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Abstract

The Virtual Interface Architecture (VIA) is an industry
standard user-level communication architecture for system
area networks. The VIA provides a protected, directly-
accessible interface to a network hardware, removing the
operating system from the critical communication path. In
this paper, we design and implement a user-level Sockets
layer over VIA, named SOVIA (Sockets Over VIA). Our ob-
jective is to use the SOVIA layer to accelerate the existing
Sockets-based applications with a reasonable effort and to
provide a portable and high performance communication
library based on VIA to the application developers.

SOVIA realizes comparable performance to native VIA,
showing the minimum latency of 10.5�sec and the peak
bandwidth of 814Mbps on Giganet’s cLAN. We have ver-
ified the functional compatibility with the existing Sockets
API by porting FTP (File Transfer Protocol) and RPC (Re-
mote Procedure Call) applications over the SOVIA layer.
Compared to the Giganet’s LANE driver which emulates
TCP/IP inside the kernel, SOVIA easily doubles the file
transfer bandwidth in FTP and reduces the latency of call-
ing an empty remote procedure by 77% in RPC applica-
tions.

1. Introduction

Cluster systems consisting of commodity-off-the-shelf
(COTS) hardware components have become increasingly
attractive as platforms for high performance computation
and scalable internet servers [15, 5]. To enhance the com-
munication performance, many cluster systems employ sys-
tem area networks (SANs) operating at gigabit speed, such
as Myrinet, Gigabit Ethernet, SCI, etc. However, as net-
work hardware becomes faster, the software overhead be-
comes a significant portion of the total time to send a mes-
sage. More specifically, the traditional communication ar-
chitecture based on TCP/IP protocol suite is reported to fail
in delivering raw-hardware performance to the end user, due

to protocol overhead, context switching overhead, and data
copying overhead between the user and kernel space. As a
result, a number of user-level communication architectures
have been proposed that remove the operating system from
the critical communication path [19, 14, 16, 6].

The Virtual Interface Architecture (VIA) [7], promoted
by Compaq, Intel, and Microsoft, is an industry effort to
standardize user-level communication architectures. The
VIA specification defines a software interface for fully-
protected, user-level access to a network hardware. It can
be emulated by software on the existing network interface
cards (NICs). However, in order to achieve a true zero-
copy protocol, NICs need to be designed to support the
VIA mechanisms in hardware, in which case a portion of
the processing required to send or receive messages is off-
loaded to special hardware on the NIC. Examples of NICs
with such VIA-aware hardware include Giganet’s cLAN,
Fujitsu’s Synfinity, and Compaq’s ServerNet-II adapters.

The VIA specification provides a set of standard appli-
cation programming interface (API) in the form of a user-
level library called VIPL (VI Provider Library). Although
the VIPL can be directly used for application developments,
VIA is considered by many systems designers to be at too
low a level for application programming [1]. This is because
the VIA specification only provides a minimal set of prim-
itives mainly for user-level data transfer of a single mes-
sage, lacking many high-level features. Thus, we believe it
is desirable to implement another lightweight and portable
communication layer on top of the VIPL.

One of the possible candidates that can be used for
general communication interface is the Berkeley Sockets
API [12]. The Sockets API is a de facto standard for net-
work programming and provides a means for developing
applications which are independent of network protocols or
hardwares. In this paper, we design and implement a user-
level Sockets layer over VIA, named SOVIA (Sockets Over
VIA). Our goal is to support the communication model of
Sockets at user-level, without sacrificing the performance of
the underlying VIA layer.

The rest of the paper is organized as follows. Section 2
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overviews VIA and related work. In section 3 and 4, we
investigate several design issues for improving the perfor-
mance and compatibility of the SOVIA layer. Section 5
presents experimental results of microbenchmarks and two
real applications (FTP and RPC) executed over the SOVIA
layer. Finally, we conclude in section 6.

2. Background

2.1. Virtual Interface Architecture (VIA)

Figure 1 depicts the organization of the Virtual Inter-
face Architecture with four basic components: Virtual In-
terfaces, Completion Queues, VI Providers, and VI Con-
sumers. The VIA provides each consumer process with a
protected, directly-accessible interface to a network hard-
ware called Virtual Interface (VI). Each VI represents a
communication end-point and a pair of connected VIs sup-
port a bi-directional, point-to-point data transfer. The VI
Provider consists of a physical network adapter and a soft-
ware Kernel Agent, while the VI consumer represents the
user of a VI.

VI Consumers post requests, in the form of descriptors,
on the Work Queues to send or receive data. A descriptor
is a memory structure that contains all of the information
that the VI Provider needs to process the request, such as
pointers to data buffers. Each Work Queue has an associated
doorbell that is used to notify the network adapter that a new
descriptor has been posted to the Work Queue.

The completion of data transfer can be discovered ei-
ther by polling the head of the Work Queue, or by using
a blocking call in which a calling process is signaled upon
the completion of a descriptor. Alternatively, a user-defined
callback function (a notify function) may be executed when
a descriptor completes. A Completion Queue (CQ) allows
a VI Consumer to coalesce notification of descriptor com-
pletions from multiple Work Queues in a single location.

All the memory regions used for communication should
be registered prior to submitting the request. This is because
the VIA allows the NIC to read and write data directly from
and to parts of the user address space, thus enabling the
zero-copy protocol. When a memory region is not needed
any more for communication, it should be explicitly dereg-
istered, whereupon the pages are released and made avail-
able for swapping out.

Several VIA implementations are available for Linux
platforms. M-VIA (Modular VIA) [3] emulates the VIA
specification by software for legacy Fast Ethernet and Gi-
gabit Ethernet adapters. Berkeley VIA [4] implementation
supports the VIA specification on Myrinet [2] by modifying
its firmware. Finally, Giganet Inc. (now Emulex Corp.) has
developed a proprietary, VIA-aware NIC called cLAN [9].

Figure 1. The organization of the Virtual Inter-
face Architecture

2.2. Related Work

There can be several different approaches to support
Sockets API, as illustrated in figure 2. Figure 2(a) shows the
traditional communication architecture, in which the Sock-
ets layer is located on top of TCP and UDP protocol stacks.

A simple way to support Sockets API on VIA is to in-
sert an adaptation layer between IP and VI Kernel Agent,
as shown in figure 2(b). This is the approach taken by the
LANE (LAN Emulation) driver [8] supplied by Giganet for
its cLAN adapters. As IP is emulated on VIA, an IP ad-
dress is assigned to the VI-NIC and the system becomes
fully compatible with any of the existing IP-based network
applications. However, it is not straightforward to emulate
connectionless IP services on the connection-oriented VIA,
and applications still suffer from the overhead of TCP/IP
protocols.

The TCP/IP protocol stack is not required to transfer data
between two end-points on the same cluster if the physical
interconnect is reliable and provides transport-level func-
tionality. The overhead of TCP/IP protocols can be elimi-
nated on VIA by collapsing internal software layers and em-
ulating Sockets API directly over the VI Kernel Agent, as
can be seen in figure 2(c). Itoh et al. have recently proposed
VIsocket [10], which provides Sockets functionality below
the STREAMS module in Solaris. However, the design and
performance details of VIsocket have not been published
yet.

We note that the both approaches, shown in figure 2(b)
and 2(c), still require context switching and data copying
between the user and kernel space to send or receive data, as
the support for Sockets API is implemented inside the ker-
nel. Unlike these approaches, we build the SOVIA layer en-
tirely at user-level (on top of VIPL) as shown in figure 2(d),
so as to fully utilize the VIA’s user-level data transfer ca-
pability. Fast Sockets [17] was the first attempt to support
Sockets API over a lightweight user-level protocol, Active
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(a) Traditional
architecture

(b) Using an IP-to-VI
layer

(c) Using a
Sockets-to-VI layer

(d) Using a user-level
Sockets layer

Figure 2. Design alternatives for supporting Sockets API on Virtual Interface Architecture

Messages (AM). However, because AM is connectionless
and has a unique message passing model in which a packet
contains the name of a handler function, Fast Sockets can
not be directly used for VIA.

The WSDP (Windows Sockets Direct Path) [13] tech-
nology developed by Microsoft also falls into this cate-
gory. The WSDP enables Windows Sockets applications
that use TCP/IP to obtain the performance benefits of SANs
without application modifications, by switching to the SAN
Windows Sockets Provider below the Winsock library. For
Unix-flavored systems, it is very difficult to emulate Sock-
ets API completely at user-level, because Sockets-related
data structures are kept inside the kernel and may be shared
with child processes. In spite of that, our objective is to use
the SOVIA layer to accelerate the existing Sockets-based ap-
plications with a reasonable effort and to provide a portable
and high performance communication library based on VIA
to the application developers. To our best knowledge, SO-
VIA is the first implementation of a user-level Sockets layer
over VIA on Unix/Linux platforms.

3. Performance Issues

The SOVIA layer should be lightweight so that the low-
latency and high-bandwidth characteristics of VIA can be
delivered to user applications. In this section, we first in-
vestigate several design issues directly related to the perfor-
mance of the SOVIA layer.

3.1. Minimizing Latency

Satisfying the pre-posting constraint. The VIA requires
that the receiver should pre-post a descriptor to the receive
queue (RQ) before the sender requests a data transfer. Oth-
erwise, the transfer can be lost and the error is not even
detected by the sending or receiving side on an unreliable

VI. We call this a pre-posting constraint. To satisfy the
pre-posting constraint, there should be a high-level syn-
chronization protocol between the sender and receiver, with
which the sender guarantees that at least one descriptor is
available on the RQ of the destination VI.

One way to achieve this synchronization is to get an ex-
plicit permission from the receiver for each data transfer.
Whenever the sender has data to transmit, it first sends a
special REQ packet to the receiver asking for the permis-
sion. If the receiver becomes ready, it pre-posts two de-
scriptors on its RQ, one for data and the other for the next
REQ, and replies to the sender with an ACK packet. Upon
the receipt of the ACK, the sender is allowed to transmit a
DATA packet which carries real data. Normally, the receiver
does not answer with the ACK until the user application at
the receiving node calls recv(). Therefore, the receiver
always knows the target buffer address and it is possible
for the NIC to move the incoming data directly to the user
space. This method has, however, the overhead of exchang-
ing REQ and ACK packets before each data transfer, and this
overhead has a substantial impact on the latency especially
for small messages.

Instead, SOVIA uses a simpler two-way handshaking,
where DATA packets are sent to the receiver immediately
after the sender receives the ACK for the previous data trans-
fer. In this case, the DATA packet may arrive before the ap-
plication calls recv() on the destination node, hence the
receiver is required to buffer the incoming data temporarily.
Such an intermediate buffering at the receiving side also in-
creases latency, but the overhead is much smaller than the
cost of using the REQ packet.

Single-threading vs. Multi-threading. In the traditional
communication architecture, incoming messages are han-
dled by an interrupt handler in a transparent way to user
applications. With VIA, however, the user application itself
should extract the completed descriptors from a queue and
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post a new one for each incoming message that is delivered
asynchronously. Although the arrival of a packet is not auto-
matically notified to user applications in VIA, it is possible
to run a specific code upon the completion of a descriptor
by registering a notify function in advance. The main task
of the notify function will be to pre-post a descriptor, send
an ACK, and then wake up the application thread if it has
been suspended on recv().

Unfortunately, the Giganet’s cLAN does not support the
notify functions as yet. We can still emulate the role of no-
tify functions by creating a dedicated handler thread man-
ually which monitors a completion queue (CQ). If one of
the pre-posted descriptors is completed, the handler thread
locates the corresponding VI and performs the same task
executed by the notify function.

Using the separate handler thread makes SOVIA a multi-
threaded application, which means the main application
thread may need to wait for a signal from the handler thread
and any data shared by these two threads should be pro-
tected with mutexes. We find, however, the synchroniza-
tion cost between these two threads is expensive in Linux,
sometimes up to tens of microseconds. Considering that the
latency of native VIA is less than 10�sec on cLAN (cf. sec-
tion 5.2), the high thread synchronization cost is the main
source that increases latency.

Therefore, we have developed a single-threaded imple-
mentation of SOVIA, where the application thread itself is in
charge of the handler thread’s functionality. In SOVIA, the
incoming messages are handled by the application thread
when it calls communication-involved functions, such as
send() or recv(). Communication may be delayed
while the application thread at the receiving node is busy
for computation, but by pre-posting multiple descriptors in
advance (described in section 3.2), it is possible to overlap
the communication with the computation to some extent.

Memory registration vs. copying. As the buffers used
by the receiver can be pre-registered, each data transfer ex-
periences one memory registration at the sender side. The
memory registration is the key element in VIA which en-
ables the zero-copy protocol, but it is a relatively expen-
sive operation for small messages. Instead, we can consider
the use of sender-side buffering, where the outgoing data is
simply copied into the pre-registered buffer before the cor-
responding descriptor is posted in a send queue. However,
we note that the sender-side buffering is harmful for large
messages, because the cost of memory copying increases
more rapidly than the cost of memory registration.

To reduce the latency further, we simply use a hybrid
approach, where data is copied into the buffer only if the re-
quested size is small. Otherwise it is registered. According
to our measurement result, we find it is reasonable to begin
registering data as its size becomes larger than 2KB.

3.2. Maximizing Bandwidth

Flow control. Under the synchronization scheme de-
scribed in section 3.1, the sender should wait for an ACK

before requesting the next data transfer. The ACK packet
informs that the receiver has pre-posted a descriptor to the
corresponding RQ and is ready to receive another DATA. As
a result, there is at most a single outstanding DATA packet
on the VI at any given time, under-utilizing the physical re-
source. TCP has a flow control algorithm called a sliding
window protocol [18], which allows the sender to transmit
multiple packets before it stops and waits for an acknowl-
edgment. This leads to higher bandwidth since the flow of
packets can be pipelined.

SOVIA supports a flow control mechanism similar to the
TCP’s sliding window protocol. Our implementation of SO-
VIA also has the notion of window size w, which denotes the
maximum number of DATA packets the sender is allowed to
transmit without waiting for an acknowledgment. Initially,
the receiver pre-posts w descriptors to RQ. Whenever the
sender transmits a DATA, it decreasesw by one meaning that
one of the pre-posted descriptors on the receiving end has
been consumed. If w reaches zero, there are no available
descriptors on the receiver and further transmission is on
hold until w becomes a positive number. The window size
w is increased by one if an ACK is delivered to the sender
acknowledging one of the previous DATA packets.

Delayed acknowledgments. Normally, a single ACK is
generated on the receiving end for each DATA packet. The
number of ACK packets can be reduced by combining sev-
eral acknowledgments together directed to the same sender.
Under the TCP, the receiver delays sending an ACK, typi-
cally up to 200msec, hoping to have data going in the same
direction as the ACK. If there is data to send, all the delayed
ACKs are piggybacked, i.e. sent along with the data.

SOVIA also takes advantage of delayed acknowledg-
ments and piggybacking, by using an adaptation of the
TCP’s algorithm. In SOVIA, the receiver simply counts the
number of ACK packets (d) that are being delayed. If d be-
comes greater than the predefined threshold t, where t < w,
an ACK is delivered to the sender piggybacking d. This will
increase the sender’s window size w by d. On the other
hand, when the receiver has a DATA packet for the same
direction before d reaches t, delayed acknowledgments are
piggybacked with the DATA. We utilize the 32-bit Immedi-
ate Data field of the descriptor to record the packet type and
the number of delayed acknowledgments.

Combining small messages. Another useful feature of
TCP is the Nagle algorithm [18] enabled by default. The al-
gorithm requires that when a TCP connection has outstand-
ing data that has not yet been acknowledged, small mes-
sages cannot be sent until the outstanding data is acknowl-
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(a) Establishing a connection (b) Closing a connection

Figure 3. Connection management in SOVIA

edged or until TCP can send a full-sized message. The Na-
gle algorithm is originally developed as a way to avoid con-
gestion on wide area networks, but has a side-effect to batch
small messages together. For SOVIA, it is also desirable to
have a similar feature, where the consecutive data transfer
requests of small-sized messages are combined into a larger
one.

Our algorithm to combine small messages works as fol-
lows. The implementation of SOVIA already has an inter-
nal buffer which is used for sender-side buffering (cf. sec-
tion 3.1). So far, a small message less than 2KB is copied
into the buffer and then sent if the window size permits.
However from now on, such a small message is appended
into the buffer and the sender starts a timer which expires
after, say, 100msec. Any other small messages requested
within the expiration of the timer are also combined into the
buffer. The data stored in the buffer is transmitted to the net-
work either (1) when the timer expires, (2) when there is no
enough room in the buffer for the new data transfer request,
(3) when the requested message size is larger than 2KB,
or (4) when the application calls recv() or close().
The maximum size that can be combined is 32KB, which is
the message chunk size of SOVIA. For the messages larger
than 2KB, it is too expensive to copy data, hence the current
buffer is flushed and then the new message is transferred in
a normal way.

4. Compatibility Issues

Now we discuss how the SOVIA layer supports the con-
nection model used in Sockets API and enhances the porta-
bility for existing Sockets-based applications. Also, we
mention the problems associated with fork() system call,
which are the inherent limitation of any user-level Sockets
implementation.

4.1. Connection Management

Closing a connection. SOVIA uses five types of pack-
ets; DATA, ACK, WAKEUP, FIN, and FINACK. To close a
connection completely, both ends should agree on it by ex-
changing a FIN and a FINACK packet. A FIN packet is sent
to the peer when the application issues close(), and an
FINACK acknowledges the receipt of the FIN. However, the
single-threaded implementation of SOVIA poses a problem
when a connection is closed. The Sockets semantics re-
quires the application return from close() after sending
a FIN packet to the peer. Once the application executes the
last close(), it does not call any Sockets API and there is
no chance to handle the incoming FINACK and/or FIN pack-
ets from the peer, which are necessary to receive before de-
stroying associated data structures.

To solve this problem, SOVIA initially creates a close
thread and asks it to take care of the incoming messages,
as shown in figure 3(a). Whenever a new connection is es-
tablished, a WAKEUP packet is exchanged between peers.
The WAKEUP packet is used to inform the peer about the
sender’s socket descriptor, IP address, and port number.
If the close thread receives the WAKEUP, it stops han-
dling messages and is suspended until the last connection
is closed (cf. figure 3(b)). Therefore, the close thread is
only activated when the number of open connections be-
comes zero. In this way, the presence of the close thread
does not affect the application’s performance.

Establishing a new connection. Similarly, we use a spe-
cial connection thread to accept a new connection. The
Sockets API has a connection model that a server process
specifies a willingness to accept incoming connections with
listen(), and then a connection is accepted with ac-
cept(). If a remote process (i.e. a client) wants to ini-
tiate a connection, it calls connect(). The VIA has a
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// find symbols in libc during initialization
dlhandle = dlopen("libc.so.6", RTLD_LAZY);
sockops->socket = dlsym(dlhandle, "socket");
sockops->bind = dlsym(dlhandle, "bind");
....
dlclose(dlhandle);
....

int socket (int domain, int type, int proto)
{
if (type == SOCK_VIA)

return sov_socket (domain, type, proto);
else

return sockops->socket (domain, type, proto);
}

int sov_socket (int domain, int type, int proto)
{

int s = open("/dev/null", O_RDWR);
sockdes[s] = sov_newsock(domain, type, proto);
return s;

}

int write (int s, const void *buf, size_t size)
{

if (sockdes[s])
return sov_write (s, buf, size);

else
return __libc_write (s, buf, size);

}

Figure 4. Example codes to override the existing interface

slightly different connection model especially on the server
side; VipConnectWait() is used for the server to look
for incoming connection requests, and then VipConnec-
tAccept() is called to accept the connection request and
associate the connection with a local VI end-point.
VipConnectWait() is conceptually similar to ac-

cept() in that both of them are blocked until a connec-
tion is requested. However, it is the Sockets semantics that
the client should be able to return from connect() suc-
cessfully even though the server, after calling listen(),
does not reach accept() yet. Therefore, we can not di-
rectly implement accept() with VipConnectWait()
and VipConnectAccept(). This implies that another
thread should be running to accept a VI connection behind
the application thread.

SOVIA creates a connection thread each time the appli-
cation issues listen() on a port, as illustrated in fig-
ure 3(a). Initially, the connection thread waits for incoming
connection requests in VipConnectWait(). For each
incoming request, the connection thread accepts it by call-
ing VipConnectAccept(), and then stores the informa-
tion in a queue shared with the application thread. If the ap-
plication thread finds the queue empty on accept(), it is
suspended waiting for a signal from the connection thread.
Otherwise, the application thread extracts an entry from the
queue and completes accept() returning a new socket
descriptor.

4.2. Enhancing the portability

SOVIA provides its own version of Sockets API, such
as sov socket(), sov connect(), sov send(),
sov close(), etc. In order to exploit the SOVIA layer
transparently at the source level, we may consider a static
replacement of the existing interfaces as follows;

#define socket sov_socket
#define close sov_close

Such a source-level modification using a pre-processor

has a couple of drawbacks. First, normal TCP/UDP sock-
ets can not coexist with SOVIA, as all the socket() calls
will be replaced with sov socket(). Second, Sock-
ets are also accessed by file system interfaces due to the
fact that socket descriptors are treated as file descriptors
in Unix. System calls, such as read(), write() and
close(), may operate on socket descriptors, but, for ex-
ample, close() can not be replaced with sov close().

Instead, we use a dynamic approach where our version
of Sockets API is selected at run-time based on a socket
descriptor. GNU’s C library (libc) defines system call in-
terfaces as weak symbols so that they can be overridden in
user code. We provide wrapper functions for file system in-
terfaces and statically link them with our Sockets-based ap-
plications to intercept system calls. Adding these wrapper
functions significantly improves the source-level portability
of the SOVIA layer.

First, we introduce a new socket type called
SOCK_VIA, which is similar to the SOCK_STREAM
type used for TCP sockets. When a user calls
“socket (AF_INET, SOCK_VIA, 0);” to cre-
ate a SOVIA-type socket, we open a dummy file to obtain a
file descriptor from the kernel and return the same number
as a new socket descriptor. Afterwards, any system call
on the new socket descriptor is intercepted and switched
to the SOVIA layer by the wrapper functions, as shown in
figure 4 briefly. For the system calls operating on normal
file descriptors, it is necessary for the wrapper functions
to locate the addresses of original interfaces in libc. If
the original (strong) symbols are also exported by libc,
which is the case for write() (__libc_write())
or close() (__close()), we can call those symbols
directly in the wrapper functions. In other case, we can
use the dlsym() function to obtain the address where a
particular symbol in a dynamic library is loaded.

Note that messages can be also sent or received by means
of the standard I/O library, as the following code fragments
show;
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(a) before fork() (b) after fork() (c) when the parent writes to Rv

Figure 5. Copy-on-write problem

int s;
FILE *fp;
...
s = socket (AF_INET, SOCK_STREAM, 0);
connect (s, (struct sockaddr *) &server,

sizeof(server));
fp = fdopen (s, "w");
fprintf (fp, "Hello, world...\n");

As the standard I/O library internally calls __write()
and __read() in libc, we need to override these func-
tions too. Once it is done, any access through the standard
I/O library can be switched to the SOVIA layer transparently.

4.3. Problems with fork()

Copy-on-write problem. An FTP (File Transfer Proto-
col) server process forks a child process when it receives a
“dir” command from a client. The child process executes
“/bin/ls -lgA” on the current directory and the output
is redirected to the FTP server via pipes, which will even-
tually be transferred to the FTP client as a response of the
“dir” command. However, a naive port of the FTP server
may not work if the VI Kernel Agent is not implemented
carefully; it may cause a problem when a child process is
created using fork() system call1. We elaborate upon the
situation in figure 5.

As described in section 2.1, a memory region Rv needs
to be registered before it is used for any communication.
During the registration, the VI Kernel Agent converts the
virtual page addresses for Rv into physical addresses and
pins the corresponding region Rp in the physical memory.
Rp is then used by the NIC hardware for DMA (Direct
Memory Access) (cf. figure 5(a)).

1For example, Giganet’s cLAN driver version 1.1.1 used in the paper
has this problem. The latest cLAN driver version 1.3.0 has fixed the prob-
lem by setting a PG reserved flag to the registered pages. However,
M-VIA implementation still has this problem.

If the process forks a child, the Linux kernel optimizes
the virtual memory system by copying the data structures
describing virtual memory and by sharing the actual phys-
ical pages, as shown in figure 5(b). This optimization is
called a copy-on-write. Copy-on-write is introduced to in-
crease speed while decreasing memory usage, but a problem
occurs when the parent process accesses the registered re-
gion Rv after fork(); if a write is done, the child gets the
physical pages and the parent gets new physical pages R0

p

which are copies of Rp. As a result, the NIC hardware will
use physical pages Rp that are no longer mapped to virtual
addresses of the parent,Rv . Note that this problem happens
even if the child process is not involved in any communica-
tion.

It is too restrictive if user applications are not allowed
to create child processes while they are using VIA. SOVIA
solves this problem by allocating pre-registered descriptors
and data buffers on a shared-memory segment. The pages
located in shared-memory segments are shared between the
parent and child process without causing the copy-on-write
problem. We find that the cLAN driver registers a region of
memory inside the VIPL to implement completion queues,
and we had to modify the VIPL so that the region is also
allocated on a shared-memory segment.

Supporting concurrent server daemons or inetd.
Sharing a socket connection between two processes is even
more difficult. This is a required feature to support con-
current server daemons or “super-server” daemons such as
inetd. Data structures used by the SOVIA layer may be
shared among processes through shared-memory segments.
However, to completely share a socket connection, it should
be possible to share a VI connection between two processes
at the VIPL level. Although the VIPL for cLAN is de-
signed to be multithread-safe, it is not sufficient to protect
resources in a shared-memory segment from simultaneous
access by multiple processes, because Linux currently does
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Figure 6. The latency and bandwidth on Giganet’s cLAN

not support process-shared mutexes and conditions [11].
To minimize modifications in the VIPL, we choose a par-

tial solution where the client connects to inetd in a nor-
mal way using a TCP socket. If a server daemon is forked
from inetd, the server opens a new VI connection with
the client. The server and client codes need to be modified
slightly to make one more connection at the beginning, but
this change is transparent to inetd. In this way, we could
invoke the FTP server daemon through inetd.

5. Experimental Results

5.1. Evaluation Methodology

The hardware platform used for performance evaluation
is two Linux servers based on Intel L440GX+ motherboards
running Linux kernel 2.2.16. Each server consists of a Pen-
tium III-500MHz microprocessor with 512KB of L2 cache
and 256MB of main memory. Two cLAN1000 network
adapters are attached to a 32-bit 33MHz PCI slot of each
server without an intermediate switch. We have used cLAN
driver version 1.1.1 and the TCP performance on cLAN is
measured using the LANE driver supplied by Giganet.

To quantify the impact of each optimization on the ap-
plication’s performance, we use microbenchmarks which
measure the latency and bandwidth. The latency is mea-
sured by a half of round-trip time in a ping-pong test. To
measure the (unidirectional) bandwidth, the sender issues a
long rapid sequence of send()’s for a given time and waits
until an acknowledgment message arrives from the receiver.
The same benchmarks are implemented using the VIPL as
well, to compare the performance of SOVIA with that of na-
tive VIA.

In addition, we have ported FTP (File Transfer Proto-
col) and RPC (Remote Procedure Call) applications over the
SOVIA layer in order to verify the functional compatibility
with the existing Sockets API. The performance details of
these applications will be discussed in section 5.3 and 5.4,
respectively.

5.2. Microbenchmarks

Figure 6(a) compares the latency of SOVIA with that of
TCP and native VIA on Giganet’s cLAN. First of all, we
note that native VIA outperforms TCP as expected; na-
tive VIA shows the latency of 8.5�sec for 4-byte messages,
while TCP shows 55�sec for the same condition.

Looking at the performance results of SOVIA, we can
see that the implementation using a separate handler
thread (SOVIA HANDLER) results in significantly higher la-
tency compared to the single-threaded implementation (SO-
VIA SINGLE). As described in section 3.1, the thread syn-
chronization cost is responsible for the gap between SO-
VIA HANDLER and SOVIA SINGLE, which increases la-
tency more than 15�sec. Figure 6(a) also shows the changes
in latency when we try to combine small messages together
(labeled SOVIA COMBINE). Combining small messages in-
creases the latency of SOVIA by 1 – 2 �sec to manage a soft-
ware timer. However, note that this feature may be turned
off at run-time for latency-sensitive applications in the same
way as TCP, where the Nagle algorithm is disabled by spec-
ifying the TCP_NODELAY option. Overall, we can reduce
the latency of SOVIA layer as low as 10.5�sec for cLAN on
our platforms, adding only 2�sec of overhead to the native
VIA’s latency.

Figure 6(b) illustrates the measured bandwidths of TCP,
native VIA and SOVIA. Again, native VIA shows higher
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Table 1. The performance of file transfers using FTP
File 1 File 2

File size (bytes) 19,090,223 145,864,380

TCP/IP on Fast Ethernet 90 Mbps (1.63 sec) 90 Mbps (12.7 sec)
TCP/IP on cLAN 262 Mbps (0.59 sec) 254 Mbps (4.61 sec)
SOVIA on cLAN 573 Mbps (0.27 sec) 532 Mbps (2.20 sec)

Local copy (on ramdisks) 611 Mbps (0.25 sec) 538 Mbps (2.17 sec)

bandwidth than TCP when the message size is larger than
256 bytes2; the bandwidth of TCP for 32KB messages is
limited to about 450Mbps, attaining only 55% of native
VIA’s performance (815Mbps).

In figure 6(b), SOVIA SINGLE represents the bandwidth
obtained by the single-threaded implementation with condi-
tional sender-side buffering, which has minimized latency
in figure 6(a). The graph labeled SOVIA FLOWCTRL de-
notes the bandwidth when our flow control mechanism
is added to SOVIA SINGLE. SOVIA DACKS adds the flow
control and delayed acknowledgments to SOVIA SINGLE.
We can see that the bandwidth of SOVIA DACKS is no-
tably improved compared to SOVIA SINGLE. Especially, if
the message size is greater than or equal to 16KB, SO-
VIA DACKS shows roughly the same bandwidth as native
VIA. In this experiment, we have used the window size of
32 (w = 32) and the threshold is set to 16 (t = 16).

TCP shows higher bandwidth than native VIA for small
messages less than 256 bytes, due to the Nagle algorithm.
Similarly, we can see that SOVIA COMBINE, which adds
the ability to combine small messages to SOVIA DACKS,
improves the bandwidth substantially for messages less than
2KB.

5.3. FTP Performance

We have measured the performance of file transfers be-
tween two nodes by modifying the FTP server (linux-
ftpd-0.16) and client (netkit-ftp-0.16) contained
in Linux NetKit 0.16. Table 1 compares the measured band-
width and elapsed time reported by the FTP client for two
different sizes of files. To remove the effect of disk speed,
the source and destination files are stored in ramdisks.

The core loop of the file transfer operation is actually
the same as our microbenchmark which measures the band-
width. Therefore, it is expected for FTP applications to
achieve the peak bandwidth shown in figure 6(b). The
measured bandwidth is, however, slightly lower than the
expected one, showing 573Mbps and 532Mbps for 19MB
and 145MB files, respectively. This is because the actual

2The socket buffer size of TCP is increased to the maximum (131,170
bytes) during the measurement.

data transfer is bounded by the file system performance,
which has the bandwidth of 538Mbps – 611Mbps for local
ramdisk-to-ramdisk copy of the same files.

Finally, we note that the raw performance of VIA is not
delivered to user applications efficiently using the kernel-
level TCP/IP driver on cLAN. Although the peak bandwidth
of native VIA is 815Mbps, FTP applications result in band-
widths less than 300Mbps with the TCP/IP driver, exploit-
ing only 32% of the available bandwidth. Overall, the SO-
VIA layer easily doubles the performance of FTP applica-
tions compared to the LANE driver.

5.4. RPC Performance

The goal of RPC is to make a network function call as
simple as any local function call. Like a local function call,
the calling arguments are passed to the remote procedure
and the caller waits for a response to be returned from the
remote procedure. RPC hides all the network code in client
“stubs” and server “skeletons” that are generated automat-
ically by specifying what their interfaces should be. RPC
isolates the application from the physical and logical ele-
ments of the data communications mechanism and allows
the application to use a variety of transports. This transport
independence of RPC, together with the fact that it is imple-
mented as a user-level library, make it possible for RPC ap-
plications to benefit from the high-performance, user-level
communication protocols such as VIA.

If the RPC protocol is implemented directly over VIPL,
it will require extensive modification in the RPC layer. In-
stead, we slightly modify the rpcgen tool to generate
VIA-specific interface modules and link them with the SO-
VIA layer. As the SOVIA layer emulates the Sockets API, the
modification in the RPC layer is minimized. The client sim-
ply selects SOVIA as a base transport by specifying “via”
when it calls clnt_create() function and there is no
other changes visible to the application developers.

For the experiment, we have used sunrpc implementa-
tion in glibc-2.1.3, which is available on our platforms
by default. Figure 7 compares the average elapsed time for
a single RPC for various argument sizes ranging from 0 to
4KB. An argument is passed to a remote procedure as a
character string, and the body of the remote procedure is
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empty remote procedure

empty returning an integer value. The argument size of zero
(x = 0) represents the case where the argument of the remote
procedure is defined as void. Note that even for the null
argument, messages are exchanged between the server and
client containing an RPC header, 44 bytes for request and
28 bytes for response.

Unlike the FTP, RPC is a latency-sensitive application.
Our measurement result shows that calling an empty remote
procedure with the null argument takes about 200�sec on
Fast Ethernet and 149�sec on cLAN, when the traditional
TCP is used as a transport. On the contrary, making an
RPC over the SOVIA layer takes only 35�sec for the same
condition, which is 4.3 times faster than the case with the
kernel-level TCP/IP driver on cLAN.

6. Concluding Remarks

In this paper, we design and implement SOVIA, a user-
level Sockets layer over VIA. Because adding a new soft-
ware layer introduces an overhead inevitably, special atten-
tion has been paid to make the SOVIA layer lightweight,
while retaining the portable Sockets semantics.

SOVIA shows the minimum latency of 10.5�sec and the
peak bandwidth of 814Mbps on Giganet’s cLAN, which is
comparable to the native VIA’s performance. The func-
tional compatibility with the existing Sockets API is veri-
fied by porting the FTP and RPC applications over the SO-
VIA layer. Compared to the Giganet’s LANE driver, SOVIA
easily doubles the file transfer bandwidth in FTP and re-
duces the latency of calling an empty remote procedure by
77% in RPC applications.

We expect application programs written in Sockets API
can seamlessly take advantage of the performance of VIA

through the SOVIA layer. We plan to port a user-level par-
allel file system and a software distributed shared-memory
(DSM) system over the SOVIA layer in the near future to
demonstrate this.
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