
2005 IEEE International Symposium on Cluster Computing and the Grid

A Dynamic Grid Services Deployment Mechanism
for On-Demand Resource Provisioning

Eun-Kyu Byunt Jae-Wan Jangt Wook Jungt Jin-Soo Kimt

Division ofComputer Science, Department ofEECS,
Korea Advanced Institute ofScience and Technology (KAIST)

t{ekbyun, jwjang, wjung}(@camars.ka

Abstract

Recently Grid computing has started to leverage Web
services technology by proposing OGSI-standard. OGSI
standard defines the Grid service which presents unified in-
terfaces to every participant of Grid. In current Glubus
Toolkit3(GT3),which is an implementation of OGSI, Grid
service factories should be deployed manually into re-
sources to provide grid services. However, it is necessary
to dynamically allocate proper amount of resource, since
the demandfor resource of service provider changes over
time.

In this paper, we propose a architecture to enable on-
demand resource provisioning. We develop Universal Fac-
tory Service (UFS) that provides a dynamic Grid service
deployment mechanism and a resource broker called Door
service. Through the experiments, we show that Grid ser-
vices can adaptively exploit resources according to the re-
quest rates.

1. Introduction

Grid computing [1] is a new approach to exploit dis-
tributed, heterogeneous, and geographically scattered re-
sources in order to solve complex problems in scientific
and commercial areas. The ultimate goal ofGrid computing
is to create virtual organizations (VOs) through secure, co-
ordinated resource sharing among Grid participants and to
provide mechanisms for users to use Grid resources without
knowing the detailed characteristics of them.

Recently Grid community has proposed OGSA (Open
Grid Service Architecture) [2], in which Grid resources
are wrapped as Grid services with standard Web services
[5] interfaces to provide unified access methods to users.
Standard interfaces described in OGSA are based on OGSI

iJinsoo@cs.kaist.ac.kr

(Open Grid Service Infrastructure) [3]. OGSI provides
mechanisms for 1) creating, naming, and discovering Grid
service instances, 2) managing Grid service lifetime, and
3) subscribing and notifying specific service data. Hosting
environment defined in OGSI and existing well-developed
Web services tools make the development of Grid services
easier than ever.

Globus Toolkit 3.0 (GT3) [4] is one of the reference
implementations of OGSI specification. GT3 consists of
GT3 core and several packages including security, data
management, resource management, and information ser-
vices. Using these packages, Grid service providers or users
can exploit Grid resources successfully, and Grid resource
providers can supply their resources with uniform inter-
faces. Service providers can release their services by de-
ploying those on the Grid resources. Users of Grid then use
remote Grid resources by using Grid service. In the current
implementation of GT3, service factory of a service has to
be deployed in the resources in order to process service re-
quests. However, the deployment of service factory requires
restart of service container by resource administrator. This
means that other grid services executed on the resource have
to undergo unexpected interruption. That is to say, service
providers can not dynamically exploit Grid resources with
current GT3.

In this paper, we design and implement a dynamic Grid
service deployment mechanism named Universal Factory
Service (UFS) and a resource broker named Door service.
With these two service, we suggest a dynamic resource pro-
visioning architecture for service providers. We evaluate
UFS and Door service on a prototype Grid testbed. As a re-
sult, we show that grid service can be deployed and provides
without break of resource availability. We also show that
grid service can exploit proper amount of Grid resources
adaptively according to the request rates.

0-7803-9074-1/05/$20.00 ©2005 IEEE 863

(a) Tradional Grid services arditecture

(b) Proposed Grid servics archibectre

Figure 1. A comparison of traditional and pro-
posed Grid services architecture

2. Motivations

We assume that the following three entities are involved
in Grid computing.

* Service providers are who develop Grid services and
want to deploy the developed Grid services into re-
sources.

* Resource providers are who provide resources such as
cluster, desktop PCs, workstations, storages and so on.

* Service users are who want to use the services devel-
oped by service providers.

Since various services have different characteristics,
their resource demands vary dynamically. For example, a
on-line shopping mall has a huge peak demand in Decem-
ber where majority of its sales occurs. The service provider
for the shopping mall should be able to provide resources
enough to handle such a peak demand. However, this will
lead to significant squandering of resources during other
non-peak season. If the service provider can adjust the
amount of resources according to the demand, he need not
hold resources just to deal with peak periods.

Requirements for on-demand resource provisioning are
as follows:

* Finding resources to meet service providers' demand.
Many resource broker systems [6][7][8][9][10] can
choose resources which satisfy the demand of service
providers.

* Deploying services to the selected resources. In the
current GT3, resource providers have to deploy ser-
vices by hand.

* Dispatching incoming requestsfrom service users. In-
coming service requests need to be spread out on mul-
tiple resources where the services are deployed al-
ready.

* Removing the service when it is idlefor a long time. If
the service request rates decreases, deployed services
can be removed in order to save disk space and to re-
duce management costs.

GT3 requires that a certain service factory has to be de-
ployed in the resources in order to serve service users. For
example, as shown in 1(a), Service A is only be served on
Resource 1 and Service B is only served in Resource 2. In
current GT3, deploying any Grid services requires the mod-
ification ofconfiguration files and restarting ofthe GT3 con-
tainer itself. Thus, it is hard to use othe r free resources for
the overloaded services because manual arrangement is un-
avoidable to deploy the service.

However, in our proposed architecture shown in Fig-
ure l(b), UFS can deploy any kinds of Grid services with-
out modifying the configuration manually and restarting the
GT3 container. For example, although resource 2 does not
contain serviceX before, UFS in resource 2 can deploy ser-
viceX without aforementioned tasks.

In addition, Door service in the proposed architecture
dispatches incoming requests to the resources and deploys
services into new resources according to the deploying poli-
cies. In the previous example, if Door service notices that
serviceX is too overloaded to be served only in the resource
1, Door service deploys serviceX into resource 2 which is
selected by deploying policies. Moreover, Door service can
remove the idle service from unnecessary resources.

With the help ofUFS and Door service, service providers
can exploit on-demand resource provisioning for unex-
pected service users' demand. The benefits of using UFS
and Door service are summarized as follows:

* Little effort to deploy services for resource providers.
Resource providers only need to deploy UFS as a Grid
service and service providers can deploy their services
on-demand if they have appropriate access rights.

* Improved manageability. Management cost ofGrid re-
sources is substantially high due to the huge scale of

864

Grid. Since UFS can deploy and remove Grid ser-
vice dynamically, resource providers need not perform
these tasks by hand.

* Implicit load balancing on multiple resources. Door
service can adjust the amount of resources to guaran-
tee a certain level of quality-of-service to service users
without involvement of service providers. Thus, ser-
vice providers can focus only on their services.

The remaining sections are organized as follows. Section
3 overviews related work. In section 4 we describe the de-
sign and implementation ofUFS and Door service. Section
5 displays the evaluation results. We present conclusions
and future work in section 6.

3. Related work

Various dynamic service deployment mechanisms have
been explored in the area of distributed systems.

Oceano [11] is a prototype system of a highly available,
scalable, and manageable infrastructure for an e-business
computing utility. Oceano divides server farms into sev-
eral separate domains, which are completely isolated each
other. Each domain provides a hosting environment for one
service. When one of the hosted services is overloaded,
Oceano increases the size of associated domain by deploy-
ing the services to free resources dynamically. If another
busy service becomes idle, adversely, they decrease the size
of that domain by removing the services dynamically. In
Oceano, preparing another hosting environment for over-
loaded services takes relatively long time due to the restart-
ing and the reconfiguration ofthe server in order to meet the
requirements of the new services. Thus, adjusting the size
of a service domain has to be made carefully.
SODA [12] is another kind ofthe service platform which

supports dynamic service deployment. SODA introduce
HUP (Hosting Utility Platform) which is similar to our
UFS. HUPs are installed in physical hosts and each host
runs one or more virtual service nodes. A service can be
installed in one or more these virtual service nodes, which
are complete virtual machines on real hosts. With HUP,
SODA can support mechanisms for adjusting the amount of
virtual service nodes according to the service request rate.
If the number of incoming service requests of a service in-
creases, service providers ask SODA agent a new resource,
and SODA agent and master allocate more resources to that
service, if possible. However, since SODA is based on the
virtual machine to provide hosting environment for a ser-
vice, the cost of changing the amount of resources is con-
siderably high, and thus this decision has to be made cau-
tiously like Oceano.

OGSI.NET [13] is an implementation of the OGSI spec-
ification on Microsoft's .NET platform. It provides a con-

tainer framework on which OGSI-compliant Grid comput-
ing is supported in the .NET/Windows world. In OGSI.NET
architecture, dispatcher is similar to our Door service,
which routes incoming requests to pertinent Grid Service
Wrapper (GSW). While dispatcher in OGSI.NET is a lo-
cal agent routing the incoming service requests to one of
GSWs, Door service is a global agent to link incoming ser-
vice requests to resources. One of other components, meta-
factory in OGSI.NET, is comparable to our UFS. Meta-
factory allows service providers to deploy Grid services into
the GSW without restarting or reconfiguring OGSI.NET
container. However, service codes deployable into GSW
are called assembly, which is a different type of the service
implementation from GT3.

The GridWeaver project [17] presents an autonomous re-
source configuration framework for clusters by combining
LCFG [19] and SmartFrog [20]. Since these technology are
designed for cluster scales, GridWeaver need to be modified
to deal with huge resource pools like Grid.

Distributed Ant(DistAnt) [18] provides a mechanism for
deploying user's application on remote resource. DistAnt
adopts similar deployment mechanism used in UFS. How-
ever, DistAnt only focuses on deploying and instantiating
custom applications, and does not consider the resource
provisioning for Grid-service provider.

Our work primarily differs from previous researches in
that we focus on on-demand resource provisioning with the
dynamic Grid service deployment mechanism for OGSI-
compliant Grid services.

4. Design and implementation of UFS and
Door service

4.1. Architecture for on-demand resource provi-
sioning

Figure 2 shows the overall architecture of UFS and Door
service with relevant entities such as service users, service
providers, and resource providers. Since this architecture
follows the standard OGSI specification, in order to use a
particular service, service users must interact with a service
instance created by Grid service factory ofthat service. The
role of each service is as follows:

* Actual service. Actual service is a Grid service written
in Java that service providers want to provide to service
users. Actual service can be deployed to any resources
in which UFS is deployed.

* Universal Factory Service (UFS). UFS is deployed in
every resource. UFS allows service providers to de-
ploy their Grid services dynamically and to create in-
stances of that Grid service.

865

Service users

I*4 \4 reqtsu
; :SA^vg^ f) S:^ * query

/f6ploy F0$0

IResource.-dResource
Resource, providers _

UFS Grid serviceups ~~~~~~container
createUFSlnstance(

UFS instance UFS instance

Factory of service A Factory of service B

m31ic
createServkceL(cateServke(

IK.tal osEvif A

IA

Figure 3. Internal architecture of UFS
Figure 2. The relationship among ser-
vice providers, service users and resource
providers

* Resource Selection Service (RSS). RSS is a kind of In-
dex service which monitors and serves the information
of Grid resources. Based on this information, Door
service obtains the list of proper resources which sat-
isfies the condition for executing actual service.

* Door service. Door service relays service requests to
proper resources in which actual service is deployed.
Door service also deploys the actual service to the re-
source with the help ofRSS and UFS in order to adjust
the amount of resources occupied by the service.

Service users should know the address ofGSH(Grid Ser-
vice Handle) of the service factory in order to create and
use the service instances. In our on-demand resource pro-
visioning architecture, the location of the resources where
the Grid service is deployed is dynamically changed. Thus,
some mechanism to connect the service user to the re-
sources is necessary. Door service takes a part ofthis mech-
anism in our architecture.

Note that service providers should have their own Door
services to provide their Grid services to service users.
We implemented a general Door service so that service
providers can use that after simple configuration. Service
users then can use the Grid service simply by contacting its
own Door service.

Next two subsections explain UFS and Door service in
detail. At the end of this section, we show an example sce-
nario how a Grid service is called by a service user.

4.2. Universal Factory Service (UFS)

Figure 3 depicts how UFS creates service instances. UFS
is a persistent Grid service which is permanently accessible
as long as the GT3 container is alive. If Door service asks
UFS to deploy a new Grid service, UFS creates an UFS
instance, which is an empty service at that time. UFS in-
stances can work as a service factory ofany Grid service af-
ter Door service transfers service code and configures nec-
essary parameters. Since Grid services are implemented as
Java classes, no complicated installation procedures are re-
quired. Java classes are transferred over http protocol and
stored in preassigned local storage. Then just after link-
ing the location of that Java classes to the UFS instance,
service users can create service instances using createSer-
viceO method of the UFS instance in the same way they
access common Grid service factory.

Since UFS instances support the notification of its re-
source status, Door service subscribes that resource status.
Currently, a UFS instance notifies Door Service ofthe CPU
load average and the number of active service instances.
A UFS instance can be terminated by the destroyO

method. The destroyO method deletes the service code and
destroys the UFS instance as other Grid service instances
are destroyed.

4.3. Door service

Door service provides service users with the same inter-
face as common Grid service factory does. Service users
can get GSH of a service instance from Door service via
createServiceO method. To handle the request from service
users, Door service asks the proper resource to create a ser-
vice instance. Door service can deploy the actual service
into new resources using UFS, if necessary.

The service providers need to specify the policies includ-
ing where new service instance should be crested, when the

866

Service users

617
Door service ><

L Deplyed 3
1resource tableb

(a)

Resource
- provider

UFS instance
V (Factory of

service A)

4
Instance of
service A

Resource

(b)

Figure 4. Service request flows

service should be deployed into a new resource, and when
the resource should be released. In the current version of
Door service, service providers can determine the policy ac-

cording to the CPU load average and the number of active
instances in the resource. Door service maintains a list of
GSHs ofUFS instances where the actual service is deployed
and the status of the resources. The status of resource is up-
dated by notification from UFS instances.

Since UFS instances are not persistent Grid services, dy-
namically deployed services are no more available if GT3
container is restarted or failed. Nonetheless, since Door ser-

vice always monitors the status of resource, Door service
can detect the resource failure and allocate new resource if
the number of remaining resources are insufficient to deal
with next requests.
Now we show the example scenario of using Door ser-

vice and UFS. Assume that s service user want to invoke
a Grid service A. Figure 4(a) depicts the operation flows
when Door service does not need to deploy the service to
new resource. In this case, the following steps are required:

1) A service user asks Door service to create an instance
of the service A.

2) Door service selects a resource from the resource pool
where the service A is already deployed.

3) Door service sends a request to the UFS instance ofthe
selected resource to create an instance of service A.

4),5) The UFS instance creates a new instance ofthe service
A and retums its GSH to Door service.

6) Door service retums that GSH to the service user.

7) The service user contacts the instance of the service A
using the returned GSH.

Figure 4(b) displays the request flow when Door service
needs to deploy service A into a new resource. In this case,
the following steps should be done between step 2) and 3)
of Figure 4(a):

1) Door service gets the list of available resources for the
service A from RSS.

2) Door service asks UFS to create a UFS instance.

3),4) UFS creates an UFS instance which is an empty fac-
tory and returns GSH of the created UFS instance.

5) Door service transfers the service code of the service
A and configures the UFS instance. Then the UFS in-
stance is ready to act as a factory of the service A.

5. Evalution

5.1. Experimental setup

For the experiments, we use eight two-way SMP nodes
with Intel Pentium Xeon 2.8 GHz and 1GB memory, and
four two-way SMP nodes with Intel Pentium III 850MHz
and 1.5GB memory. They are connected by 10OMbps Eth-
ernet. Globus toolkit version 3.2.1 is installed in every node.
Door service and RSS are deployed on a Xeon node, while
another Xeon node is dedicated to periodical generation of
service requests. The remaining ten nodes are used as re-
sources ofthe resource provider and UFS is installed in each
resource.
We convert three real applications, Raja[14], JIU[15],

and Jspeex[1 6], into Grid services. During the experiments,
we have varied the rate of service requests to these services.

5.2. Overhead of using Door service

While UFS and Door service provide a convenient way
to use resources for service providers, service users may
experience an additional delay compared to the case they
use the resource directly, since every request should pass
through Door service. This delay can be longer when Door
service has to deploy the service to a new resource. In
our experiments, deploying a service of 4.5Mbytes code
through UFS takes 3.98 seconds on average. Notice that
transferring the service code over the network consumes
97% out of 3.98 seconds. Since service deployment does
not happen frequently, the delay due to the presence ofDoor
service is not critical.

867

Table 1. The elapsed time for getting a service instance from a resource

Without stub code loading
Direct to factory via Door service
r 98.47 ms l 108.79 ms

We measured the average round trip time of createSer-
viceO method of Door service. Service users ask Door ser-
vice to create an instance of Raja Grid service. The result is
presented in Table 1. When service users request the Grid
service for the first time, service users may wait additional
time to get results since they have to load stub codes. This
overhead does not appear once stub codes are loaded.

In Table 1, the time without stub code loading shows the
delayed time due to Door service. The service users wait
about 10 more milliseconds to get results when they request
through Door service than when they directly request to fac-
tory. This is ignorable compared to the whole execution
time of the service.

When we measure the round trip time with stub code
loading, via Door service takes smaller time than Direct to
factory. This is caused by the difference in stub code size
between two approaches. In the current GT3, service users
have to load several classes to access common Grid service
factory, while service users should load only Door service
related classes in order to access Door service.

53. Behavior of UFS and Door service with single
Grid service

In order to show our framework provides resources dy-
namically when the number of requests from service users
changes, we vary the arrival rate ofrequests and observe the
number of servicing nodes. Service users periodically make
a request to run'Raja Grid service which takes a few tens of
seconds.
We vary the arrival rate of requests of service users by

0.1 req/s every ten minutes. First, we increase the arrival
rate from 0.1 req/s to 1.0 req/s and, after that, decrease from
1.0 req/s to 0.1 req/s. We repeat this experiment for two
different policies of deploying/scheduling. The first policy
is that Door service does not allow the number of active
instances of every deployed resource to exceed the number
of processors of the node. On the other hand, in the second
policy, Door service does not allow the CPU load average of
every deployed resource to exceed the number ofprocessors
ofthe node. In both case, Door service releases the resource
when it has no active instance.

Figure 5 presents the number of servicing nodes along
with request failure rates. The results of the first policy is
denoted as instances, and that of the second policy as loa-

With stub code loading
Direct to factory via Door service

3482.65 ms l 2573.05 ms

D

E
9

10

9

8

7 D

6 °c'
S u

4 w

2

1

0ol .1, .11 .1 11,111I.1
_ ! Ini -! X1 rl oq o~ Cb Q@ ml " t
C a 0 a a a a a a _0 0 0 a a 0 0 6 6 6

request amval rate (reags)

Failure rate (Instances) Failure rate (Loadavg)
. # servicing nodes (Instances) _ # servicing nodes (Laadavg)

Figure 5. Changes on the number of servicing
nodes and request failure rates when service
requests vary

davg. Figure 5 shows that Door service utilizes resources
proportional to the arrival rates. Services are completely
provided to service user until there is no more resource.
When the arrival rate is more than 0.8 req/s, some requests
are not served because all resources are busy and the policy
does not allow to create a new service instance on existing
resources.

The result obviously exhibits that loadavg occupies
slightly more resources with higher failure rate than in-
stances. This is caused by the freshness of information
Door service uses. While the number of active instances is
reported to Door service whenever changed, the CPU load
average is reported in every 10 seconds. Besides, the CPU
load average denotes the average running processes during
last one minute. Therefore, once Door service perceives the
resource is busy, Door service may not use that resource
even though the resource is available.

5.4. Behavior ofUFS and Door service with several
Grid services

We perform another experiment to show the behavior of
UFS and Door service when several services co-exist on the
resources. We deployed three Door services of Raja, JIU,

868

z

Table 2. The amount of the service requests
normalized to the phase I

I I Phase I

Raja 1.0 _
JIU 1.0
Jspeex 1.0 _

Figure 6. The dynamic change in the number
of servicing nodes for three different Grid ser-
vices

and Jspeex Grid service. Similar to the former experiments,
service users periodically make service requests.
We divide the whole experiment time into four phases.

Each phase lasts for 20 minutes. In the first phase, ser-
vice users make total 400 requests for Raja, 600 requests
for JIU, and 800 requests for Jspeex. We change the ar-

rival rate ofrequests whenever the phase is changed. Table
2 shows the relative arrival rates of each phase normalized
to those of phase 1. In this experiment, each service adopts
the instances policy. Figure 6 shows the number of servic-
ing nodes during the experiments. As expected, each ser-

vice occupies only the amount of resources that is required
to handle the incoming requests.
We also show that on-demand resource provisioning can

more efficiently utilize the limited amount of resources
than the case where services are statically partitioned to re-
sources. For the static deployment system, we deploy Raja
into four nodes, JIU into three nodes, and Jspeex into three
nodes prior to starting the experiment. As shown in figure
7, the failure rate of the static deployment system is higher
than that of the dynamic deployment system. Dynamic de-
ployment system can exploit any resources, whereas static
deployment system use only the fixed number ofresources.

Figure 7. Failure rates experienced by service
users

6. Conclusions and future work

In this paper, we identify the requirements for the on-

demand resource provisioning for Grid services. Since
functionalities of the current GT3 are insufficient to sup-
port dynamic Grid service deployment which is essential to
support on-demand resource provisioning, we design and
implement UFS which is an OGSI-compliant Grid service.
Once UFS is deployed into the resources, service providers
can deploy any kinds of Grid services without modifying
any configuration or restarting the GT3 container. We also
design and implement a simple resource broker called Door
service. Door service works as a front end of a certain ser-
vice and dispatches incoming requests ofthat service to the
resources in which actual services are already deployed.

Through the various experiments, we show that our
dynamic deployment mechanism works correctly. When
the request rate of a service increases, we can observe that
the corresponding service occupies more resources. On the
other hand, when the request rate of a service decreases, the
corresponding service releases its resources and the amount
ofoccupying resources shrinks. We also show that dynamic
deployment can use resource more efficiently compared to
static partitioning.

Service providers may apply several policies for deploy-
ing and dispatching to Door service in order to preserve the
reasonable performance of their services. These policies
should be determined considering the performance charac-
teristics of a service, the capability of a resource, and the
QoS expectation of service provider. The current version
of Door service only allows service provider to limit the
number of concurrent instances according to the number
of processors. However, since the characteristics of many
Grid services vary, our next version of Door service will
support additional mechanisms for service providers to de-

869

Phase 2
2.0
0.5
0.5

Phase 3
_1.0

_ 1.57

Phase 4
0.0
1.5
1.5

e
e
2!

LI

e

12
u
e4

scribe more detailed policies.
If too many users want to use the same service, Door

service may be the performance bottleneck. Since Door ser-
vice is quite lightweight as shown in section 5.2, the scala-
bility of the service container dominates the throughput of
Door service. Our Door service runs on GT3 container. Un-
fortunately, GT3 container can not handle more than 20 ser-
vices at the same time and we find that it shows the limited
throughput even for very light Grid service. Therefore, it is
necessary to make GT3 container more scalable. We also
plan to construct a hierarchy of Door services to enhance
the scalability ofDoor service.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy
ofthe Grid: Enabling Scalable Virtual Organizations,"
International Joumal of Supercomputer Applications,
2001.

[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "The
Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration" Open
Grid Service Infrastructure WG, Global Grid Forum,
2002.

[3] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Gra-
ham, C. Kesselman, T. Maguire, T. Sandholm, P.
Vanderbilt, and D. Snelling, "Open Grid Services In-
frastructure (OGSI) Version 1.0," Global Grid Forum
Draft Recommendation, 6/27/2003.

[4] The Globus Alliance, http://www.globus.org/.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N Mukhi,
and S. Weerawarana, "Unraveling the Web Services
Web: An Introduction to SOAP, WSDL, and UDDI,"
IEEE Internet Computing, 2002.

[6] C. Liu, L. Yang, I. Foster, and D. Angulo, "Design
and Evaluation ofa Resource Selection Framework for
Grid Applications," Proceedings of the IEEE Interna-
tional Symposium on High-Performance Distributed
Computing, 2002.

[7] W. Lee, S. McGough, S. Newhouse, and J. Dar-
lington, "Load-balancing EU-DataGrid Resource Bro-
kers," UK e-Science All Hands Meeting, 2003.

[8] D. Thain, T. Tannenbaum, and M. Livny, "Condor and
the Grid," Grid Computing: Making The Global In-
frastructure a Reality, John Wiley, 2003.

Proceedings of the IEEE International Conference on
High Performance Computing and Grid in Asia Pacific
Region, 2000.

[10] Y.-S. Kim, J.-L. Yu, J.-G. Hahm, J.-S. Kim, and J.-
W. Lee, "Design and Implementation of an OGSI-
Compliant Grid Broker Service," Proceedings of the
IEEE International Symposium on Cluster Computing
and the Grid, 2004.

[11] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. P. Pazel, J. Persh-
ing, and B. Rochwerger, "Oceano-SLA Based Man-
agement of a Computing Utility," Proceedings of
the IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

[12] X. Jiang, D. Xu, "SODA: a Service-On-Demand
Architecture for Application Service Hosting Util-
ity Platforms," Proceedings of the IEEE International
Symposium on High Performance Distributed Com-
puting, 2003.

[13] G. Wasson, N. Beekwilder, M. Morgan, and M.
Humphrey, "OGSI.NET: OGSI-compliance on the
.NET Framework,' Proceedings of the IEEE Interna-
tional Symposium on Cluster Computing and the Grid,
2004.

[14] The Raja Project, http://raja.sourceforge.net/.

[15] JIU - The Java Imaging Utilities - An image process-
ing library, http://jiu.sourceforge.net/.

[16] JSpeex - Java Implementation
http://jspeex.sourceforge.net/.

of Speex,

[17] GridWeaver Project, http://www.gridweaver.org/.

[18] W. Goscinski and D. Abramson, "Distributed Ant:
A System to Support Application Deployment in the
Grid," IEEE/ACM International Workshop on Grid
Computing, 2004.

[19] P. Anderson and A. Scobie, "LCFG - the Next Gena-
ration," UKUWG Winter Conference, 2002.

[20] P. Goldsack, "Smartfrog: Configuration, ig-
nition and management of distributed appli-
cation," Technical report, HP Resource Labs.
http://www-uk.hpl.hp.com/smargfrog/.

[9] R. Buyya, D. Abramson, and J. Giddy, "Nimrod/G:
An Architecture for a Resource Management and
Scheduling System in a Global Computational Grid,"

870

