
FlexRPC: A Flexible Remote Procedure Call
Facility for Modern Cluster File Systems

Sang-Hoon Kim, Youngjae Lee, Jin-Soo Kim

Division of Computer Science,
Korea Advanced Institute of Science and Technology (KAIST)

Daejeon 305-701, South Korea
{sanghoon, yjlee}@camars.kaist.ac.kr, jinsoo@cs.kaist.ac.kr

Abstract— The concept of Remote Procedure Call (RPC) was
proposed more than 30 years ago. Although various RPC systems
have been studied and implemented, the existing RPC systems
lack many crucial features and flexibility required for building
modern cluster file systems.

This paper presents FlexRPC, a flexible user-level RPC system
that enables to develop high-performance cluster file systems
easily. FlexRPC ensures client-side thread-safeness and fully sup-
ports multithreaded RPC servers. Parallel and serial multicasting
mechanisms allow for implementing sophisticated replication in
modern cluster file systems. The remote procedure can be invoked
using both UDP and TCP transports with at-most-once semantics.
The concurrent call requests are handled by a set of worker
threads on the client and server side where the number of
workers varies dynamically according to the request rate. In
addition, the semantics and the specification of remote procedures
are designed to be as close as possible to SunRPC.

The experimental results show that FlexRPC improves both
latency and bandwidth significantly in spite of added function-
alities. We also demonstrate the performance and the flexibility
provided by FlexRPC by building working prototype of cluster
file system called Kadoop on top of FlexRPC.

I. INTRODUCTION

Remote Procedure Call (RPC) is widely used to reduce the
complexity and the development cost in building distributed
systems. The goal of RPC is to make a remote procedure call
as simple as any local procedure call. Remote procedure calls
resemble local procedure calls both in syntax and in semantics
so that the developer can easily invoke remote procedures over
a variety of transports and physical networks.

The idea of Remote Procedure Call (RPC) has been dis-
cussed in the literature since at least as far back as 1976 [1].
The design possibilities have been examined in Nelson’s
doctoral dissertation [2] and Xerox developed several full-scale
implementations such as Courier RPC [3] and Cedar RPC [4]
in the early 1980’s. The concept of RPC became popular
as Sun Microsystems first implemented SunRPC on Unix
platform. Since SunRPC (now called ONC RPC) specification
was standardized as Internet RFC documents [5][6], various
RPC mechanisms and implementations have been studied over
the past 30 years to reduce the overhead [7][8] or to provide
enriched calling semantics [9][10][11]. RPC has been the
basis for building distributed systems, especially for many
distributed file systems such as Sun’s Network File System
(NFS) [12], Andrew File System (AFS) [13], and Coda [14].

The current trend in building large-scale parallel or dis-
tributed file systems is to use a cluster of low-cost com-
modity hardware. For example, Lustre [15] is a cluster file
system which aims at serving clusters with 10,000’s of nodes,
petabytes of storage, and 100’s of GB/sec bandwidth. The
Google File System (GFS) [16] is a scalable distributed file
system for large distributed data-intensive applications. GFS
consists of hundreds or even thousands of storage machines
built from inexpensive commodity parts. The Hadoop Dis-
tributed File System (HDFS) [17] is a fault-tolerant scalable
file system whose design is largely affected by GFS. HDFS is
a distributed file system component of Hadoop, an open source
project that supports distributed applications running on large
clusters of commodity computers that process huge amounts
of data.

While we develop our own large-scale cluster file system,
we find that the existing RPC systems lack many crucial
features. We have identified the following requirements that
are considered necessary for implementing modern cluster file
systems.

• Client-side thread-safeness.
Due to the prevalent use of threads for lightweight
concurrent computing, it should be allowed for multiple
threads to invoke the same remote procedure on the client
side without any problem.

• Support for multithreaded RPC server.
The RPC server should be able to process the incoming
requests concurrently using a number of server threads.
The multithreaded RPC server not only achieves better
throughput but also helps to exploit the current trend of
using multiple processors or multi-core processors [20].

• Support for various calling patterns.
Apart from the typical RPC model based on a sim-
ple request/reply pattern, modern cluster file systems
also require more complicate calling patterns. As most
cluster file systems rely on low-cost commodity hard-
ware, component failures are the norm rather than the
exception [16]. A common strategy to cope with such
failures is to use replication, where the same file contents
are replicated across multiple storage servers. A client
may contact several storage servers to broadcast the file
contents or to get the current state of each replica, whose



TABLE I

A COMPARISON OF KEY FUNCTIONALITIES IN VARIOUS RPC SYSTEMS.

RPC systems Client-side Multithreaded Other calling Semantics (on UDP) Transports

thread-safeness RPC Server patterns supported supported
Linux SunRPC [18] Yes No – none TCP, UDP
Solaris SunRPC [19] Yes Yes – none TCP, UDP
HP/Apollo RPC [11] Yes Yes – maybe, at-least-once, at-most-once UDP

RPC2 [8] No Yes parallel at-most-once UDP
ASTRA [10] No Yes asynchronous at-most-once TCP, UDP

FlexRPC Yes Yes parallel, pipelined at-most-once TCP, UDP

communication pattern should be handled efficiently by
the underlying RPC layer.

• Support for at-most-once semantics.
With the at-most-once semantics, the client retries the
RPC call until it gets back a reply, and the server
suppresses duplicated calls to make sure the call is not
executed multiple times. It is desirable for RPC layer to
provide the at-most-once semantics especially when some
of remote procedures are not idempotent.

• Support for various transports.
Two representative transport protocols in the Internet are
UDP and TCP. Although RPC over UDP usually shows
lower latency due to the lack of connection establishment,
there is a limitation on the size of data that can be carried
in a single UDP packet and no error handling is per-
formed. Thus, UDP is suited to simple RPC calls with a
small amount of argument or result. On the contrary, RPC
over TCP exhibits better throughput especially when a
large amount of data must be transferred. The diversity in
the application characteristics necessitates simultaneous
support for both UDP and TCP transports in the RPC
system.

In this paper, we present a new RPC facility called FlexRPC.
FlexRPC meets all the aforementioned requirements while
providing greater flexibility for building modern cluster file
systems. FlexRPC ensures client-side thread-safeness and
fully supports multithreaded RPC servers. Parallel and serial
multicasting mechanisms enable to implement sophisticated
replication easily in modern cluster file systems. The same
remote procedure can be invoked using both UDP and TCP
transports with at-most-once semantics. In addition, the se-
mantics and the specification of remote procedures in FlexRPC
are designed to be as close as possible to SunRPC, which
lessens learning cost and migration effort.

According to our experimental evaluations, FlexRPC shows
significant improvement on latency and throughput in spite of
added functionalities. The latency is reduced by up to 68%
over UDP and by up to 79% over TCP compared to SunRPC.
The effective bandwidth of parallel multicasting in FlexRPC
has been improved by up to 79% compared to MultiRPC in
RPC2. We also find that serial multicasting provides scalable
bandwidth as the number of threads increases.

The rest of this paper is organized as follows. Section II
reviews available RPC systems and their functionalities. Sec-

tion III analyzes several issues related to the design of RPC
system. Section IV presents the architecture and implemen-
tation details of FlexRPC. We will analyze the experimental
results in Section V and draw a conclusion in Section VI.

II. RELATED WORK

A survey on the early RPC systems has been conducted by
Tay and Ananda [21][22]. SunRPC was introduced in 1981 by
Sun Microsystems to extend the boundary of procedure call
to remote hosts. It has been used as the basis for NFS [12]
and now it is called ONC (Open Network Computing) RPC.
The implementation of SunRPC was ported to various plat-
forms including Solaris, Linux, and Windows. SunRPC uses
portmapper that helps to locate service ports and batching RPC
allows the caller to make several consecutive RPC requests
without waiting for the response from the callee.

HP/Apollo RPC [11] was developed by HP/Apollo as part
of the Network Computing Architecture. HP/Apollo RPC
provides a rich set of RPC calls for programmers including
a normal synchronous RPC, broadcast RPC, maybe RPC, and
brodcast/maybe RPC. The maybe RPC does not expect any re-
sults back from server, and the last three types of RPC must be
a request to an idempotent procedure. In addition, HP/Apollo
RPC supports call abortion and callback mechanism which are
found rarely from other RPC implementations.

Besides the traditional request/reply calling pattern, the need
for supporting other RPC calling patterns has emerged during
the development of various distributed file systems. CMU’s
RPC2 [8] supports MultiRPC which sends RPC requests to a
group of callees in parallel. The receiver of a MultiRPC call
cannot distinguish that call from a normal RPC as it is fully
transparent to the callee.

ASTRA [10] exploits asynchronous RPC calling pattern.
The request to the callee returns immediately and later the
RPC system notifies the completion of the call to the caller
by invoking the registered callback. The implementations of
SFS [23], Chord [24], and LBFS [25] are all based on the
similar asynchronous RPC mechanism that efficiently supports
large numbers of simultaneous outstanding RPCs. Note that
the functionality of MultiRPC can be also simulated by
asynchronous RPCs.

GFS [16] and HDFS [17] replicate file contents among stor-
age servers in a pipelined fashion in order to fully utilize each
machine’s network bandwidth and to minimize the latency to
push through all the data. To the authors’ best knowledge,



Callee CalleeCalleeCallee CalleeCalleeCallee

a) Single call b) Parallel multicasting c) Serial multicasting

Result

ArgumentCaller Caller Caller

Fig. 1. Calling patterns in RPC

there has not been any RPC system that supports this type of
calling pattern.

Table I compares FlexRPC with the existing RPC systems.
We can observe that none of the existing RPC systems meet
our requirements for building modern cluster file systems
described in Section I. It was frustrating for us to find that
the current SunRPC implementation in Linux does not support
multithreaded RPC server. RPC2 and ASTRA do not satisfy
client-side thread-safeness, hence cannot be used with POSIX
threads. Both Solaris SunRPC and HP/Apollo RPC provide
limited support for calling patterns, calling semantics, or
available transports.

III. DESIGN ISSUES

A. Multithreading

Using multiple threads on the server side is an effective
way in handling large numbers of concurrent requests from
clients [26]. The SunRPC ported on Linux [18] stores socket
descriptors that accept requests from callees in the thread-
specific area. Consequently, assigning multiple threads to a ser-
vice is structurally impossible and a service must be served by
a single thread. The SunRPC implementation on Solaris [19]
supports the multithreaded server model. Dynamically created
threads share the socket descriptor set safely so that the server
multiplexes and handles each service request independently.

Even though the callee is capable of servicing multiple call
requests simultaneously, the RPC layer on the client side may
not be thread-safe, i.e., only a single thread must invoke a
call at any give time. Other caller threads should be serialized
waiting for the completion of the pending RPC initiated by
other thread, which incurs a long waiting time to make an
RPC call.

The SunRPC implementations of Linux and Solaris are
thread-safe. Both implementations guard shared variables with
synchronization objects. RPC2 [8] makes use of its own
LWP (lightweight process) package that allows to implement
MultiRPC with multiple non-preemptive threads of control.
The LWP package in RPC2 is, however, not compatible
with POSIX threads (Pthreads) and RPC2 cannot be used
for Pthreads-based applications. ASTRA [10] defines data
structures used for receiving results as global variables without
any protecting lock. Therefore, ASTRA is not thread-safe on
the client side.

B. Calling Patterns

This paper primarily focuses on three types of calling
patterns that arise during the development of modern cluster
file systems.

A single call is the traditional request/reply-based calling
pattern which is conceptually similar to a local procedure call.
A caller requests a remote procedure to a single callee as
shown in Figure 1(a).

When the same RPC request is delivered to multiple callees,
we call it a multicasting call. In the multicasting call, the caller
invokes a remote procedure with the same argument, and the
call is completed if the caller receives the results from all the
callees. We denote the number of destination callees as the
multicasting degree. The need for multicasting calls arises in
many cases. For example, the quorum consensus replication
method [27] requires multiple sites to be contacted to perform
an operation, and many P2P systems use multicasting calls to
probe available nodes and files. Supporting multicasting calls
in the RPC layer eases the implementation of such algorithms
and systems.

The multicasting call can be divided into two categories:
parallel multicasting and serial multicasting. In terms of call-
ing semantics, parallel multicasting and serial multicasting are
identical. The main difference comes from the way arguments
and results are delivered, as illustrated in Figure 1(b) and (c).

In parallel multicasting, the caller delivers all the arguments
to multiple callees at once and gathers the result from each
callee to complete the request. On the other hand, in serial
multicasting, the caller and callees cooperate to deliver the call
request; the caller sends a request to one of the callees and the
callee forwards the received request to the next callee forming
a delivery chain. After the request is processed, each callee
replies to the requester by adding its own result to the results
obtained from the successive callee on the chain. Eventually,
the caller receives the collected results from the first callee on
the chain.

Parallel multicasting can shorten the latency at the expense
of increased network bandwidth usage as the request is sent
to multiple callees simultaneously. The network between the
caller and callees can be easily saturated if the payload size
or the multicasting degree increases. The Coda distributed
file system [14] heavily relies on parallel multicasting via
MultiRPC in order to maintain consistency among replicas.

Serial multicasting reduces the network traffic between the
caller and callees by a factor of the multicasting degree since
the caller transmits the request only once. As described in
Section II, GFS [16] and HDFS [17] use serial multicasting
to maximize write throughput while making a set of replicas.
Since the propagation delay is short and the bandwidth is wide
within a rack, the well-organized serial transfer achieves high
throughput. However, serial multicasting incurs ambiguous
semantics on partial success; the failure in the middle of
delivery chain impedes the exact failure detection.

Asynchronous RPC provided by ASTRA [10] is another
interesting calling pattern in which the caller does not wait for
the completion of the request. Although asynchronous RPCs



can be used to implement parallel and serial multicasting, we
do not see the support for asynchronous calling pattern is
an essential feature for modern cluster file systems since it
is difficult to use and error-prone due to the presence of a
callback mechanism.

C. Network

To cope with different application requirements, the RPC
system must be able to run over a variety of transport
protocols. The representative transport protocols used in the
Internet are UDP and TCP. UDP is a stateless, unreliable
transport protocol where packets may arrive out of order,
appear duplicated, or go missing without notice. UDP is meant
to provide a low-overhead transport and useful for servers
that answer small queries from huge numbers of clients. The
maximum size of a UDP packet is limited to 64 KB including
the header size. On the contrary, TCP guarantees reliable
and in-order delivery of data from sender to receiver. In
general, TCP incurs more overhead than UDP due to explicit
connection establishment and added features such as flow
control and congestion control.

If UDP is used, the system must handle or define semantics
on packet loss. Since the packet loss is not reported to the
sender nor the receiver, the system must detect the packet
loss in some way. The widely used approach is to retransmit
the same packet on timeout. If the call is idempotent or
the application requires at-least-once semantics, the retrans-
mission approach is enough. However, when the RPC layer
wants to provide at-most-once or exactly-once semantics, the
retransmission alone cannot be a solution to the packet loss
problem. As Table I shows, SunRPC does not provide any
mechanism for the packet loss under UDP. In this case,
the application should implement its own module on top of
the RPC layer that can guarantee the needed call semantics.
Many other RPC systems such as RPC2 and ASTRA have
the support for at-most-once semantics in which case the
application can be simplified without paying attention to lost
packets.

If TCP is used, the connection between the caller and the
callee must be established before the actual communication. In
SunRPC, the connection is established when an RPC handle
is created, and it is closed when the handle is destroyed. Since
opening a connection takes relatively long time due to 3-way
handshaking, it is desirable to cache previous connections in-
side the RPC layer. The connection remains alive temporarily
after the corresponding handle is destroyed, and it can be used
for other RPC requiring the connection to the same callee.

IV. ARCHITECTURE AND IMPLEMENTATION OF FLEXRPC

This section explains the architecture and implementation
details of FlexRPC. As shown in Figure 2, FlexRPC consists of
four main modules: calling workers, handle manager, service
workers, and response cache.

A. Calling Workers

FlexRPC uses multiple worker threads on the client side
to invoke parallel multicasting calls. A parallel multicasting

Handle
Manager

Callers

Calling
Workers

Call Request Queue

Service
Handler

Service
Handler

Service
Handler

Response
Cache

Service 
Workers

Network

Fig. 2. FlexRPC system architecture

of degree n is divided into n single calls, called subcalls.
The main caller thread puts the multicasting request of degree
n into the call request queue if n is greater than one. The
caller thread processes one of subcalls and the remaining n−1
subcalls are issued by other calling workers. After finishing the
subcall, the caller thread checks the completion status of other
subcalls. If there are pending subcalls that are not finished
yet, the caller thread waits for the completion signal from
the calling workers. When all the subcalls are completed or
the completion signal is raised, the caller thread returns from
FlexRPC with the results.

Calling workers monitor the call request queue waiting for
any subcall request. If some requests are available in the
queue, a calling worker increases the issued subcall counter
and processes the subcall. Each subcall is handled as a normal
single call where the issuing worker thread is blocked until
the response arrives. After receiving the reply from the callee,
the worker thread increases the completed subcall counter in
the call request. The result is stored in pre-allocated area
designated by the caller. When the completed subcall counter
reaches the multicasting degree, the parallel multicasting call
is finished and the last worker sends a completion signal to
the caller thread.

The call request queue maintains a list of request entries.
Each request entry contains the location of the buffer, the mul-
ticasting degree, the issued subcall counter, and the completed
subcall counter. The calling worker which finishes the last
subcall of the request dequeues the corresponding entry from
the call request queue.

Insufficient number of calling workers will degrade system
performance because some requests can be blocked due to the
lack of available worker threads. On the other hand, the large
number of calling workers will consume system resources too
much. Hence, FlexRPC dynamically changes the number of
calling workers on demand according to the request rate.

The calling workers are classified into active workers and
dormant workers. Active workers represent the threads that
are actively processing some subcall requests. The rest of the
workers are called dormant workers. During inserting a request



entry to the call request queue, if the number of dormant
workers is smaller than the multicasting degree minus one,
the caller thread spawns more workers. On the other hand, if
a worker thread remains as a dormant worker for a specified
period of time, the thread terminates itself. This self-governing
mechanism for calling workers avoids the lack of workers yet
reducing the cost of keeping too many idle workers.

In FlexRPC, the calling workers are implemented with
Pthreads. Hence, FlexRPC inherently guarantees thread-
safeness on the client side and can be used with any Pthreads-
based applications.

B. Handle Manager

Each call requires a socket (for UDP) or a connection (for
TCP) to the callee. In FlexRPC, sockets and connections are
encapsulated and stored in handles. The caller is not aware of
any socket or connection. The caller simply acquires handles
from FlexRPC and invokes one or more RPCs using the
handles. And then the caller returns the handles back to the
FlexRPC layer. Similarly, callees also use the handle notation
for sockets or connections.

The handle manager is a module which manages sockets
and connections. The handle manager reduces socket man-
agement overhead and connection establishment overhead by
pooling a set of handles. It makes a decision on when a new
connection is established or when the existing connection is
closed.

Handles are cached into the handle pool which is indexed by
the caller IP address and the port number. Upon the request
for a handle from the caller, the handle manager looks up
the handle pool to find the same handle created already. If
there is such a handle, the handle manager checks out it from
the handle pool and returns it to the caller. If there is no
handle available, the handle manager creates a new handle
by establishing a connection to the callee. If the caller returns
the handle back, the handle manager inserts it into the handle
pool.

Since the number of handles can be quite large, there is a
configurable upper limit to the number of cached handles. If
the number of cached handles reaches the limit, the handle
manager picks up the least recently used handle and closes it.

Note that handles can become stale due to node crash or
network problem while they are cached by the handle manager.
The handle manager does not monitor the individual status of
each handle, but invalidates related handles together when one
of the existing handles becomes stale. During an RPC request,
the FlexRPC layer communicates with the callee via the socket
connection maintained inside the handle. If the connection
terminates abnormally, FlexRPC sets a flag which indicates
the handle is invalidated and returns an error code to the
caller. Then the caller returns the handle back to the handle
manager. When the handle is returned, the handle manager
checks the flag. If the flag is set, all the handles in the handle
pool connected to the same callee are invalidated, i.e., the
handles are removed from the handle pool and destroyed. This
prevents the caller from acquiring invalid handles. The handle

manager cannot immediately invalidate active handles which
are checked out from the handle pool and are being used by
some applications. This normally does not pose any problem
since the connection error will be propagated to the active
handles with the same callee, and they eventually get returned
to the handle manager.

C. Service Workers

FlexRPC supports multithreaded RPC server using a set
of service workers. The service worker monitor a set of
socket descriptors using select() system call. The socket
descriptor set is updated whenever a new RPC service is
registered, a new caller connects to the server, or an existing
connection is closed. If there is a call request, the service
worker dispatchs the request and handles it. The incoming
packet is analyzed and the designated procedure is executed
by the service worker. Due to service workers, multiple call
requests can be handled concurrently on the server side.

The number of service workers is adjusted dynamically
similar to the calling workers on the client side (cf. Section IV-
A). That is, the service workers are classified into active
and dormant workers and a new worker is spawned when
there is not enough dormant workers. The dormant worker
is terminated after the specified timeout.

FlexRPC places a restriction on the payload size over UDP
since the maximum packet size under UDP is limited to
64 KB. FlexRPC uses 40 bytes for its own header and another
8 bytes are used by UDP header. Thus, the maximum payload
size for FlexRPC over UDP is 65,488 bytes. A single UDP
request is received by recv() system call at once and it is
processed immediately by the service worker.

For TCP, FlexRPC supports unlimited payload size. The
payload over TCP can be divided into several packets. In that
case, a partial payload is received by non-blocking I/O scheme.
Since the TCP layer maintains the order of TCP packets, each
packet is simply appended to the request argument buffer. The
argument size is determined by the request header. If the whole
argument is received, the service worker begins to process the
call request. Since multiple RPC services can be registered, the
service worker first finds the corresponding service handler of
the request and then invokes the registered service handler
with the received argument. As soon as the service handler
finishes processing the request, the control comes back to the
FlexRPC layer and the service worker sends the result back
to the caller.

If the type of the request is serial multicasting, the payload
must be forwarded to the successive callee on the delivery
chain. The maximum length of the delivery chain is config-
urable and currently it is set to 16 by default. There are two
forwarding strategies for serial multicasting. One is the store-
and-forward scheme which forwards the call payload after
receiving the whole payload from the sender. The other is
the pipelining scheme which forwards the payload as soon as
possible even if only a partial payload is available. The store-
and-forward scheme can be easily implemented by invoking an
RPC to the next callee with the received argument. However,



Caller Callee

Req0

Req0

Res0

Res0

(a) Hit response cache

Caller Callee

Req0

Req0

Res0

(b) Ignore duplicated request on
processing request

Fig. 3. Response cache on duplicated request

a series of calls is not overlapped since at any given time,
only a single callee can forward the argument to another
callee. On the contrary, the pipelining scheme can reduce
the call latency by overlapping the payload transfer time
among the caller and callees. With this reason, FlexRPC adopts
the pipelining scheme in implementing serial multicasting.
FlexRPC supports the pipelined serial multicasting for TCP
only since it is originally designed to replicate a large file
over TCP efficiently.

Since the packet can be corrupted during transit over the
network, it is necessary to check the integrity of the received
packet. In FlexRPC, the entire payload is verified by CRC32
checksum. There is a 32-bit checksum field in the header that
is computed by the sender and checked by the receiver. If the
mismatch is found on the checksum, the packet is recovered
by requesting retransmission to the sender.

D. Response Cache

As we described in Section III-C, the simple retransmission
strategy on packet loss merely provides at-least-once semantics
while the support for at-most-once semantics is desirable.
FlexRPC employs response cache to provide at-most-once
semantics at the RPC level.

The response cache stores the recent results of the com-
pleted calls and detects duplicated requests. All the requests
over UDP go through the response cache. The service worker
asks the response cache to check the duplication of the request
prior to processing of the incoming call. If the response cache
finds the call is duplicated, it returns the result stored in the
cache instead of executing the service handler again as shown
in Figure 3(a). The service worker then sends the result back
to the caller. In case the duplicated request is detected but
the result is not ready meaning the call processing is still in
progress, the response cache returns a special code that makes
the service worker to ignore the request. This is not harmful as
the result will be generated by the previous call and sent back
to the caller eventually. Figure 3(b) illustrates this scenario.

The response cache detects the duplicated request with call
identifier. Each call has its own unique call identifier that
consists of caller IP address (cid), process ID (pid), handle

ID (hid), and transaction ID (tid). The cid and pid enable
multiple callers to coexist in a host. The tid is used to identify
each request. The unique tid is issued on each call and
the same tid is used during retransmission. Therefore, if a
request uses the call identifier that is used already, it indicates
the request is retransmitted. The hid helps to determine the
completed requests so that the response cache keeps only the
latest requests actually in progress. Since a handle is used by a
dedicated caller at any given time and every RPC in FlexRPC
is synchronous, the handle serves exactly one request at a time.
Therefore, if the tid is changed for the given hid, it means
the request with the previous tid has been completed and
the cache entry of the old request can be removed from the
response cache.

The recent requests are stored in the response cache indexed
by the call identifier. The requests with the same cid an
pid are clustered to check related requests fast. In order to
minimize resource usage, the response cache stores only the
result discarding the argument. In addition, the lifetime of each
cache entry is checked periodically and obsoleted entries are
removed from the response cache.

E. IDL and Stub Generator

Usually, the specification for remote procedures is described
in Interface Definition Language (IDL). IDL focuses on the
interface and the type of the argument and the result rather
than the internal of the procedure. Converting an IDL file into
the source files in the target language is automatically done by
a stub generator. For example, SunRPC uses a stub generator
called rpcgen which generates client-side stubs and server-
side stubs with an appropriate header file from a specification
written in RPC Language. These stubs are compiled and
integrated with the application.

FlexRPC uses the IDL identical to the SunRPC’s. As
Table II shows, most of FlexRPC interfaces are named after
SunRPC interfaces. Therefore, FlexRPC is straightforward to
understand and easy to learn. FlexRPC’s stub generator was
also built by modifying SunRPC’s rpcgen.

V. EVALUATIONS

A. Methodology

The evaluation of FlexRPC has been performed on eight
Linux machines. Each machine consists of 3GHz Pentium D
processor, 2GB of main memory, and an on-board Broadcom
NetXtreme BCM5721 Gigabit Ethernet network interface card.
They are connected with a 3com Baseline 2824 Gigabit
Ethernet switch. We turned on the HyperThreading option in
the processor and the SMP version of Linux kernel 2.6.15-1
was used as operating system. A machine is dedicated to the
caller and the rest of the machines are used as the callees.

We have compared the performance of FlexRPC with that
of SunRPC in glibc 2.4-4 and RPC2 1.27-1. We have also built
working prototype of a cluster file system called Kadoop on
top of FlexRPC. We present the file read/write performance
of Kadoop and demonstrate the flexibility of FlexRPC.



TABLE II

A COMPARISON BETWEEN SUNRPC AND FLEXRPC

Category Purpose SunRPC FlexRPC
Types Handle CLIENT frpc handle

Request Descriptor svc req frpc request

Interfaces Get Connection CLIENT * clnt create() frpc handle * frpc createhandle()
Release Connection void clnt destroy() void frpc destroyhandle()
Manage Connection bool t clnt control() bool t frpc control()

Invoke RPC int clnt call() int frpc call()
Register service void registerrpc() int frpc register program()

Start callee service void svc run() void frpc svc run()

0

100

200

300

400

500

600

0 1024 2048 4096 8192 16384

L
a
te
n
cy
 (
M
ic
ro
se
co
n
d
)

Argument Size (Byte)

SunRPC

RPC2

FlexRPC w/o 

Response Cache

FlexRPC

(a) UDP

0

200

400

600

800

1000

1200

0 1024 2048 4096 8192 16384

L
a
te
n
cy
 (
M
ic
ro
se
co
n
d
)

Argument Size (Byte)

SunRPC

FlexRPC

(b) TCP

Fig. 4. Single call latency

B. Single Call Latency

We analyze the average latency by measuring the total
elapsed time to complete 100 RPCs with six different argument
sizes varying from 0 to 16 KB over UDP and TCP. The
target remote procedure does nothing returning zero-byte result
to the caller immediately. Each experiment was repeated 10
times. The payload was chosen to be opaque data type and
all authentication and encryption options were turned off to
minimize the effect of XDR (eXternal Data Representation)
and encryption layer. For UDP, the performance of FlexRPC
without response cache has been also measured to identify the
overhead of response cache.

Figure 4 summarizes the results. The standard deviations
are displayed with error-bars. Note that SunRPC and RPC2
are incapable of handling argument sizes larger than 16 KB
and 8 KB, respectively, on UDP. In addition, we are unable
to show the results of RPC2 on TCP since RPC2 does not
support TCP transport.

We can observe from Figure 4 that FlexRPC shows the
shortest latency for all the tested cases. RPC2 suffers from
the longest latency per call possibly due to the complex
inner structure and protocols. Compared to SunRPC, FlexRPC
improves the latency by up to 68% on UDP and by up
to 79% for TCP. The use of portmapper and the lack of
handle manager significantly increases the latency of SunRPC
especially for TCP.

The response cache in FlexRPC places very little overhead
on the latency. On average, only 5 microseconds is added to the
latency due to the response cache regardless of the argument
size. This amount of latency is negligible considering that the
latency goes beyond 100 microseconds.

C. Single Call Bandwidth

The results obtained in Section V-B can be used to calculate
the bandwidth of single calls. Figure 5 depicts the sum of the
transmitted argument divided by the elapsed time. We do not
count the zero-byte result. Figure 5 includes additional results
of argument sizes larger than 16 KB for TCP.

It is obvious that the shorter latency results in the higher
bandwidth. As a result, FlexRPC exhibits the highest band-
width. Note that FlexRPC over UDP and FlexRPC over TCP
show nearly the same bandwidth while it is not the case
for SunRPC. This is because the connection overhead is
eliminated in FlexRPC due to handle caching.

Figure 6 illustrates the aggregated bandwidth when the
number of concurrent callers varies from one to six threads
with 16 KB argument size. The aggregated bandwidth is
defined as the sum of the bandwidth of each caller. We have
measured the aggregated bandwidth for FlexRPC only because
SunRPC cannot handle concurrent RPC requests and RPC2
does not satisfy client-side thread-safeness. As Figure 6 shows,
FlexRPC utilizes full network bandwidth if the number of
concurrent threads becomes larger than three.



0

5

10

15

20

25

30

35

40

1024 2048 4096 8192 16384

B
a
n
d
w
id
th
 (
M
B
/
se
c)

Argument size (Byte)

SunRPC

RPC2

FlexRPC

(a) UDP

0

10

20

30

40

50

60

70

80

90

1024 2048 4096 8192 16384 32768 65536

B
a
n
d
w
id
th
 (
M
B
/
se
c)

Argument size (Byte)

SunRPC

FlexRPC

(b) TCP

Fig. 5. Single call bandwidth usage

0

20

40

60

80

100

120

1 2 3 4 5 6

A
g
g
re
g
a
te
d
 B
a
n
d
w
id
th
 (
M
B
/
se
c)

Threads

UDP

TCP

Fig. 6. Aggregated bandwidth in FlexRPC (16 KB argument size)

D. Multicasting Call Bandwidth

We have measured the effective bandwidth in order to
quantify the performance of multicasting calls. The effective
bandwidth is calculated by the sum of the argument size
divided by the time to complete multicasting calls. We invoked
100 multicasting calls to three callees (i.e., multicasting degree
of three) and repeated the same experiment ten times. For
parallel multicasting, the actual bandwidth used by the caller is
three times of the effective bandwidth since the same argument
is transferred to three callees in parallel.

Figure 7 depicts the effective bandwidths of SunRPC,
RPC2, and FlexRPC. SunRPC does not support any kind of
multicasting call and the results are obtained by making three
consecutive single calls. Recall that RPC2 does not support
TCP and FlexRPC implements serial multicasting over TCP
only.

From Figure 7, we can see that FlexRPC outperforms
SunRPC and RPC2 significantly in both UDP and TCP. The
effective bandwidth of parallel multicasting in FlexRPC over
UDP has been improved by up to 79% compared to MultiRPC
in RPC2. It is surprising that RPC2, whose MultiRPC facility

is specialized for parallel multicasting, achieves only marginal
benefit. Figure 7 shows that the design of FlexRPC based on
multiple calling workers is very lightweight and effective in
implementing multicasting calls.

In FlexRPC, parallel multicasting reveals better effective
bandwidth for argument sizes smaller than 16 KB, while serial
multicasting outperforms parallel multicasting for argument
sizes larger than 16 KB. This is because the congestion on
the network during parallel multicasting limits the overall
performance for large argument sizes. The situation becomes
worse as the number of concurrent callers or the multicasting
degree increases.

In Figure 8(a), we investigate changes in the aggregated
effective bandwidth as the number of concurrent callers varies
from one to ten in FlexRPC over TCP. The aggregated effective
bandwidth represents the sum of the effective bandwidth
shown by each caller. It is clear that even two concurrent
callers nearly saturate the whole network for 32 KB argu-
ment size in parallel multicasting. The aggregated effective
bandwidth is kept at about 37 MB/sec beyond the saturation
point. On the other hand, serial multicasting shows the scalable
aggregated effective bandwidth up to four concurrent callers.
Serial multicasting achieves up to 94 MB/sec which is 2.6
times better than parallel multicasting.

Figure 8(b) exhibits changes in the effective bandwidth as
the multicasting degree increases. We can notice that serial
multicasting outperforms parallel multicasting if the multicas-
ting degree is larger than one. Serial multicasting improves the
effective bandwidth by up to 35%.

The results in Figure 7 and Figure 8 indicate that, during
the development of cluster file systems, parallel multicasting
is best suited to metadata operations with small argument
sizes while serial multicasting is suitable for file replication
operations which require large argument sizes.

E. Performance of Prototype Cluster File System

To show the effectiveness of FlexRPC, we have built work-
ing prototype of a cluster file system on top of FlexRPC, called



0

5

10

15

20

25

1024 2048 4096 8192 16384

B
a
n
d
w
id
th
 (
M
B
/
se
c)

Argument size (byte)

SunRPC

RPC2

FlexRPC 

Parallel

(a) UDP

0

10

20

30

40

50

60

1024 2048 4096 8192 16384 32768 65536

B
a
n
d
w
id
th
 (
M
B
/
se
c)

Argument size (Byte)

SunRPC

FlexRPC 

Parallel

FlexRPC 

Serial

(b) TCP

Fig. 7. Effective bandwidth for multicasting calls

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

A
g
g
re
g
a
te
d
 B
a
n
d
w
id
th
 (
M
B
/
se
c)

Threads

Parallel

Serial

(a) Changes in the aggregated effective bandwidth (32 KB argu-
ment size with multicasting degree of three)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

E
ff
e
ct
iv
e
 B
a
n
d
w
id
th
 (
M
B
/
se
c)

Multicasting Degree

Parallel

Serial

(b) Changes in the effective bandwidth (single caller with 32 KB
argument size)

Fig. 8. Effective bandwidths of multicasting calls in FlexRPC over TCP

Kadoop. Kadoop is a port of HDFS [17] release 0.7.2 in C
language and supports almost the same requirement specifi-
cation of HDFS. Files are divided into 64 MB chunks and
the chunks are replicated over arbitrary number of datanodes.
Single namenode manages the metadata of the file system.
Namenode is recovered from failure with checkpointing and
write-ahead logging, and the chunks on failed datanode are
migrated to other live datanodes.

The communication layer of Kadoop is based on FlexRPC
over TCP. The replicas are distributed among datanodes using
serial multicasting. The whole system of Kadoop has been
built within a month by two developers. The total line count
of Kadoop is 7,834 lines where the line count of the file
system portion excluding the supplemental library is only
5,043 lines. The RPC-level support for connection manage-
ment and pipelined data transfer reduced the development cost
significantly.

We have measured the aggregated effective read and write
bandwidths of Kadoop. The write bandwidth is measured
by replicating one hundred 64 MB files to three datanodes.

Each file is replicated by 64 serial multicasting calls, where
each call sends out successive 1 MB of file contents. The
read bandwidth is obtained by reading randomly chosen file
1600 times out of one hundred written files. Each time the
target datanode is also selected randomly from three available
replicas. A file is read by 64 single calls in a unit of 1 MB. One
namenode and six datanodes are used for running Kadoop, and
one client initiates read and write requests using Kadoop DFS
library varying the number of concurrent threads from one to
five.

Figure 9 shows the resulting performance of Kadoop. The
read performance is scalable up to five concurrent threads
achieving nearly up to 100 MB/sec. The write performance
is, however, saturated to about 80 MB/sec mainly due to the
replication across three datanodes. Kadoop demonstrates that
FlexRPC is indeed a flexible, easy-to-use RPC facility for
building high-performance cluster file systems.

VI. CONCLUSION

This paper presents the design issues and implementation
details of FlexRPC. We have identified five crucial require-



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

B
a
n
d
w
id
th
 (
M
B
/
se
c)

Threads

Read

Write

Fig. 9. Aggregated effective read and write bandwidths of Kadoop

ments that are considered necessary for implementing modern
cluster file systems: client-side thread-safeness, support for
multithreaded RPC servers, support for parallel and serial mul-
ticasting calls, support for at-most-once semantics, and support
for various transports including UDP and TCP. FlexRPC is
designed to meet such requirements.

FlexRPC ensures client-side thread-safeness and fully sup-
ports multithreaded RPC servers. Parallel and serial multicast-
ing mechanisms allow for implementing sophisticated replica-
tion in modern cluster file systems. The remote procedure can
be invoked using both UDP and TCP transports with at-most-
once semantics. The concurrent call requests are handled by
a set of worker threads on the client and server side where
the number of workers varies dynamically according to the
request rate. In addition, the semantics and the specification
of remote procedures are designed to be as close as possible
to SunRPC.

Our experimental results show that FlexRPC improves both
latency and bandwidth significantly. The latency is reduced by
up to 68% over UDP and by up to 79% over TCP compared
to SunRPC. The bandwidth of parallel multicasting has been
improved by up to 79% compared to MultiRPC in RPC2. We
have also demonstrated the performance and the flexibility
provided by FlexRPC by building working prototype of cluster
file system called Kadoop on top of FlexRPC.

Using FlexRPC, we are currently developing a large-scale
high-performance cluster file system which runs on hundreds
of commodity hardware providing hundreds of terabytes of
aggregated storage capacity. Further optimization on FlexRPC
and the communication support between heterogeneous com-
puter systems are left as future work.

ACKNOWLEDGEMENT

This work was supported by NHN Corporation. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are the authors’ and do not necessarily reflect
those of the sponsor.

This work was also supported by the Korea Science and
Engineering Foundation (KOSEF) grant funded by the Korea

government(MOST) (R01-2007-000-11832-0)

REFERENCES

[1] J. E. White, A High-Level Framework for Network-Based Resource
Sharing. RFC707, The Internet Engineering Task Force, 1976.

[2] B. J. Nelson, “Remote Procedure Call,” Tech. Rep. CSL-81-9, Xerox Palo
Alto Research Center, 1981.

[3] X. Corp., “Courier: The Remote Procedure Call Protocol,” Xerox System
Integration Standard 038112, 1981.

[4] A. D. Birrell and B. J. Nelson, “Implementing Remote Procedure Calls,”
ACM Trans. on Computer Systems, vol. 2, no. 1, pp. 35–59, 1981.

[5] S. M. Inc., RPC: Remote Procedure Call Protocol Specification.
RFC1057, The Internet Engineering Task Force, 1988.

[6] R. Srinivasan, RPC: Remote Procedure Call Protocol Specification
Version 2. RFC1831, The Internet Engineering Task Force, 1995.

[7] B. N. Bershad, T. E. Anderson, and E. D. Lazowska, “Lightweight
Remote Procedure Call,” ACM Trans. on Computer Systems, vol. 8,
no. 1, 1990.

[8] M. Satyanarayanan, RPC2 User Guide and Reference Manual, Carnegie
Mellon University, 1991.

[9] M. Satyanarayanan and E. H. Siegel, “Parallel Communication in a
Large Distributed Environment,” IEEE Trans. on Computers, vol. 39,
no. 3, March 1990.

[10] A. L. Ananda, B. H. Tay, and E. K. Koh, “ASTRA - An Asynchronous
Remote Procedure Call Facility,” in Proc. 11th Int’l. Conf. on Distributed
Computing Systems, 1991.

[11] T. H. Dineen, P. J. Leach, N. W. Mishkin, J. N. Pato, and G. L. Wyant,
“The Network Computing Architecture and System: an Environment for
Developing Distributed Applications,” in Proc. 33rd IEEE Computer
Society Int’l Conference (Compcon), 1988, pp. 296–299.

[12] R. Sandberg, “Design and Implementation of the Sun Network Filesys-
tem,” Proc. USENIX 1985 Summer Conference, June 1985.

[13] J. Howard, “An Overview of the Andrew File System,” Tech. Rep. CMU-
ITC-88-062, 1988.

[14] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere, “Coda: A Highly Available File System for
a Distributed Workstation Environment,” IEEE Trans. on Computers,
vol. 39, no. 4, April 1990.

[15] Cluster File Systems, Inc., Lustre: A Scalable, High-Performance File
System, http://www.clusterfs.com.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
in Proc. 19th ACM Symp. on Operating Systems Principles, 2003.

[17] The Hadoop Opensource Project. [Online]. Available:
http://lucene.apache.org/hadoop/

[18] The GNU Operating System. [Online]. Available: http://www.gnu.org
[19] The OpenSolaris Project. [Online]. Available: http://src.opensolaris.org
[20] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,

“The Case for a Single-Chip Multiprocessor,” in Proc. 7th Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems, 1996, pp. 2–11.

[21] B. H. Tay and A. L. Ananda, “A Survey of Remote Procedure Calls,”
Operating Systems Review, vol. 23, no. 3, pp. 68–79, July 1990.

[22] A. L. Ananda and B. H. Tay, “A Survey of Asynchronous Remote
Procedure Calls,” Operating Systems Review, vol. 26, no. 2, pp. 92–
107, Apr. 1992.

[23] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel, “Separating
Key Management from File System Security,” in Proc. 17th ACM Symp.
on Operating Systems Principles, 1999.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications,” IEEE/ACM Trans. on Networking,
vol. 11, no. 1, pp. 33–46, 2003.

[25] A. Muthitacharoen, B. Chen, and D. Mazieres, “A Low-bandwidth
Network File System,” in Proc. 18th ACM Symp. on Operating Systems
Principles, 2001.

[26] R. von Behren, J. Condit, and E. Brewer, “Why Events Are a Bad Idea
(for High-Concurrency Servers),” in Proc. 9th Workshop on Hot Topics
in Operating Systems, 2003, pp. 19–24.

[27] M. Herlihy, “A Quorum-consensus Replication Method for Abstract
Data Types,” ACM Trans. on Computer Systems, vol. 4, no. 1, pp. 32–53,
1986.


