible class of developers; it favors simplicity at the

expense of generality by hiding implementation details and

providing only simple abstract APIs.

Hadoop [3] is an open-source implementation of the

MapReduce programming model. It is originally developed

by Yahoo!, but is also used by other companies including

Amazon, Facebook, and The New York Times due to high

performance, reliability, and availability that it offers. Hadoop

relies on its own distributed file system called HDFS (Hadoop

Distributed File System), which is a mimic of GFS (Google

File System). Like GFS, HDFS has a master/slave architecture;

an HDFS cluster consists of a single NameNode and a number

of DataNodes. NameNode is the master server that manages

the namespace of a file system and regulates clients’ access

to files, while DataNodes manage storage directly attached to

each DataNode. HDFS has a coarse-grained placement policy

of replicas. With the replication factor of three, the common

placement policy of HDFS is to place one replica on one node

in the local rack, the second on a different node in the local

rack, and the last on a node in a different rack. This policy

generally improves write performance by cutting down inter-

rack write traffic.

The general architecture and the typical workflow of

MapReduce are illustrated in Figure 1. An input file is saved

in HDFS and a part of input file, which we call an input

split, is disseminated to the corresponding map task. The

size of the input split is limited to the block size, and each

task is mapped to only one input split. The output of the

map task, called intermediate output, is sent to the combiner

which pre-reduces the intermediate output in a local node. The

combiner aggregates multiple intermediate outputs generated

from the node to a single large intermediate output to reduce

network overhead. In this way, each local node produces

only one intermediate output. This combined intermediate

output is passed to the partitioner, while key-value pairs are

shuffled to the corresponding reduce task over the network.

The partitioner determines to which partition a given key-

value pair will go. The default partitioner computes a hash

value for the key and assigns the partition based on this result.

Therefore, the key-value pairs with the same key are shuffled

to the same reduce task for sorting and reducing.

The shuffling overhead increases as the degree of parallel

processing increases. The larger the number of map tasks, the

longer the shuffling phase takes to complete. The network

bandwidth between nodes is also an important factor of

the shuffling overhead. Thus, it is essential to reduce the

shuffling overhead to improve the overall performance of the

MapReduce computation.

 978-1-4244-5012-1/09/$25.00 ©2009 IEEEAuthorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

�������	
��

�
��

�
��

��	
� ��	
� ��	
�

�� �� ��

��
��
��

��	�
�
���	

���	��

	�����

��������	
��

�
������������	�
���������������	��

���������������
	�

�
�������������
	�

�	
�� ��� ��
����������

���	�

����	
��
�������������
	�

�������	
��

��	
� ��	
� ��	
�

�� �� ��

��
��
��

���	��

	�����

��������	
��

�
��

�
��

���������������
	�

����	
��
�������������
	�

�
�������������
	�

�
������������	�
���������������	��

������ ������

!�"����
�#$��	�����

����	
��
����������
��
	���%�"��#��
&'����������

����	������	�

(�

��	

��	�
�
���	

(�

��	

Fig. 1. The architecture of MapReduce using Hadoop.

One of Hadoop’s basic principles is “moving computation

is cheaper than moving data.” This principle indicates that it

is often better to migrate the computation closer to where the

data is located rather than to move data where the application

is running. This is especially true when the size of the data set

is huge because the migration of the computation minimizes

network congestion and increases the overall throughput of the

system. When a computation task is located near the data it

consumes, we call that the task has good data locality. The

best data locality can be achieved if the needed data and the

computation task are placed in the same node. The next best

case is when the data is in any other node within the same

rack.

Hadoop assumes that cluster nodes are dedicated to the

MapReduce computation [8]. In Yahoo!, however, a large ex-

perimental cluster called Yahoo!Grid is managed by Hadoop-

On-Demand (HOD) [4]. HOD is a management system for

provisioning virtual Hadoop clusters over a large physical

cluster. Each engineer at Yahoo! has a log-on account for the

cluster and allocates his or her own virtual nodes on demand

from a pool of physical nodes. Therefore, all physical nodes

are shared by more than one Yahoo! engineers.

HOD increases the utilization of physical resources at the

expense of performance. When the underlying computing

resources are shared by multiple users, the current Hadoop’s

policy of “moving computation where the data is located” may

not be effective at all. For example, imagine a situation where

a large log file is saved across the entire Hadoop nodes. If a

Yahoo! engineer is allowed to use only 10% of the total nodes

to process the log file, 90% of the input data still should be

read from other nodes. Moreover, since many users are com-

peting for network and hardware resources, the performance

will be deteriorated even more significantly compared to the

dedicated MapReduce environment. This problem motivated

us to develop innovative ways for improving performance

under the shared MapReduce environment.

In this paper, we propose two optimization schemes,

prefetching and pre-shuffling, to overcome the aforemen-

tioned problem for the shared MapReduce environment. These

schemes are implemented in our High Performance MapRe-

duce Engine (HPMR). The prefetching scheme can be broadly

classified into two types: the intra-block prefetching and the

inter-block prefetching. In the intra-block prefetching, only

an input split or an intermediate output is prefetched, while

the whole candidate data block is prefetched in the inter-

block prefetching. These types of prefetching are used for

all map and reduce phases. The pre-shuffling scheme reduces

the amount of intermediate output to shuffle. During pre-

shuffling, HPMR looks over an input split before the map

phase begins and predicts the target reducer where the key-

value pairs are partitioned. As illustrated in Figure 1, if key-

value pairs of intermediate output are partitioned into a local

node, the number of shuffling operations over the network

can be reduced. We have designed a new task scheduler for

pre-shuffling, and the pre-shuffling scheme is used only for

the reduce phase. In brief, the prefetching scheme improves

the data locality, and the pre-shuffling scheme significantly

reduces the shuffling overhead during the reduce phase. We

have modified the native Hadoop version 0.18.3 to build

HPMR and evaluated its performance on a real Yahoo!Grid

platform. We summarize contributions of our paper as follows.

• We have analyzed performance degradation of Hadoop in

depth in a shared MapReduce computation environment.

• We have designed new prefetching and pre-shuffling

schemes, which significantly improve the MapReduce

performance especially when physical nodes are shared

by multiple users.

• We have built the High Performance MapReduce Engine

(HPMR) that exploits data locality and reduces network

overhead. It is implemented as a plug-in component for

the native Hadoop system and is compatible with both

dedicated and shared environments.

• Compared with the native Hadoop, our implementation

of HPMR has demonstrated the excellent performance on

various platforms ranging from a single multi-core node

to clusters with thousands of nodes. Especially, we have

shown that the execution times of complex MapReduce

applications such as ad-hoc analysis of very large data

sets, data mining, etc., are reduced significantly in the

shared MapReduce environment. These applications are

common in major Internet companies such as Yahoo!

The rest of this paper is organized as follows. Some of the

related work are briefly described in the next section. The

design and the implementation of HPMR are described in

Section III and Section IV, respectively. In these sections, we

discuss several issues and suggest our solutions in detail. Sec-

tion V presents our experimental evaluation results obtained

from the Yahoo!Grid platform. Finally, we conclude the paper

in Section VI.

II. RELATED WORK

HPMR is related to a broad class of prior literature ranging

from MapReduce [1] to traditional prefetching techniques.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

��������	
��
	
�
�������

���
����	�
�
	
�
�������

��������	��
��	�

��	���	��
	����

����	
�
���

�����

�������

�����
���������

��������	
��
	
�
�������

���
����	�
�
	
�
�������

��
�����	����	���	������	����

����	
�
���

�����

�������

�����
���������

���	���	�������
���	
����������	��	��
	
����

���	���	�������
���	
����������	��	������	
����

Fig. 2. The intra-block prefetching

Considerable work has been carried out on prefetching meth-

ods to reduce I/O latency [16][18][19]. Most of their work

focuses on file prefetching in local file system, but our work

focuses on distributed data prefetching in distributed file

system for maximizing network bandwidth and minimizing

I/O latency. Our prefetching scheme is inspired by predictive

prefetching for World Wide Web [16], which aimed at reduc-

ing the web latency perceived by users.

Zaharia et al. [8] have proposed a new scheduling algorithm

called LATE (Longest Approximation Time to End), which

finds stragglers (i.e., tasks that take unusually long time to

complete) more efficiently in the shared environment. They

showed that the Hadoop’s current scheduler can cause severe

performance degradation in heterogeneous environments such

as virtualized data centers where uncontrollable variations in

performance exist.

Dryad [9] from Microsoft is more flexible than MapReduce,

as it allows for the execution of arbitrary computation that

can be expressed as directed acyclic graph. As mentioned in

Dryad [9], the degree of data locality is highly related to the

MapReduce performance. In Yahoo!Grid, however, providing

good data locality is difficult due to the presence of shared

users.

III. DESIGN

In this section, we present the design of HPMR in detail.

We describe the prefetching scheme in Section III-A, and the

pre-shuffling scheme in Section III-B. The emphasis of this

section is not on the syntactical details of HPMR, but on how

the proposed scheme meets the design goals and features.

A. Prefetching Scheme

A computation requested by an application will be per-

formed much more efficiently if it is executed near the data it

operates on. As described in Section I, Yahoo!Grid is shared by

multiple users using Hadoop-On-Demand (HOD). Dedicating

a number of nodes to a single user is probably overkill. In

practice, not only the cluster is shared, but also there is a

limitation in the number of nodes a user can use. In this case,

it is not easy to guarantee good data locality to all computation

tasks.

HPMR provides a prefetching scheme to improve the

degree of data locality. The prefetching scheme can be

���	
����	

��	�	
 ��	�	�

�

�

��

��

��

�

��

���	
����	

���������	����	�	�������

���	
����	

����������	
��		����
��

�� �� ��

���
���

���	
����	

Fig. 3. An example of inter-block prefetching. The task scheduler assigns a
map task while prefetching the required blocks (A2, A3, and A4) in a pipeline
manner.

classified into two types: the intra-block prefetching and the

inter-block prefetching.

1) Intra-block prefetching: The intra-block prefetching is

a simple prefetching technique that prefetches data within a

single block while performing a complex computation. As

shown in Figure 2, it is executed in a bi-directional manner.

While a complex job is performed in the left side, the to-be-

required data are prefetched and assigned in parallel to the

corresponding task.

The intra-block prefetching has a couple of issues that

need to be addressed. First, it is necessary to synchronize

computation with prefetching. We have solved this problem

using the concept of processing bar that monitors the current

status of each side and invokes a signal if synchronization

is about to be broken. The processing bar not only works

as a synchronization manager, but also provides a way to

measure the effectiveness of this technique. The second issue

is to find the proper prefetching rate. As generally believed,

we first assumed that the more the prefetching is done, the

better the performance gets. Unfortunately, the experimental

results have shown that this is not always the case. Therefore,

through repetitive experiments, we try to find the appropriate

prefetching rate at which the performance can be maximized

while minimizing the prefetching overhead.

The bi-directional processing provides several benefits.

Most of all, it simplifies the implementation, allowing our

plug-in interfaces to be used independently without directly

modifying the native Hadoop. As shown in Figure 2, the

bi-directional processing uses two types of processing bars,

one for computation and the other for prefetching. These

bars enable both of computation and prefetching to occur

simultaneously, preventing the overlap of their processing. In

this way, we not only simplify the implementation, but also

solve the synchronization problem between computation and

prefetching. In addition, the bi-directional processing helps

to minimize the network overhead. In case the prefetching

is always initiated from the beginning of a data block, the

prefetcher will read the data repeatedly from the single source.

If the perfetching rate is not fast enough to catch up the

computation rate, it will waste network bandwidth without

making any effect on the performance. However, our scheme

successfully removes redundant read operations and minimizes

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

I/O overhead in a bi-directional fashion.

In brief, the intra-block prefetching is simple, yet powerful

for complex computations which require a large amount of

data.

2) Inter-block prefetching: Recall that the previous intra-

block prefetching runs within a single block. On the other

hand, the inter-block prefetching runs in block level, by

prefetching the expected block replica to a local rack. An

example of inter-block prefetching is shown in Figure 3, where

the data blocks, A2, A3, and A4, required by the map task are

prefetched from the rack 2 to the rack 1 in a pipelined manner.

Algorithm 1 outlines the basic steps of the inter-block

prefetching. Initially, our optimized task scheduler discussed

in Section IV-A assigns map tasks to the nodes that are

the nearest to the required blocks. And then, the predictor

generates the list of data blocks, B, to be prefetched for the

target task t. For each data block b in B, the prefetcher first

identifies the locations of replicas for b. If the local rack does

not have any replica of b and there is an overloaded replica

whose access frequency is beyond the predefined threshold,

the prefetcher tries to increase the number of replicas by

replicating b to the local node. If the local node does not have

enough space, it is replicated to one of nodes in the local rack.

When replicating a data block by the inter-block prefetching,

it is read from the least loaded replica so as not to minimize

the impact on the overall performance.

Algorithm 1 The inter-block prefetching algorithm

INPUT: t /* the target task */

1: B ← CandidateBlocks (t); /* Get the candidate blocks for

t */

2: <n, r> ← GetInfo (t); /* Get the node number (n) and

the rack number (r) of the task t */

3: for each b ∈ B do

4: if a replica of b already exists in the local rack r then

5: continue;

6: end if

7: if there is an overloaded replica whose access frequency

is larger than Threshold then

8: nsrc ← the node number of the least loaded replica;

9: if the node n has enough disk space then

10: Prefetch the data block b from nsrc to n;

11: else

12: Choose a node n′ with enough space in the rack

r;

13: Prefetch the data block b from nsrc to n′;

14: end if

15: end if

16: end for

B. Pre-shuffling Scheme

The pre-shuffling scheme in HPMR significantly reduces the

amount of intermediate outputs to shuffle, as shown in Figure

4. Figure 4(a) shows the original MapReduce workflow, and

����	�

��		�

����	�

��		�

����	�

���
��

����	�

���
��

����	�

��		�

����	�

���
��

��������	

����	�

��		�

����	�

����	�

���
��

����	�

���
��

����	�

����	�

���
��

��������	

��
��������	

��		�
 ��		�

��
��������	
��
��������	

���	���	������	�����	

���	����	����	���		
����
�� ��!	����"�

Fig. 4. The comparison between the native Hadoop and HPMR with pre-
shuffling.

Figure 4(b) illustrates the revised version of HPMR workflow

with pre-shuffling. The key idea of pre-shuffling is quite

simple; the pre-shuffling module in the task scheduler looks

over input split or candidate data in the map phase, and

predicts which reducer the key-value pairs are partitioned into.

The expected data are assigned to a map task near the future

reducer before the execution of the mapper. Note that if key-

value pairs of intermediate output are partitioned into a local

node, it will reduce the number of shuffling over the network.

As shown in Figure 4, the use of pre-shuffling dramatically

decreases the number of shuffling from O(M2) to O(M),
where M denotes the number of mappers.

C. Optimization

MapReduce automatically handles failures without letting

programmers know the details of fault-tolerance operations.

When a node crashes, MapReduce reassigns the task to

another live node. For faster computation, a straggler, a node

performing poorly though available, invokes MapReduce to

run a speculative copy of the currently running task on

another machine. Google claims that the speculative execution

improves the job response time by 44% [1]. However, it

did not work well on our experimental cluster, Yahoo!Grid.

Unlike the public release version of Hadoop, the option for

the speculative execution is turned off in Yahoo!Grid. This is

because Yahoo!Grid is a shared environment, while Hadoop

assumes that cluster nodes are solely dedicated to a user [8].

The LATE algorithm actually aims to address the problem

of how to robustly perform speculative execution to maximize

performance under heterogenous environment. However, it did

not consider data locality that can accelerate the MapReduce

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

���������

�	
��

�������������������

������������
�������

�������

���������

������������

����	��
���������

������	
$% &

�������'���

���������������������������(������
�����

Fig. 5. The overall architecture of HPMR.

Fig. 6. The native Hadoop scheduler.

computation further. To complement the LATE algorithm, we

propose a new scheduler called D-LATE (data-aware LATE).

The algorithm of D-LATE can be stated as shown in Algorithm

2. We denote the number of speculative tasks that can be

Algorithm 2 D-LATE algorithm

INPUT: Tfree /* the set of free task slots */,

Nspec /* the number of speculative tasks */,

Trun /* the set of running tasks */

1: if Tfree != ∅ and |Tspec| < SpeculativeCap then

2: T ← Trun;

3: while (T != ∅) do

4: Find the task t ∈ T which has the largest EST

(estimated time left);

5: if The progress rate of t < SlowTaskThreshold then

6: Perform speculative execution for the task t;

/* Reassign the task to the node that is the fastest

and the nearest to the needed data */

7: break;

8: end if

9: T ← T - {t};

10: end while

11: end if

running at once as SpeculativeCap. The progress rate of a

task is compared against SlowTaskThreshold, and then it is

determined whether the rate is “slow enough” to launch the

task speculatively. Our D-LATE algorithm is almost the same

as LATE, except that a task is assigned as nearly as possible

to the location where the needed data are present. We have

implemented an optimized task scheduler based on the D-

LATE algorithm in HPMR.

IV. IMPLEMENTATION

This section explains the architecture and implementation

details of HPMR. As shown in Figure 5, HPMR consists of

three main modules: the optimized scheduler, the prefetcher

and the load balancer. Currently, these modules are integrated

with Hadoop-0.18.3 via the HPMR plug-in interface. This

plug-in interface is so flexible that HPMR can support any

version of Hadoop or another similar platforms such as GFS

[2] and Dryad [9]. In particular, three main modules can be

selectively plugged in or out depending on the plug-in interface

configuration.

A. Optimized Scheduler

The optimized scheduler is a flexible task scheduler with

the predictor and the D-LATE module. In order to understand

the optimized scheduler, one must first understand the native

Hadoop scheduler. The native Hadoop scheduler assigns tasks

to available task trackers by checking heartbeat messages from

task trackers. Every task tracker periodically sends a heartbeat

message to the job tracker. The job tracker has a task scheduler

which actually schedules tasks.

Figure 6 shows how the native Hadoop scheduler works.

First, it constructs a list known as TaskInProgress List, a

collection of all running tasks, and caches the list into either

nonRunningMap (for map tasks) or nonRunningReduce (for

reduce tasks) depending on the type of each task. These cached

lists are used for the job tracker to manage current map tasks or

reduce tasks to be executed. Next, task trackers periodically

send a heartbeat message to the job tracker using heartbeat

message protocol. Finally, the scheduler assigns each task to

a node randomly via the same heartbeat message protocol. The

best case of scheduling a task is when the scheduler locates

the corresponding task into the local node. The second best

case is when the scheduler locates the task into the local rack.

In our shared cluster environment, however, the best case and

the second best case account for less than 2% and 10% of the

total task scheduling, respectively.

The native Hadoop scheduler is too simple to schedule tasks

flexibly in the shared MapReduce environment. Especially,

the algorithm for predicting stragglers does not work well in

the native Hadoop because it uses a single heuristic variable

for detection. Under the shared environment, such algorithm

mispredicts stragglers, thus randomly assigns tasks.

For these reasons, HPMR provides the optimized scheduler

which has the predictor module. The scheduler not only finds

stragglers, but also predicts candidate data blocks (during the

prefetching stage) and the reducers into which the key-value

pairs are partitioned (during the pre-shuffling stage). The infor-

mation on the expected data is sent to the corresponding task

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

TABLE I
TEST SETS USED IN EXPERIMENTS

1 2 3 4 5 6 7

Workload wordcount wordcount wordcount wordcount wordcount aggregator similarity calculator

nodes 5 10 20 200 200 200 200

map tasks 18 18 18 50 36 36 36

reduce tasks 1 1 1 1 1 1 1

Input file size 4.4GB 4.4GB 4.4GB 4.4GB 4.4GB 4.4GB 4.4GB

Input split size 128MB 128MB 128MB 128MB 128MB 128MB 128MB

�

��

���

���

���

���

���

� � � � �

�
�
�
��

�
�
��
��

�
��

	
��

�

�
��
�
�

�

���������������

�	
���

�
��

�

�

�

�

�

��

��

� �

�
�
�
��

�
�
��
��

�
��

	
��

�

�
��
�
�
�
��

�����������������������������	��

�	
���

�
��

Fig. 7. A comparison of the average elapsed time for each workload

�

��

��

��

��

��

��

��

	�

� � � � � � �

�
�
�
��
��
��
	

��
�
�
	
�
�

�
��
�

���
���
���	���

Fig. 8. The overall improvement of HPMR compared to the native Hadoop

queue. In addition to these predictions, the optimized scheduler

performs the D-LATE algorithm presented in Algorithm 2.

B. Prefetcher

The prefetcher module consists of a single prefetching man-

ager and multiple worker threads. The role of the prefetching

manager is to monitor the status of worker threads and to

manage the prefetching synchronization with processing bars

as mentioned in Section III-A.

Since Hadoop provides several interfaces for HDFS, we

have extended two of these interfaces, FSInputStream and

FSDataInputStream, and integrated them into a single HPMR

plug-in interface. Each worker thread implements this HPMR

interface to prefetch predicted data from HDFS. Upon a re-

quest from the scheduler, the prefetching manager is invoked,

and then it forces worker threads to start prefetching.

C. Load Balancer

In HPMR, the load balancer is used when the prefetcher

is working for the inter-block prefetching. By contacting the

job tracker through the HPMR interface, the load balancer

periodically checks the logs, which include disk usage per

node and current network traffic per data block. After the inter-

block prefetching, the load balancer is invoked to maintain

load balancing based on disk usage and network traffic (cf.

Section III-A).

When disk access ratio and network access usage go over

their threshold values, the load balancer replicates corre-

sponding heavy-traffic data block into an available low-traffic

node in a pipelined manner. After the replication has been

completed, our load balancer indicates the task, which have

used heavy-traffic data block, as a straggler, and then the task

scheduler automatically reassigns the task. From this point on,

this task can use the new replicated block in the low-traffic

node. As a result, the load balancer effectively manages overall

traffic overhead. Our load balancer is executed only when it

is invoked by the inter-block prefetching, to avoid wasting

system resources caused by frequent load balancing jobs.

V. EVALUATIONS

A. Experimental Environment on Yahoo!Grid

The evaluation of HPMR has been performed on Ya-

hoo!Grid, which consists of 1670 nodes. Each node is

equipped with two dual-core 2.0GHz AMD processors, 4GB

of main memory, four 400GB ATA hard disk drives, and a

Gigabit Ethernet network interface card. The entire nodes are

divided into 40 racks which are connected with L3 routers.

Currently, the number of maximum nodes that can be allocated

to each Yahoo! engineer is limited to 200 nodes, and the

average number of simultaneous users is approximately 50

users. In our experiments, we vary the number of nodes

from 5 to 200. In all tests, we have configured that HDFS

maintains four replicas for each data block, whose size is 128

MB. We have performed our evaluations with three different

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

�

��

��

��

��

��

��

��

	�

�

���

� � � � � � �

�
��

��

�

	

�

�
��
�

�

��
�
�

��
���
�������

���	������	
��
	����

�

�

�

�

�

�

�

�

� � � � � � �

�
��

��

�

	

�

�
��
�

�

�
�
�
��
�
�
�
�

��
���
�������

���	������	
��
 �����	�

Fig. 9. The prefetching rate and the prefetching latency in HPMR

�

��

��

��

��

���

���

���

� ��� ��� ��� ��� ��	 ��� ��
 ��� ���

�
�
�
��
�
�
�
�
	

�
�
�	

�

�
��
�
�
�

����	���	��

�����	��
�����	����

�	
	���	�
��	����	���	�������	�����������	�	��

�

	�

���

�	�

���

�	�

���

� ��� ��� ��� ��� ��	 ��� ��
 ��� ���
�
�
�
��
�
�
�
�
	

�
�
�	

�

�
��
�
�
�

����	���	��

��������	
���
������

��
	���	�
��	���� ��� ��� ������� �����������	�	��

Fig. 10. Job execution time vs. prefetching rate in test set #3 and test set #1

workloads and seven types of test sets. The first workload

is the wordcount, one of the main benchmarks used for

evaluating the performance of Hadoop at Yahoo! To emulate

complex job of wordcount, we slightly modified the original

wordcount to have 1ms delay with the sleep function whenever

counting words.

The second workload is the search log aggregator, a real

MapReduce program used to aggregate monthly search logs

and to vectorize terms at Yahoo! The third workload is the

page similarity calculator, also a real MapReduce program

used to calculate similarity between pages and to apply the

data mining technique of the Euclidean function at Yahoo! On

each page, it performs a matrix computation, so its complexity

is always O(P 2) where P denotes the number of pages.

Table I summarizes the characteristics of test sets used in

this paper. For each test set configuration, we compare the

performance of HPMR with that of native Hadoop in the

following subsections.

B. Execution time of overall job

We first compare the overall performance between HPMR

and the native Hadoop. For the overall performance, we have

measured the elapsed time to complete the corresponding

workload in our platform. Figure 7 illustrates the average

elapsed time for HPMR and the native Hadoop. We can

observe that HPMR shows significantly better performance

than the native Hadoop for all of test sets. Figure 8 summarizes

the overall improvement of HPMR compared to the native

Hadoop. In brief, we can see that HPMR reduces the average

execution time by up to 73%.

Note that the test set #1 shows the worst performance. One

of the reasons is that the test set #1 has the smallest ratio of

the number of nodes to the number of map tasks. This will

increase the scheduling overhead or the time needed to assign

tasks during the execution of the test set #1. The second reason

is that it is difficult to exploit data locality when assigning

tasks because the least number of nodes is used in the test set

#1. The necessary data blocks are more likely to be located at

other nodes. Therefore, although the test sets #1 and #2 use

the same input file, the performance of test set #1 shows the

worse performance than the test set #2.

We can see that the test set #5 exhibits the highest im-

provement among all the workloads. This is mainly due to

significant reduction in the shuffling overhead. Although the

test sets #4 and #5 have the same number of map nodes, the

test set #4 has much larger number of map tasks. This means

that the shuffling overhead of the test set #4 is larger than that

of the test set #5. Hence, the average job execution time of the

test set #4 will be significantly prolonged due to the shuffling

overhead.

On the contrary, the test set #7 shows the smallest improve-

ment over the native Hadoop. The reason is that HPMR fails

to predict some candidate blocks for the matrix computation,

resulting in poor prefetching rate. We analyze the prefetching

rate in each workload in more detail in the next subsection.

C. Effective prefetching rate

We have analyzed the average prefetching rate in each work-

load by measuring the total size of successfully prefetched

data. We have also obtained the average prefetching latency

by measuring the time spent on prefetching a block. Although

prefetching is performed simultaneously with computation, the

prefetching latency is affected by disk overhead or network

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

�

��

��

��

��

���

���

���

���� ����� ��	�� �

�� ����	�

�
�
�
��
�
�
�
�
	

�
�
�	

�

�
��
�
�
�

��
���

����

�����
�	� ���	���

Fig. 11. The effect of bandwidth variation (test set #3)

congestion. Therefore, the long prefetching latency indicates

that the corresponding node is heavily loaded.

Figure 9 compares the prefetching rate and the prefetching

latency for each test set. Comparing Figure 9(a) with Figure

9(b), it is apparent that the prefetching rate is closely related

to the prefetching latency, being inversely proportional to the

prefetching latency. Figure 9(a) indicates that the prefetching

rate is higher than 70% in almost every workload except for

the test set #7. In the test set #7, HPMR was unable to predict

some candidate blocks to prefetch due to the random matrix

computation needed for similarity calculation.

Figure 10 plots the relationship between the job execution

time and the prefetching rate. In this experiment, we only

exhibit the results of two representative test sets, #3 and #1,

which show two highest prefetching rates among all the test

sets. From Figure 10, we can see that the job execution time

is saturated at the prefetching rate of 60%. This means that

the overall performance remains essentially the same as the

prefetching rate increases beyond 60%.

D. Execution time with bandwidth adjusting

Finally, in order to investigate the impact of the bandwidth

on the overall performance, we have measured the job ex-

ecution time varying the available bandwidth manually from

4KB/sec to 128KB/sec. Since all the test sets show the similar

trend, we display only the result of the test set #3 in Figure 11.

Figure 11 depicts the average job execution time according to

the bandwidth variation. In Figure 11, we can observe that

HPMR provides almost the same performance independent

of the available bandwidth. This means that HPMR assures

consistent performance even in the shared environment such as

Yahoo!Grid where the available bandwidth fluctuates severely.

VI. CONCLUSION

In this paper, we propose two innovative schemes,

the prefetching scheme and the pre-shuffling scheme, that

can improve the overall performance effectively in the

shared MapReduce computation environment. The prefetching

scheme exploits data locality, while the pre-shuffling scheme

significantly reduces the network overhead required to shuffle

key-value pairs. The proposed schemes are implemented in

HPMR, as a plug-in type component for Hadoop. Through

extensive evaluations with five synthetic workloads and two

real workloads, we have demonstrated that HPMR improves

the overall performance by up to 73% compared to the native

Hadoop.

As the next step, we plan to evaluate a more complicated

workload such as HAMA [5]. HAMA is a parallel matrix

computation package based on the MapReduce programming

model which supports linear algebra, computational fluid

dynamics, statistics, graphic rendering, and many more. Al-

though HAMA is in very early stage of development, it is

currently available as an official open-source Apache incubator

project, in which the authors are actively participating.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers and Yahoo! Search
Engineering team for their support and collaboration. Especially
Heewon Jeon and Seung Park gave us impressive intuitions to initiate
this work.

This work was supported by the IT R&D program of MKE/KEIT.
[2009-F-039-01, Development of Technology Base for Trustworthy
Computing]

REFERENCES

[1] J. Dean and S. Ghemawat. MapReduce:Simplified Data Processing on
Large Clusters. In the Proceedings of the 6th Symposium on Operating
Systems Design and Implementation, Dec. 2004.

[2] S. Ghemawat, H. Gobioff, et al. The Google file system. In the
Proceedings of 19th Symposium on Operating Systems Principles, Oct.
2003.

[3] Hadoop: http://hadoop.apache.org/
[4] Hadoop On Demand: http://hadoop.apache.org/core/docs/r0.18.3/hod.html
[5] HAMA: http://incubator.apache.org/hama/
[6] E. Nightingale, P. Chen, et al. Speculative execution in a distributed file

system. ACM Transactions on Computer Systems, Nov. 2006.
[7] C. Olston, B. Reed, et al. Pig Latin: A Not-So-Foreign Language for

Data Processing. In the Proceedings of the ACM SIGMOD international
conference on Management of data, June 2008.

[8] M. Zaharia, A. Konwinski, et al. Improving MapReduce Performance in
Heterogeneous Environments. In the Proceedings of the 8th Symposium
on Operating Systems Design and Implementation, Dec. 2008.

[9] M. Isard, M. Budiu, et al. Dryad: Distributed Data-Parallel Pro-
grams from Sequential Building Blocks. Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, Mar.
2007.

[10] R. Lammel. Googles MapReduce Programming Model. Revisited. Sci-
ence of Computer Programming, July 2007.

[11] H. Yang, A. Dasdan, et al. Map-Reduce-Merge: Simplified Relational
Data Processing on Large Clusters. In the Proceedings of the ACM
SIGMOD international conference on Management of data, June 2007.

[12] M. Burrows, The Chubby lock service for loosely-coupled distributed
systems. In the Proceedings of In the Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, Nov. 2006.

[13] G. Blelloch. Programming parallel algorithms. In Communications of
the ACM, Mar. 1996.

[14] A. Fox, S. D. Gribble, et al. Cluster-based scalable network services. In
ACM SIGOPS Operating Systems Review, Dec. 1997.

[15] J. Larus and M. Parkes. Using cohort scheduling to enhance server
performance. In the Proceedings of the USENIX Annual Technical
Conference, June 2002.

[16] V. Padmanabhan and J. Mogul. Using predictive prefetching to improve
world wide web latency. In Proceedings of the ACM SIGCOMM
Conference, July 1996.

[17] J. Vitter and P. Krishnan. Optimal prefetching via data compression.
Journal of the ACM, Sep. 1996.

[18] T. Kroeger and D. Long. Design and Implementation of a Predictive
File Prefetching Algorithm. In the Proceedings of the USENIX Annual
Technical Conference. June 2001.

[19] P. Cao, E. Felten, et al. A study of integrated prefetching and caching
strategies. In the Proceedings of the SIGMETRICS Conference, May
1995.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on December 11, 2009 at 10:32 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

