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SUMMARY

The Virtual Interface Architecture (VIA) is an industry standard user-level communication architecture for
system area networks. The VIA provides a protected, directly-accessible interface to a network hardware,
removing the operating system from the critical communication path. In this paper, we design and
implement a user-level Sockets layer over VIA, named SOVIA (Sockets Over VIA). Our objective is to
use the SOVIA layer to accelerate the existing Sockets-based applications with a reasonable effort and to
provide a portable and high-performance communication library based on VIA to application developers.

SOVIA realizes comparable performance to native VIA, showing a minimum one-way latency of 10.5 µs
and a peak bandwidth of 814 Mbps on Giganet’s cLAN. We have shown the functional compatibility
with the existing Sockets API by porting File Transfer Protocol (FTP) and Remote Procedure Call (RPC)
applications over the SOVIA layer. Compared to the Giganet’s LAN Emulation (LANE) driver which
emulates TCP/IP inside the kernel, SOVIA easily doubles the file transfer bandwidth in FTP and reduces
the latency of calling an empty remote procedure by 77% in RPC applications. Copyright c© 2003 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Cluster systems consisting of commodity-off-the-shelf (COTS) hardware components have become
increasingly attractive as platforms for high-performance computation and scalable Internet
servers [1,2]. Cluster systems are easy to build and have advantages such as scalability and
cost-effectiveness, which lead to a high performance/price ratio. To enhance the communication
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performance, many cluster systems employ system area networks (SANs) operating at gigabit speed,
such as Myrinet, Gigabit Ethernet, SCI, etc. However, as network hardware becomes faster, the
software overhead becomes a significant portion of the total time to send a message. More specifically,
the traditional communication architecture based on the TCP/IP protocol suite is reported to fail
in delivering raw-hardware performance to end users, due to protocol overhead, context switching
overhead, and data copying overhead between the user and the kernel space. As a result, a number of
user-level communication architectures have been proposed that remove the operating system from the
critical communication path [3–6].

The Virtual Interface Architecture (VIA) [7], promoted by Compaq, Intel, and Microsoft, is an
industry effort to standardize user-level communication architectures for SANs. The VIA specification
defines a software interface for fully-protected, user-level access to a network hardware. The VIA can
be emulated by software on the existing network interface cards (NICs). However, in order to achieve
a true zero-copy protocol, NICs need to be designed to support the VIA mechanisms in hardware, in
which case a portion of the processing required to send or receive messages is off-loaded to special
hardware on the NIC. Examples of NICs with such VIA-aware hardware include Giganet’s cLAN and
Fujitsu’s Synfinity adapters.

The VIA specification provides a standard application programming interface (API) in the form of
a user-level library called the VI Provider Library (VIPL). Although the VIPL can be directly used
for application developments, VIA is considered by many systems designers to be at too low a level
for application programming [8]. This is because the VIA specification only provides a minimal set
of primitives mainly for user-level data transfer of a single message, lacking many high-level features.
Thus, we believe it is desirable to implement another lightweight and portable communication layer on
top of the VIPL.

In this paper, we design and implement a user-level Sockets layer over VIA, named SOVIA (Sockets
Over VIA). The Sockets API is a de facto standard for network programming and provides a means
for developing applications which are independent of network protocols or hardwares. The SOVIA
layer aims at supporting the communication model of Sockets at user-level, without sacrificing the
performance of the underlying VIA layer.

The rest of the paper is organized as follows. Section 2 overviews the VIA and the related work.
In Section 3, we investigate several design issues to improve the performance and the portability
of the SOVIA layer. Section 4 briefly outlines implementation details and Section 5 presents the
experimental results of microbenchmarks and two real applications, File Transfer Protocol (FTP) and
Remote Procedure Call (RPC), executed over the SOVIA layer. Finally, we conclude in Section 6.

2. BACKGROUND

2.1. Virtual Interface Architecture (VIA)

Figure 1 depicts the organization of the VIA with four basic components: Virtual Interfaces (VIs),
Completion Queues, VI Providers, and VI Consumers. The VIA provides each consumer process
with a protected, directly-accessible interface to a network hardware called the Virtual Interface.
Each VI represents a communication end-point and a pair of connected VIs support a bi-directional,
point-to-point data transfer. The VI Provider consists of a physical network adapter and a software
Kernel Agent, while the VI consumer represents the user of a VI.
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Figure 1. The organization of the VIA.

A VI consists of a pair of Work Queues: a Send Queue (SQ) and a Receive Queue (RQ). A VI
Consumer posts requests, in the form of descriptors, on the Work Queues to send or receive data.
A descriptor is a memory structure that contains all of the information that the VI Provider needs to
process the request, such as pointers to data buffers. Each Work Queue has an associated doorbell
that is used to notify the network adapter that a new descriptor has been posted to the Work Queue.
Typically, the doorbell is directly implemented by the adapter and requires no kernel intervention to
operate.

When descriptor processing completes, the NIC marks a done bit in the status field of the descriptor
and the VI Consumer finally removes it from the Work Queue. The completion of data transfer can be
detected either by polling the head of the Work Queue, or by using a blocking call in which a calling
process is signaled upon the completion of a descriptor. Alternatively, a user-defined callback function
(a notify function) may be executed when a descriptor completes. A Completion Queue (CQ) allows a
VI Consumer to coalesce notification of descriptor completions from multiple Work Queues in a single
location. When a VI is created, each Work Queue can be associated with a CQ. Once this association
is established, notification of the completed requests for the Work Queue is automatically directed to
the CQ.

All the memory regions used for communication should be registered prior to submitting the
request. This is because the VIA allows the NIC to read and write data directly from and to parts
of the user address space, thus enabling the zero-copy protocol. When a memory region is no longer
needed for communication, it should be explicitly deregistered, whereupon the pages are released
and made available for swapping out. The registered memory regions are protected from access by
other processes using unique IDs called Protection Tags that are associated with both VIs and memory
regions.

The VIA supports three levels of communication reliability at the NIC level: Unreliable Delivery,
Reliable Delivery, and Reliable Reception. All VI-NICs are required to support the Unreliable Delivery
level, where a send request will cause at most one receive descriptor to be consumed. Both Reliable
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Delivery and Reliable Reception guarantee that data sent are received uncorrupted, only once, and in
the order that they were sent. Reliable Reception is the highest level of reliability, and differs from
Reliable Delivery in that a descriptor can not be marked completed until data have been transferred
into the memory at the remote end-point.

Several VIA implementations are available for Linux platforms. Modular VIA (M-VIA) [9],
developed by NERSC (National Energy Research Scientific Computing) emulates the VIA
specification by software for legacy Fast Ethernet and Gigabit Ethernet adapters. Berkeley VIA [10]
implementation supports the VIA specification on Myrinet [11] by modifying its firmware. Finally,
Giganet Inc. (now Emulex Corp.) has developed a proprietary, VIA-aware NIC called cLAN [12].

2.2. Related work

Two possible candidates that can be used as an upper layer of VIPL are MPI (Message Passing
Interface) [13] and Berkeley Sockets API [14], considering their widespread use and acceptance in
cluster environments.

There exist several MPI implementations over VIA, such as MVICH [15], ParMa2 [16], and
MPI/Pro [17]. MVICH and ParMa2 are the modifications of open MPI implementations, MPICH [18]
and LAM/MPI [19] respectively, while MPI/Pro is a commercial product developed by MPI Software
Technology Inc. Ong and Farrell [20] have compared the performance of MPICH, LAM/MPI, and
MVICH on Gigabit Ethernet networks. They showed that the overhead incurred in the TCP/IP protocol
stack is still high and the performance of MVICH (over M-VIA) is much superior to that of TCP/IP-
based MPICH or LAM/MPI.

Although MPI is important for high-performance parallel computing, we consider Sockets API in
this paper because it provides a simpler yet more versatile communication interface compared to MPI.
Due to the simplicity of Sockets API, it is easy to optimize the communication performance, imposing
less overhead on user applications. There can be several different approaches to the support of Sockets
API on VIA, as illustrated in Figure 2. Figure 2(a) shows the traditional communication architecture in
which the Sockets layer is located on top of the TCP and UDP protocol stacks.

A simple way to support Sockets API on VIA is to insert an adaptation layer between the IP and
the VI Kernel Agent, as shown in Figure 2(b). This is the approach taken by the LAN Emulation
(LANE) driver [21] supplied by Giganet for its cLAN adapters. As the IP is emulated on VIA, an IP
address is assigned to the VI-NIC and the system becomes fully compatible with any of the existing
IP-based network applications. However, it is not straightforward to emulate connectionless IP services
(for example, broadcasting) on the connection-oriented VIA and applications will still suffer from the
overhead of TCP/IP protocols.

The TCP/IP protocol stack is not required to transfer data between two end-points on the same
cluster if the physical interconnect is reliable and provides transport-level functionality. The overhead
of TCP/IP protocols can be eliminated on VIA by collapsing internal software layers and emulating
Sockets API directly over the VI Kernel Agent, as can be seen in Figure 2(c). A similar approach called
VIsocket has been recently proposed by Itoh et al. [22], which provides Sockets functionality below
the STREAMS module in Solaris. However, the design and performance details of VIsocket have not
yet been published.

We note that both approaches, shown in Figures 2(b) and 2(c), still require context switching and
data copying between the user and the kernel space to send or receive data, as the support for Sockets

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:727–749



USER-LEVEL SOCKETS LAYER OVER VIA 731

         (a)                (b)        (c)               (d)

Figure 2. Design alternatives for supporting Sockets API on VIA: (a) traditional architecture; (b) using an IP-to-VI
layer; (c) using a Sockets-to-VI layer; (d) using a user-level Sockets layer.

API is implemented inside the kernel. Unlike these approaches, we build the SOVIA layer entirely at
the user-level (on top of VIPL) as shown in Figure 2(d), so as to fully utilize the VIA’s user-level data
transfer capability.

Fast Sockets [23] was the first attempt to support Sockets API over a lightweight user-level protocol,
Active Messages (AM). Fast Sockets collapses protocol layers and uses simple buffer management
strategies, while avoiding copy operations whenever possible. However, because AM is connectionless
and has a unique message passing model in which a packet contains the name of a handler function,
Fast Sockets can not be directly used for VIA.

A similar user-level Sockets library, called the SCI Sockets Library (SSLib) [24], has been proposed
for the Scalable Coherent Interface (SCI). SSLib supports both stream and datagram sockets, where
datagram sockets are emulated by sending UDP packets over a temporary, dedicated connection. For
stream sockets, SSLib supports out-of-band (OOB) data used in TCP. One interesting design choice in
SSLib is the use of a special daemon process called SCI Sockets Daemon (SSD), which is responsible
for managing connections, providing support for special system calls, and controlling sharing of
connections, etc. We note that SSLib is based on the remote memory access (RMA) facility of SCI
which is very different from the descriptor processing model used in VIA. As the remote buffer is
mapped into the address space of the sending process in SSLib, the actual data transfer mechanism is
much simpler. Also, it is relatively easy to share a socket connection in SSLib; the remote buffer is
mapped to multiple processes and the SSD employs semaphores to synchronize accesses to the shared
buffer region, potentially blocking concurrent accesses by other processes.

Our approach is conceptually similar to the Windows Sockets Direct Path (WSDP) [25] technology
developed by Microsoft for Windows NT platforms. The WSDP enables Windows Sockets applications
that use TCP/IP to obtain the performance benefits of SANs without application modifications, by
switching to the SAN Service Provider below the Winsock library. In WSDP, a normal TCP/IP socket
is used to establish a TCP/IP connection. However, once the connection is established, a companion
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socket is created between SAN Service Providers, either from or to which the actual data is being
transferred.

Shah and Maddukkarumukumana [26] have also implemented Stream Sockets over VIA on the
Windows NT platform with Giganet’s cLAN. Stream Sockets has several features to improve the
performance. First, it implements a credit-based flow control mechanism, where the sender sends a
credit request (CreditRequest) and waits for the credit response (CreditResponse) if the number of send
credits is not sufficient. Second, Stream Sockets maintains an LRU cache of registered application
buffers to reduce memory registration cost. Finally, checking for completion of a send descriptor is
deferred until either there are not enough send credits available or the entire message is posted, so
that the CPU overhead can be reduced. We note that the credit-based flow control mechanism used
in Stream Sockets tends to increase the average latency, because CreditResponse is not delivered
to the sender until it is explicitly requested using CreditRequest. Also, caching memory registration
information requires a modification to the default malloc() and free() routines, as the user
application may free the (cached) registered memory region without notice. Other issues, such as
connection management and dealing with special system calls, have not been addressed in Stream
Sockets.

Recently, Myricom Inc. has released a software called Sockets-GM [27] for Myrinet interconnect,
which works on Linux, Solaris, and Windows. Sockets-GM is built on top of Myrinet GM library
and makes use of companion sockets in the same way as WSDP. It is intended to provide a
binary compatibility with the existing applications written for the Sockets API. However, the current
implementation of Sockets-GM simply stops using a companion socket and then reverts to a normal
TCP/IP socket, once a connection is shared by other processes.

For Unix-flavored systems, it is very difficult to emulate Sockets API completely at the user-
level, because Sockets-related data structures are kept inside the kernel and may be shared with child
processes. In spite of the problem, our objective is to use the SOVIA layer to accelerate the existing
Sockets-based applications with a reasonable effort and to provide a portable and high-performance
communication library based on VIA to application developers. To the best of our knowledge, SOVIA
is the first implementation of a user-level Sockets layer over VIA on Unix/Linux platforms.

3. DESIGN ISSUES

In this section, we investigate several design issues to improve the performance and the portability of
the SOVIA layer. Our main design principle is to make the SOVIA layer as efficient as possible so
that the performance of native VIA can be delivered to user applications, while retaining the portable
Sockets semantics as much as possible.

3.1. Minimizing latency

3.1.1. Satisfying the pre-posting constraint

The VIA requires that the receiver should pre-post a descriptor to the RQ before the sender requests
a data transfer. Otherwise, the transfer can be lost and the error is not even detected by the sending
or the receiving side on an unreliable VI. We call this a pre-posting constraint. To satisfy the pre-
posting constraint, there should be a high-level synchronization protocol between the sender and the
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receiver, with which the sender can guarantee that at least one descriptor is available on the RQ of the
destination VI.

One way to achieve this synchronization is to get an explicit permission from the receiver for each
data transfer. Whenever the sender has data to transmit, it first sends a special REQ packet to the receiver
asking for permission. If the receiver becomes ready, it pre-posts two descriptors on its RQ, one for
data and the other for the next REQ, and replies to the sender with an ACK packet. Upon the receipt
of the ACK packet, the sender is allowed to transmit a DATA packet which carries real data. Normally,
the receiver does not answer with the ACK packet until the user application at the receiving node calls
recv(). Therefore, the receiver always knows the target memory address and it is possible for the
NIC to move the incoming data directly to the user space. This method has, however, the overhead of
exchanging REQ and ACK packets before each data transfer, and this overhead has a substantial impact
on the latency, especially for small messages.

Instead, SOVIA uses a simpler two-way handshaking, where a DATA packet is sent to the receiver
immediately after the sender receives an ACK packet for the previous data transfer. In two-way
handshaking, the DATA packet may arrive before the receiver calls recv(). Therefore, the application
at the destination node should temporarily buffer the incoming DATA packet by pre-posting a descriptor
into the RQ. Such an intermediate buffering at the receiving side also increases latency, but the overhead
is much smaller than the cost of using the REQ packet.

3.1.2. Handling incoming packets

In a traditional communication architecture, incoming packets are handled by an interrupt handler in a
transparent way to user applications. With VIA, however, the user application itself should extract the
completed descriptors from the queue and post a new one for each incoming packet that is delivered
asynchronously. Although the arrival of a packet is not automatically notified to user applications in
VIA, it is possible to run a specific code upon the completion of a descriptor by registering a notify
function in advance. The main task of the notify function will be to pre-post a descriptor, send an ACK

packet, and then wake up the application thread if it has been suspended on recv().
Unfortunately, Giganet’s cLAN does not support notify functions as yet. We can still emulate the role

of notify functions by creating a dedicated handler thread manually which monitors a CQ. If one of the
pre-posted descriptors is completed, the handler thread locates the corresponding VI and performs the
same task executed by the notify function.

Using the separate handler thread makes SOVIA a multi-threaded application, which means the
main application thread may need to wait for a signal from the handler thread and any data shared
by these two threads should be protected with mutexes. However, we find that the synchronization
cost between two threads is expensive in Linux. In many cases, the handler thread is required to
wake up the application thread by sending a signal on the critical communication path, which takes,
according to our measurement, up to tens of microseconds. Considering that the latency of native VIA
is less than 10 µs on cLAN, this high thread synchronization cost is the main source that increases
latency (cf. Section 5.2). In addition, waiting on a condition variable or sending a signal requires kernel
intervention as Linux supports kernel-level multi-threading, hence true user-level communication can
not be achieved.

To overcome these problems, we have developed a single-threaded implementation of SOVIA,
where the application thread itself is in charge of the handler thread’s functionality. In SOVIA, the
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incoming packets are handled by the application thread when it calls communication-related functions,
such as send() or recv(). Communication may be delayed while the application thread at the
receiving node is busy for computation, but by pre-posting multiple descriptors in advance (described
in Section 3.2.1), it is possible to overlap communication and computation to some extent.

3.1.3. Avoiding memory registration cost

As the location of temporary buffers used by the receiver is fixed, they can be pre-registered during
initialization. In contrast, the sender’s data can not be pre-registered because we do not know which
will be transmitted beforehand. Therefore, each data transfer experiences one memory registration
at the sender side. The memory registration is the key element in VIA which enables the zero-copy
protocol, but it is a relatively expensive operation for small messages. Instead, we can consider the
use of sender-side buffering, where the outgoing data are simply copied into a pre-registered buffer
before the corresponding descriptor is posted in a send queue. However, we note that the sender-side
buffering is harmful for large messages, because the cost of memory copying increases more rapidly
than the cost of memory registration.

To reduce the latency further, we use a simple hybrid approach, where data are copied into the buffer
only if the requested size is small. Otherwise it is registered. According to our measurement result, we
find it is reasonable to begin registering data as their size becomes larger than 2 kB.

3.2. Maximizing bandwidth

3.2.1. Flow control

A long message, requested to be sent by the application, is divided into a series of DATA packets.
We define the maximum transfer unit (MTU) as the largest amount of data that may be transferred
using a single DATA packet. The MTU is directly related to the bandwidth; the larger the MTU, the
higher the bandwidth. However, usually the NIC places a limitation on the MTU‡. In SOVIA, we
assume the default MTU of 32 kB unless otherwise stated.

Under the synchronization scheme described in Section 3.1.1, the sender should wait for an ACK

packet in order to send the next DATA packet. The ACK packet informs that the receiver has pre-posted
a descriptor to the corresponding RQ and is ready to receive another DATA packet. As a result, there
is at most a single outstanding DATA packet on the VI at any given time, under-utilizing the physical
resource. TCP has a flow control algorithm called a sliding window protocol [28], which allows the
sender to transmit multiple packets before it stops and waits for an acknowledgement. This leads to
higher bandwidth since the flow of packets can be pipelined.

SOVIA supports a flow control mechanism similar to the TCP’s sliding window protocol.
Our implementation of SOVIA also has the notion of window size w, which denotes the maximum
number of DATA packets the sender is allowed to transmit without waiting for an acknowledgement.
Initially, the receiver pre-posts w descriptors to RQ. Whenever the sender transmits a DATA packet,
it decreases w by one meaning that one of the pre-posted descriptors on the receiving end has been

‡For example, the MTU can not be set beyond 65 486 bytes on Giganet’s cLAN.
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consumed. If w reaches zero, there are no available descriptors on the receiver and further transmission
is on hold until w becomes a positive number. The window size w is increased by one if an ACK

packet is delivered to the sender acknowledging one of the previous DATA packets. As the window
is maintained on a per-connection basis, our flow control mechanism ensures correct operation even
when a server talks to many clients simultaneously.

3.2.2. Delayed acknowledgements and piggybacking

Normally, a single ACK packet is generated on the receiving end for each DATA packet. The number
of ACK packets can be reduced by combining several acknowledgements together directed to the same
sender. In TCP, the receiver delays sending an ACK packet, typically up to 200 ms, hoping to have data
going in the same direction as the ACK packet. If there are data to send, all the delayed ACK packets
are piggybacked, i.e. sent along with the data.

SOVIA also takes advantage of delayed acknowledgements and piggybacking, by using an
adaptation of the TCP’s algorithm. In SOVIA, the receiver simply counts the number of ACK packets
(d) that are being delayed. If d becomes greater than the predefined threshold t , where t < w, an ACK

packet is delivered to the sender piggybacking d . This will increase the sender’s window size w by d .
On the other hand, when the receiver has a DATA packet for the same direction before d reaches t ,
delayed acknowledgements are piggybacked with the DATA packet.

3.2.3. Combining small messages

Another useful feature of TCP is the Nagle algorithm [28] enabled by default. The algorithm requires
that when a TCP connection has outstanding data that have not yet been acknowledged, small messages
can not be sent until the outstanding data are acknowledged or until TCP can send a full-sized packet.
The Nagle algorithm was originally developed as a way to avoid congestion on wide-area networks,
but has a side-effect to batch small messages together. For SOVIA, it is also desirable to have a similar
feature, where the consecutive data transfer requests of small-sized messages are combined into a larger
packet.

Our algorithm to combine small messages works as follows. The implementation of SOVIA already
has an internal buffer which is used for sender-side buffering (cf. Section 3.1.3). Previously, a small
message of less than 2 kB was copied into the buffer and then sent immediately if the window size
permits. However, now such a small message is simply appended into the buffer and the sender starts
a timer which expires after, say, 100 ms. Any other small messages requested within the expiration of
the timer are also combined as long as there is enough room in the buffer. For messages larger than
2 kB, it is too expensive to copy data, hence the current buffer is flushed and then the new message is
transferred in a normal way.

Let Sbuf be the message size currently held in the buffer and Sreq be the new message size requested
by the application, where Sbuf can not be larger than the MTU. We can summarize that data stored in
the buffer are transmitted to the network either (1) when the timer expires, (2) when Sbuf + Sreq >

MTU, (3) when Sreq > 2 kB, or (4) when the application calls recv() or close().

3.3. Connection management

Our choice of using the single-threaded implementation in Section 3.1.2 poses some problems related
to the connection management. The Sockets semantics allows us to close a socket connection partially
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in one direction. To support the partial close, data structures related to the current connection should not
be removed at the time of calling close(). Instead, the application is required to return immediately
from close(), after sending only an intention of the close to the peer. TCP uses two special packets
for this purpose, namely FIN and FINACK. The FIN packet is used to notify the peer of the intention
to close the current connection, and the FINACK acknowledges the receipt of the FIN. To close a
connection completely, both end-points should agree on it by exchanging a FIN and the associated
FINACK packet. However, in our single-threaded implementation, once the application executes the last
close(), it does not call any Sockets API function and there is no chance to handle incoming FINACK

and/or FIN packets from the peer, which are necessary to receive before removing the associated data
structures.

To solve this problem, SOVIA creates a close thread and asks it to handle incoming packets whenever
the number of open socket connections becomes zero. If a new connection is established while the
close thread is running, the close thread is disabled so that its presence does not affect the application’s
communication performance.

The second problem occurs due to the difference in the connection model. The Sockets API has
a connection model that a server process specifies a willingness to accept an incoming connection
with listen() and accepts it with accept(). If a remote process (i.e. a client) wants to initiate
a connection, it calls connect(). The VIA has a slightly different connection model especially on
the server side. VipConnectWait() is used for a server to wait for incoming connection requests,
and, if there is any, VipConnectAccept() is called to associate the connection with a local VI
end-point.
VipConnectWait() is conceptually similar to accept() in that both of them are blocked until

a connection is requested. However, the Sockets semantics requires that the client should be able to
return from connect() successfully even though the server, after calling listen(), has not yet
reached accept(). We can not meet this Sockets behavior if accept() is directly implemented
with VipConnectWait(). This implies another thread should be running to accept a VI connection
request behind the application thread and SOVIA uses a special connection thread for this task.

3.4. Enhancing portability

It is one of our goals to enable application programs written for the Sockets API to take advantage of
the high performance of VIA seamlessly through the SOVIA layer. Therefore, it is important for the
SOVIA layer to provide enough portability so as to minimize any code modification when the existing
Sockets-based applications are migrated to the SOVIA layer.

SOVIA provides its own version of Sockets API, such as sov socket(), sov connect(),
sov send(), sov close(), etc. In order to exploit the SOVIA layer transparently at the source
level, we may consider a static replacement of the existing interfaces as follows:

#define socket sov_socket
#define close sov_close

However, such a source-level modification relying on macro definitions has a couple of drawbacks.
First, normal TCP/UDP sockets can not coexist with SOVIA, as every socket() call will be replaced
with sov socket(). Second, Sockets are also accessed by file system interfaces due to the fact
that socket descriptors are treated as file descriptors in Unix. We can not replace all the close()
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int s;
FILE *fp;
...
s = socket (AF_INET, SOCK_STREAM, 0);
connect (s, (struct sockaddr *) &server, sizeof(server));
fp = fdopen (s, "w");
fprintf (fp, "Hello, world...\n");

Figure 3. Accessing Sockets through the standard I/O library.

Figure 4. Enhancing portability by adding a compatibility layer.

system calls with sov close(), because some of them will be used for closing files instead of
socket connections. This means application programmers need to examine their source codes carefully
and make sure that only the system calls on socket descriptors are converted to the matching SOVIA
interfaces properly. A worse problem of the static replacement approach is that it can not deal with the
situation where Sockets are accessed through a number of standard I/O library routines. For example,
once the pointer to the FILE structure is obtained from a socket descriptor via fdopen(), messages
can be also sent using any of library routines (such as fprintf()), as a code fragment in Figure 3
shows.

To cope with the aforementioned problems, we use a dynamic approach where our version of Sockets
API is selected at run-time based on the socket descriptor. Fortunately, GNU’s C library (libc) defines
system call interfaces as weak symbols so that they can be overridden in user codes. We implement
a thin compatibility layer on top of SOVIA, which has wrapper functions for file system interfaces,
as illustrated in Figure 4. The compatibility layer is statically linked with the existing Sockets-based
application and is used to intercept system calls issued by the application. Note that it is also possible
to preload the object code of SOVIA dynamically by setting the LD_LIBRARY_PATH environment
variable.
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            (a)                         (b)                                  (c)

Figure 5. Copy-on-write problem: (a) before fork(); (b) after fork(); (c) when the parent writes to Rv.

For the system calls operating on normal file descriptors, it is necessary for the compatibility layer
to locate the addresses of the original functions in libc. For many system calls, such as write()
and close(), the original (strong) symbols are also exported by libc (__libc_write() and
__close() respectively) and we can call those symbols directly in the compatibility layer. In other
cases, we can use the dlsym() function to obtain the address where a particular symbol is loaded
in a dynamic library. We also need to override some of other functions, such as __write() and
__read(), which are internally called in libc by standard I/O library routines. Once they are
captured in the compatibility layer, any access through the standard I/O library can be switched to
the SOVIA layer transparently.

3.5. Problems with fork()

3.5.1. Copy-on-write problem

An FTP server process forks a child process when it receives a ‘dir’ command from a client. The child
process executes ‘/bin/ls -lgA’ on the current directory and the output is redirected to the FTP
server via pipes, which will eventually be transferred to the FTP client as a response of the ‘dir’
command. However, a naive port of the FTP server may not work if the VI Kernel Agent is not
implemented carefully; it may cause a problem when a child process is created using the fork()
system call. We elaborate upon the situation in Figure 5.

As described in Section 2.1, a memory region Rv needs to be registered before it is used for any
communication. During the registration, the VI Kernel Agent converts the virtual page addresses for
Rv into physical addresses and pins the corresponding region Rp in the physical memory. Rp is then
used by the NIC hardware for Direct Memory Access (DMA) (cf. Figure 5(a)).
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If the process forks a child, the Linux kernel optimizes the virtual memory system by copying
the data structures describing virtual memory and by sharing the actual physical pages, as shown
in Figure 5(b). A problem occurs when the parent process accesses the registered region Rv after
fork(); if a write is done, the child gets the physical pages Rp and the parent gets new physical pages
R′

p which are copies of Rp, as illustrated in Figure 5(c). This optimization is called a copy-on-write.
The copy-on-write policy is introduced to reduce the latency of forking a process while decreasing the
memory usage. However, now the NIC hardware will use physical pages Rp that are no longer mapped
to virtual addresses of the parent, Rv. Note that this problem happens even if the child process is not
involved in any communication.

It is too restrictive if user applications are not allowed to create child processes while they are using
VIA. SOVIA solves this problem by allocating pre-registered descriptors and data buffers on a shared
memory segment. The pages located in shared memory segments are shared between the parent and
the child processes without causing the copy-on-write problem. We find that both cLAN and M-VIA
drivers register a region of memory inside the VIPL to implement completion queues, and we had to
modify the VIPL so that the region is also allocated on a shared memory segment§.

3.5.2. Supporting concurrent server daemons or inetd

Sharing a socket connection between two processes is even more difficult. This is a required feature
to support concurrent server daemons or ‘super-server’ daemons such as inetd. Data structures used
by the SOVIA layer may be shared among processes through shared memory segments. However, to
completely share a socket connection, it should be possible to share a VI connection between multiple
processes, which will require extensive modification in the implementation of VI Kernel Agent and
VIPL.

Instead, we choose a partial solution, where the client connects to inetd in a normal way using
a TCP socket. If a server daemon is forked from inetd, the server closes the TCP socket and then
opens a new VI connection with the client. The server and the client codes need to be modified slightly
to make one more connection at the beginning, but this change is transparent to inetd. In this way,
we could invoke the FTP server daemon via inetd.

4. IMPLEMENTATION

In this section, we briefly describe the implementation details of several representative Sockets API
functions.

4.1. socket()

The organization of main data structures used in SOVIA is outlined in Figure 6. SOVIA initializes
its global data structures when the first socket() function is called. The global data structures

§The Giganet’s cLAN driver version 1.1.1 used in this paper has this problem. The latest cLAN driver version 1.3.0 has fixed
the problem by setting a PG reserved flag to the registered pages. However, M-VIA implementation still has this problem.
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Figure 6. Data structures used in the SOVIA layer.

include a CQ and a sockdes[] table. The CQ is associated with a RQ whenever a new VI is created.
The sockdes[] table roughly corresponds to the per-process file descriptor table in the kernel and
holds a pointer to the socket-specific data structure called svSock. In addition, a close thread is
created and activated during initialization. Note that creating a connection thread is postponed until the
application issues listen().

We introduce a new socket type called SOCK_VIA, which is similar to the SOCK_STREAM type used
for TCP sockets. When a user calls ‘socket (AF_INET, SOCK_VIA, 0)’ to create a SOVIA-
type socket, we open a dummy file (‘/dev/null’) to obtain a file descriptor s from the kernel.
SOVIA then allocates and initializes a svSock structure for the new socket, storing its address at
sockdes[s]. Finally, socket() returns s as a new socket descriptor. Later, if a system call on s′ is
intercepted by the compatibility layer, SOVIA first checks if the entry in sockdes[s′] is valid or not.
A valid entry in sockdes[s′] means s′ is a socket descriptor of type SOCK_VIA and the requested
system call is switched to the corresponding routine in the SOVIA layer. Otherwise, the original system
call interface in libc is invoked.

The svSock structure keeps all the information required for a particular socket connection.
It contains a VI, a circular queue (recvq), pre-registered descriptors and data buffers, mutexes and
conditional variables to synchronize accesses between multiple threads, and other data to maintain the
state of the connection. As discussed in Section 3.5.1, descriptors and data buffers are allocated in a
shared memory segment to avoid the copy-on-write problem. The recvq is used to link the incoming
data in a circular fashion which are not yet read by the application. A VI is not actually created until
the application requests a connection establishment via listen() or connect().

4.2. listen(), accept(), connect(), and close()

SOVIA uses five types of packets: DATA, ACK, WAKEUP, FIN, and FINACK. The type of a packet is
encoded in the 32-bit Immediate Data field of the descriptor without consuming any extra memory.
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                      (a)                                                                             (b)

Figure 7. Establishing and closing a connection in SOVIA: (a) establishing a connection; (b) closing a connection.

The DATA and the ACK packets are used for transmitting data and delayed acknowledgements,
respectively. The FIN and the FINACK packets are used for closing a connection as described in
Section 3.3. The WAKEUP is a special packet that is exchanged between two end-points as soon as
a new connection is established. It is used to inform the peer about the sender’s socket descriptor, IP
address, and port number.

An example sequence of operations during the connection establishment is shown in Figure 7(a).
As noted in Section 4.1, a close thread is created when the first socket() function is called. On
the server side, SOVIA creates a connection thread each time the application issues listen() on a
port. Initially, the connection thread waits for incoming connection requests in VipConnectWait().
For each incoming request, the connection thread accepts it by calling VipConnectAccept(), and
then stores the information in a queue shared with the application thread. If the application thread
finds the queue empty on accept(), it is suspended waiting for a signal from the connection thread.
Otherwise, the application thread extracts an entry from the queue and completesaccept() returning
a new socket descriptor.

One of the challenging issues is to deactivate the close thread when a new connection is established,
in order to minimize the overhead during the actual data transfer. We solve this problem using the
WAKEUP packet. Recall that the WAKEUP packet is the first packet received from the peer after a new
connection is set up. Therefore, if the WAKEUP packet is received while the close thread is handling
incoming packets, it means a new connection has been established and we suspend the execution of the
close thread immediately. Obviously the WAKEUP packet may be received by the application thread if
there are one or more open connections, but no special action is taken in this case.

Figure 7(b) illustrates the situation where a connection is closed. The application thread returns from
close() after sending a FIN packet to the peer but the associated svSock structure is not destroyed
until both end-points completely exchange the FIN and the FINACK packets. In addition, if the currently
closed connection is the last one in the system, the suspended close thread is enabled again as a result
of calling close().
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Figure 8. The state transition diagram of SOVIA.

4.3. send() and recv()

Figure 8 summarizes the states and the state transitions in SOVIA, which are very similar to the
TCP’s [28]. The notation appl:close()

send:FIN denotes a state transition when an application issues close(),
and specifies that a FIN packet is sent to the peer as a result of the transition. The states in the shaded
areas in Figure 8 are used for supporting active and passive closes. The NORMAL state represents that
a connection has been established between two end-points and all the data transfers are performed in
the NORMAL state.

A sending operation may be blocked if there is not enough window size on the connection. In that
case, the application thread executes an internal packet handling routine called sovia handler()
until the window size is increased. The window size is increased by ACK packets or by delayed
acknowledgements piggybacked in DATA packets. Similarly, when the application requests recv(),
SOVIA first checks the recvq to see if any data arrived before the recv(). If the recvq is empty,
the application thread executes the sovia handler() expecting a DATA packet from the peer. The
sovia handler() is responsible for receiving packets by monitoring the CQ, and updating state
information of the connection according to the state transition diagram shown in Figure 8. The same
sovia handler() is also used by the close thread.

As described in Section 3.2.1, our flow control mechanism requires pre-posting a number of
descriptors to the RQ. For a given window size w and a delayed acknowledgement threshold t , there
can be maximum w/t outstanding ACK packets for a particular connection. As the peer may send a
FIN packet immediately after w/t ACK packets, at least P = w + w/t + 1 descriptors should be pre-
posted to each RQ in advance. Similarly, we can calculate that the recvq should have P + 1 slots to
store pointers to P incoming packets in the worst case, where one additional slot is used to correctly
implement a circular queue.
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4.4. Finalization

Before the application terminates, we should ensure a clean-up routine is called for the following
reasons.

• SOVIA pre-registers a region of memory that is used for descriptors and data buffers. They should
be deregistered before the application exits.

• The completion queue (CQ) should be destroyed as it also internally registers a certain amount
of memory in many VIPL implementations.

• SOVIA allocates descriptors and data buffers in shared memory segments, which should be
detached upon the completion of program execution.

• Applications may exit without closing established connections. For a graceful termination, we
should close active connections by calling close() inside the clean-up routine.

• If an application exits after calling close() on an active connection, it is possible that the FIN

and the FINACK packets have not yet arrived from the peer at the time of termination. In that
case, we should wait until the socket connection reaches the CLOSED state.

• The close thread (and the connection thread, if any) should be explicitly killed because it may
hang in the system after program termination.

For a normal termination, SOVIA registers the clean-up routine by calling atexit() during
initialization. This allows us to invoke the registered clean-up routine automatically when the program
terminates with exit().

Even though we use atexit(), it is possible for the application to abort its execution upon the
receipt of signals (such as SIGQUIT or SIGSEGV) without invoking the clean-up routine. For such
an abnormal termination, SOVIA initially registers a signal handler whose task is similar to that of
the clean-up routine. However, as the signal handler is executed in an emergency situation, it simply
disconnections all the current VI connections without making any effort for a graceful termination.
In some implementations, the lost VI connection can be discovered by the peer through the use of
VipErrorCallback(). Note that our signal handler may be overridden if the application registers
its own signal handler for the same signal. In such a case, we may either disable the application’s signal
handler, or chain two signal handlers by intercepting the signal() system call at the compatibility
layer.

5. EXPERIMENTAL RESULTS

5.1. Evaluation platform and benchmarks

The hardware platform used for performance evaluation is two Linux servers based on Intel
L440GX+ motherboards running Linux kernel 2.2.16. Each server consists of a Pentium III-500 MHz
microprocessor with 512 kB of L2 cache and 256 MB of main memory. Two cLAN1000 network
adapters are attached to a 32-bit 33 MHz PCI slot of each server without an intermediate switch.
We have used cLAN driver version 1.1.1 and the TCP performance on cLAN is measured using the
LANE driver supplied by Giganet.
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To quantify the impact of each optimization on the application’s performance, we use
microbenchmarks which measure the latency and the bandwidth. The (one-way) latency is measured
by a half of the round-trip time in a ping-pong test. To measure the (unidirectional) bandwidth, the
sender issues a long rapid sequence of send()’s for more than 60 s and waits for a reply message,
which is sent by the receiver after reading the last transmitted data successfully. The same benchmarks
are implemented using the VIPL as well, to compare the performance of SOVIA with that of native
VIA.

In addition, we have ported FTP and RPC applications over the SOVIA layer in order to show the
functional compatibility with the existing Sockets API. The performance details of these applications
will be discussed in Sections 5.3 and 5.4, respectively.

5.2. Performance on microbenchmarks

Figure 9(a) compares the latency of SOVIA with those of TCP and native VIA on Giganet’s cLAN.
First of all, we note that native VIA outperforms TCP as expected; native VIA shows a latency of
8.5 µs for 4-byte packets, while TCP shows 55 µs for the same condition.

Looking at the performance results of SOVIA, we can see that the implementation using a separate
handler thread (SOVIA HANDLER) results in significantly higher latency compared to the single-
threaded implementation (SOVIA SINGLE). As described in Section 3.1.2, the thread synchronization
cost is responsible for the gap between SOVIA HANDLER and SOVIA SINGLE, which increases
latency by about 16 µs.

This observation has been confirmed using a benchmark program which accurately measures Tsync,
the cost to wake up a blocked thread by sending a signal in a multi-threaded application. We find
that Tsync is about 17.0 µs on the same platform, which is very close to the difference in latency
between SOVIA HANDLER and SOVIA SINGLE. Unlike general multi-threaded applications, running
SOVIA HANDLER on SMP systems does not improve the latency, as Tsync is rather increased to
31.0 µs on a dual-processor system. This is because rescheduling a blocked application thread requires
kernel services and SMP kernels have an additional overhead of acquiring and releasing a spinlock to
access kernel data structures. The latest Linux 2.4 kernels are known to show better performance than
Linux 2.2 kernels, but Tsync has not been improved much; under Linux 2.4.8, Tsync was still 17.4 µs on
a uniprocessor system and 29.3 µs on a dual-processor system. This suggests that modern kernels can
hardly improve the performance of SOVIA HANDLER.

Figure 9(a) also shows the changes in latency when we try to combine small messages together
(SOVIA COMBINE). Combining small messages increases the latency of SOVIA by 1–2 µs to manage
a software timer. However, this feature may be turned off at run-time for latency-sensitive applications
in the same way as TCP, where the Nagle algorithm is disabled by specifying the TCP_NODELAY
socket option. Overall, we can reduce the latency of the SOVIA layer to as low as 10.5 µs for cLAN
on our platform, adding only 2 µs of overhead to the native VIA’s latency.

Figure 9(b) illustrates the measured bandwidth of TCP, native VIA, and SOVIA. Again, native VIA
shows higher bandwidth than TCP when the packet size is larger than 256 bytes¶; the bandwidth of

¶The socket buffer size of TCP is increased to the maximum (131 170 bytes) during the measurement.
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Figure 9. The latency and bandwidth on Giganet’s cLAN: (a) latency; (b) bandwidth.

TCP for 32 kB packets is limited to about 450 Mbps, attaining only 55% of native VIA’s performance
(815 Mbps).

In Figure 9(b), SOVIA SINGLE represents the bandwidth obtained by the single-threaded
implementation with conditional sender-side buffering, which has minimized latency in Figure 9(a).
The graph labeled SOVIA FLOWCTRL denotes the bandwidth when our flow control mechanism is
added to SOVIA SINGLE. SOVIA DACKS adds the flow control and the delayed acknowledgements
to SOVIA SINGLE. We can see that the bandwidth of SOVIA DACKS is notably improved compared
to SOVIA SINGLE. In particular, if the packet size is greater than or equal to 16 kB, SOVIA DACKS
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Table I. The performance of file transfers using FTP.

File 1 File 2
size 19 090 223 bytes size 145 864 380 bytes

TCP/IP on Fast Ethernet 90 Mbps (1.63 s) 90 Mbps (12.7 s)
TCP/IP on cLAN 262 Mbps (0.59 s) 254 Mbps (4.61 s)
SOVIA on cLAN 573 Mbps (0.27 s) 532 Mbps (2.20 s)
Local copy (on RAM disks) 611 Mbps (0.25 s) 538 Mbps (2.17 s)

shows roughly the same bandwidth as native VIA. In this experiment, we have used the window size
of 32 (w = 32) and the threshold is set to 16 (t = 16).

TCP shows higher bandwidth than native VIA for small messages of less than 256 bytes, due to
the Nagle algorithm. Similarly, we can see that SOVIA COMBINE, which adds the ability to combine
small messages to SOVIA DACKS, improves the bandwidth substantially for messages less than 2 kB.

Note that the results shown in Figure 9 are obtained from a version of SOVIA, which polls a
send queue or a completion queue to find completed descriptors. Alternatively, the VIA specification
provides several blocking APIs, with which we can perform the same task without polling. When
we use blocking APIs, the latency of SOVIA is increased to 19.4 µs for 4-byte packets and the peak
bandwidth is reduced to 780 Mbps. In spite of the slight performance degradation, using blocking APIs
have an advantage that they do not spend any CPU cycles on waiting for completion of posted actions.

5.3. FTP performance

We have measured the performance of file transfers between two nodes by modifying an FTP server
(linux-ftpd-0.16) and a client (netkit-ftp-0.16) contained in Linux NetKit 0.16. Table I
compares the measured bandwidth and the elapsed time reported by the FTP client for two different
sizes of files. To remove the effect of disk speed, the source and destination files are stored in RAM
disks.

The core loop of the file transfer operation is actually the same as our microbenchmark which
measures the bandwidth. Therefore, it is expected for FTP applications to achieve the peak bandwidth
shown in Figure 9(b). The measured bandwidth is, however, slightly lower than the expected one,
showing 573 Mbps and 532 Mbps for 19 MB and 145 MB files, respectively. This is because the
actual data transfer is bounded by the file system performance, which has a bandwidth of 538 Mbps
to 611 Mbps for local RAM disk-to-RAM disk copy of the same files. When the file size is small, the
transfer completes by writing the entire file into buffer caches even without going to the file system
layer. This is why the smaller file transfer results in higher bandwidth in Table I. For TCP/IP on
Fast Ethernet, the performance does not depend on the file size, as the network becomes a bottleneck
in this case.

Finally, we note that the raw performance of VIA is not delivered to user applications efficiently
using the kernel-level TCP/IP driver on cLAN. Although the peak bandwidth of native VIA is
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Figure 10. Average elapsed time to call an empty remote procedure.

815 Mbps, FTP applications result in bandwidths of less than 300 Mbps with the TCP/IP driver,
exploiting only 32% of the available bandwidth. Overall, the SOVIA layer easily doubles the
performance of FTP applications compared to the LANE driver.

5.4. RPC performance

The goal of RPC is to make a network function call as simple as any local function call. In RPC, the
calling arguments are passed to a remote procedure and the caller waits for a response to be returned
from the remote procedure. RPC hides all the network code in client ‘stubs’ and server ‘skeletons’
that are automatically generated from the specification of remote procedures. RPC also isolates the
application from the physical and logical elements of data communication mechanisms and allows
the application to use a variety of transports. This transport independence of RPC and the fact that
it is usually implemented as a user-level library, ensure RPC applications easily benefit from high-
performance, user-level communication protocols such as VIA.

If the RPC protocol is implemented directly over VIPL, it will require extensive modification in the
RPC layer. Instead, we slightly modify the rpcgen tool to generate VIA-specific interface modules
and link them with the SOVIA layer. As the SOVIA layer emulates the Sockets API, the modification in
the RPC layer is minimized. The client simply selects SOVIA as the base transport by specifying ‘via’
when it calls clnt_create() and there are no other changes visible to application developers.

For the experiment, we have used sunrpc implementation in glibc-2.1.3, which is available
on our platform by default. Figure 10 compares the average elapsed time for a single RPC for various
argument sizes ranging from 0 to 4 kB. An argument is passed to a remote procedure as a character
string, and the body of the remote procedure is empty returning an integer value. The argument
size of zero (x = 0) represents the case where the argument of the remote procedure is defined as
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void. Note that even for the null argument, packets are exchanged between the server and the client
containing an RPC header: 44 bytes for request, and 28 bytes for response.

Unlike FTP, RPC is a latency-sensitive application. Our measurement result shows that calling an
empty remote procedure with the null argument takes about 200 µs on Fast Ethernet and 149 µs on
cLAN, when the traditional TCP is used as a transport. In contrast, making an RPC over the SOVIA
layer takes only 35 µs for the same condition, which is 4.3 times faster than the case with the kernel-
level TCP/IP driver on cLAN.

6. CONCLUDING REMARKS

This paper presents the design, implementation, and performance evaluation results of SOVIA, a user-
level Sockets layer over VIA. Because adding a new software layer introduces an overhead inevitably,
special attention has been paid to making the SOVIA layer lightweight, while retaining the portable
Sockets semantics. SOVIA shows a minimum one-way latency of 10.5 µs and a peak bandwidth of
814 Mbps on Giganet’s cLAN, which is comparable to the native VIA’s performance. The functional
compatibility with the existing Sockets API is shown by porting FTP and RPC applications over the
SOVIA layer. In these applications, the SOVIA layer significantly outperforms the Giganet’s LANE
driver which emulates TCP/IP inside the kernel. Using the SOVIA layer easily doubles the file transfer
bandwidth in FTP and reduces the latency of calling an empty remote procedure by 77% in RPC
applications.

The goal of the SOVIA layer is three-fold. The first goal is to provide a portable and high-
performance communication library based on VIA to application developers. The second goal is
to migrate the existing Sockets-based applications with a reasonable effort so as to accelerate their
performance on VIA-enabled cluster systems. We are currently porting a user-level parallel file system
over the SOVIA layer to demonstrate this. Finally, we expect that the SOVIA layer can be a target for
further upper layers as proved by our simple port of the RPC layer.

Currently, the SOVIA layer has the following limitations. First, the exec() system call is not
supported since it will destroy all user-level data structures. Second, as discussed in Section 3.5.2,
a socket connection currently can not be shared between the parent and the child processes. Third, OOB
data is not yet supported. We believe, however, that SOVIA can be easily extended to support
OOB data by providing a separate VI connection or by reserving some descriptors for OOB data.
Finally, applications should not terminate with _exit() because it will bypass the clean-up routine
registered by atexit(). We can see that most of the problems occur due to the nature of user-level
implementation.

Full compatibility can be attained when we move down into the kernel-level. In the near future, we
will also implement a kernel-level Sockets layer over VIA to examine trade-offs between user-level
and kernel-level implementations. In addition, we plan to extend our work on to the recent InfiniBand
Architecture [29].

REFERENCES

1. Pfister G. In Search of Clusters (2nd edn). Prentice-Hall: Englewood Cliffs, NJ, 1998.
2. Buyya R (ed.). High Performance Cluster Computing: Architectures and Systems. Prentice-Hall: Englewood Cliffs, NJ,

1999.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:727–749



USER-LEVEL SOCKETS LAYER OVER VIA 749

3. von Eicken T, Basu A, Buch V, Vogels W. U-Net: A user-level network interface for parallel and distributed computing.
Proceedings of the Symposium on Operating System Principles. ACM Press: New York, NY, 1995; 303–316.

4. Pakin S, Lauria M, Chien A. High performance messaging on workstations: Illinois Fast Messages (FM) for Myrinet.
Proceedings of Supercomputing. IEEE Computer Society Press: Los Alamitos, CA, 1995.

5. Prylli L, Tourancheau B. Protocol design for high performance networking: A Myrinet experience. Technical Report 97-22,
LIP-ENS Lyons, France, July 1997.

6. Chun B, Mainwaring A, Culler D. Virtual network transport protocols for Myrinet. IEEE Micro 1998; 31:53–63.
7. Compaq Computer Corp., Intel Corp. and Microsoft Corp. Virtual interface architecture specification draft revision 1.0.

http://www.viarch.org/ [December 1997].
8. Baker M (ed.). Cluster Computing White Paper (Version 2.0). IEEE Task Force on Cluster Computing, December 2000.
9. Bozeman P, Saphir B. A modular high performance implementation of the virtual interface architecture. Proceedings of

the Extreme Linux Conference, 1999.
10. Buonadonna P, Geweke A, Culler DE. An implementation and analysis of the virtual interface architecture. Proceedings

SC ’98. IEEE Computer Society Press: Los Alamitos, CA, 1998.
11. Boden NJ et al. Myrinet: A gigabit-per-second local area network. IEEE Micro 1995; 29–36.
12. Giganet Inc. cLAN Hardware Installation Guide, 2001.
13. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J. MPI: The Complete Reference. The MIT Press: Cambridge, MA,

1996.
14. McKusick MK, Bostic K, Karels MJ, Quarterman JS. The Design and Implementation of the 4.4 BSD Operating System.

Addison-Wesley: Reading, MA, 1996.
15. National Energy Research Scientific Computing Center. MVICH: MPI for virtual interface architecture.

http://www.nersc.gov/research/FTG/mvich/.
16. Conte G et al. ParMa2: Porting VIA in LAM/MPI, University of Parma, Italy. http://www.ce.unipr.it/research/parma2/

[2000].
17. Dimitrov R, Skjellum A. An efficient MPI Implementation for Virtual Interface (VI) architecture-enabled cluster

computing. Proceedings of the 3rd MPI Developer’s Conference, 1999.
18. Gropp W, Lusk E. User’s Guide for MPICH, a Portable Implementation of MPI, Argonne National Lab/Mississippi State

University. http://www-unix.mcs.anl.gov/mpi/mpich/ [2000].
19. Ohio Supercomputer Center. MPI Primer/Developing with LAM. http://www.lam-mpi.org/ [1996].
20. Ong H, Farrell PA. Performance comparison of LAM/MPI, MPICH, and MVICH on a Linux cluster connected by a gigabit

ethernet network. Proceedings of the 4th Annual Linux Showcase & Conference, 2000.
21. Giganet Inc. cLAN for Linux: Software User’s Guide, 2001.
22. Itoh M, Ishizaki T, Kishimoto M. Accelerated socket communications in system area networks. Proceedings Cluster 2000.

IEEE Computer Society Press: Los Alamitos, CA, 2000; 357–358.
23. Rodrigues SH, Anderson TE, Culler DE. High-performance local area communication with fast sockets. Proceedings of

the USENIX, 1997.
24. Hellwagner H, Weidendorfer J. SCI Sockets Library. SCI: Scalable Coherent Interface. Architecture and Software for

High-Performance Compute Clusters (Lecture Notes in Computer Science, vol. 1734), Hellwagner H, Reinefeld A (eds.).
Springer, 1999.

25. Microsoft Corp. Winsock Direct Concepts. http://www.microsoft.com/windows2000/en/datacenter/help/wsd concepts.htm
[2001].

26. Shah HV, Madukkarumukumana RS. Design and implementation of efficient communication abstractions on the Virtual
Interface Architecture: Stream sockets and RPC experience. Software—Practice and Experience 2001; 31:1043–1065.

27. Fischer M. Sockets-GM. Myrinet User’s Group Conference, 2002.
28. Stevens WR. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley: Reading, MA, 1994.
29. InfiniBand Trade Association. InfiniBand Architecture Specification Release 1.0.

http://www.infinibandta.org/ [October 2000].

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 15:727–749


	1 INTRODUCTION
	2 BACKGROUND
	2.1 Virtual Interface Architecture (VIA)
	2.2 Related work

	3 DESIGN ISSUES
	3.1 Minimizing latency
	3.1.1 Satisfying the pre-posting constraint
	3.1.2 Handling incoming packets
	3.1.3 Avoiding memory registration cost

	3.2 Maximizing bandwidth
	3.2.1 Flow control
	3.2.2 Delayed acknowledgements and piggybacking
	3.2.3 Combining small messages

	3.3 Connection management
	3.4 Enhancing portability
	3.5 Problems with fork()
	3.5.1 Copy-on-write problem
	3.5.2 Supporting concurrent server daemons or inetd


	4 IMPLEMENTATION
	4.1 socket()
	4.2 listen(), accept(), connect(), and close()
	4.3 send() and recv()
	4.4 Finalization

	5 EXPERIMENTAL RESULTS
	5.1 Evaluation platform and benchmarks
	5.2 Performance on microbenchmarks
	5.3 FTP performance
	5.4 RPC performance

	6 CONCLUDING REMARKS

