
Design and Implementation of an OGSI-Compliant Grid Broker Service

Young-Seok Kim† , Jung-Lok Yu† , Jae-Gyoon Hahm‡ , Jin-Soo Kim† , and Joon-Won Lee†
Computer Science Division, Korea Advanced Institute of Science and Technology (KAIST) †

Korea Institute of Science and Technology Information (KISTI) ‡
{kimys, jlyu}@camars.kaist.ac.kr, jaehahm@kisti.re.kr, { jinsoo, joon}@cs.kaist.ac.kr

Abstract

Grid computing promises the ability to share
geographically and organizationally distributed
resources to increase effective computational power
and resource utilization. However, for the grid
computing to be successful, it is very important to
provide middleware services that assist grid users to
easily interact with grid environments.

In this paper, we have designed and implemented a
new general-purpose OGSI-compliant Grid resource
broker service to hide the underlying complexity of the
Grid resources from Grid users and to meet not only
Grid user’s requirements but also resource owner’s
policies. It focuses on the discovering and scheduling
dynamic resources scattered across multiple
organizations. Furthermore, it can be integrated with
various scheduling services. We also present
experimental results and demonstrate the effectiveness
of our Grid broker service.

1. Introduction

Grid computing [1] is an approach to distributed
computing that provides unlimited high-end computing
resources to Grid users without regard to their physical
locations. A Grid can be defined as a collection of
distributed computing resources available over local or
wide area networks that appears to Grid users as one
large virtual computing system. The ultimate goal of
the Grid is to create dynamic virtual organizations
(VOs) through secure, coordinated resource sharing
among individuals, institutions, and resources [2]. Grid
computing technology has been widely and
successfully used to solve large-scale science and
engineering problems.

Recently, Grid computing has started to leverage
Web Services [3] technology to define standard
interfaces for constructing Grid environments. The

Open Grid Services Architecture (OGSA) [4,5] aims to
define a new common and standard architecture for
Grid-based applications. The OGSA views a Grid as an
extensible set of Grid Services that may be
interoperated in various ways to meet the need of VOs.
Here, a Grid Service is a Web Service that conforms to
a set of interfaces and behaviors. Those interfaces and
behaviors define how Grid users or applications
interact with the Grid service. More specifically, the
OGSA provides mechanisms: 1) for creating, naming,
and discovering transient Grid Service instances, 2) for
managing Grid Service lifetime, and 3) for subscribing
and notifying specific service data. The Open Grid
Services Infrastructure (OGSI) [6] is a formal and
technical specification of the concepts described in
OGSA. Globus Toolkit 3.0 (GT3) [4] is a reference
implementation of OGSI specification.

Although Globus Toolkit provides many useful
Grid-related services including GT3 Security Services
[7], GT3 Base Services [8,9,10], and GT3 Data
Services [11], the discovery and selection of suitable
resources for applications in Grid environment remain
challenging problems. When Grid users are to use a
Grid, all processes related to resource discovery,
resource selection, and resource scheduling, should be
handled manually. This is because no Grid resource
broker service is available on top of Globus Toolkit.

In this paper, we design and implement a new
general-purpose OGSI-compliant Grid resource broker
service. The role of the resource broker service is to
find the best match between the requirements of the job
and the distributed computing resources on the Grid.
Our broker service hides the underlying complexity of
the Grid resources from Grid users by providing
automatic resource discovery and scheduling.
Furthermore, during the resource discovery and
scheduling procedure, we consider not only job’s
requirements on resources, but also resource owner’s
usage policies. This allows resource owners to tightly
control the usage of their resources. We provide XML-

bruno
0-7803-8430-X/04/$20.00 ©2004 IEEE

based extensible schemas to represent user
requirements and resource owner policies by modifying
Resource Specification Language (RSL) [12] and
GLUE [13] schema, respectively.

The rest of this paper is organized as follows.
Section 2 overviews previous research on resource
brokering and scheduling. Section 3 and section 4
discuss the system design and implementation details of
our OGSI-compliant Grid resource broker service,
respectively. Section 5 describes experimental results
and section 6 concludes the paper.

2. Related Work

Many projects, such as AppLes, Nimrod/G, Condor-
G, and EZ-Grid, have been investigating resource
broker services on Grid [14].

AppLes (Application Level Scheduling) [15]
focuses on developing scheduling agents for individual
Grid applications. AppLes agents have an application-
oriented scheduling mechanism, and use static or
dynamic application and resource information to select
a set of resources. However, they perform resource
discovering and scheduling without considering
resource owner policies. Also they do not support
system-oriented or extensible scheduling policies [14].

Nimrod/G [16] broker allows managing and steering
of parameter sweep applications on computational
Grids. Currently, it adopts economic theories in Grid
resource management and performs scheduling as part
of a new framework called GRACE (Grid Architecture
for Computational Economy), which includes global
scheduler, bid-manager, directory server, and bid-
server components. The brokering system has manually
configured resource discovery mechanism. The
scheduling policy is driven by user-defined
requirements such as budget/deadline limitations.

 Condor-G [17] is an extension to Condor [19] for
Globus to allow users to harness multiple
administrative domain resources. It creates a virtual
Condor pool from Globus-enabled resources by using a
mechanism called GlideIn, and assigns the pool to
Condor users. Condor-G uses Condor matchmaking
mechanism to match locally queued jobs with the
resource advertised by daemons in the pool.

EZ-Grid [18] resource brokering system aims at
promoting efficient job execution and controlled
resource sharing across multiple sites. It performs
automatic resource discovery, and uses resource
provider policy framework to enable fine-grained
authorization. EZ-Grid also provides deadline/budget-
based scheduling according to user-specified time/cost
constraints.

Our resource broker service differs from previous
ones in the following aspects. First, it is a new general-
purpose OGSI-compliant Grid resource broker service
that performs resource discovering and scheduling with
close interactions with GT3 Core and Base Services.
To the best of our knowledge, no resource broker has
yet been developed on top of Globus Toolkit 3.0.
Secondly, the proposed resource broker service
provides a general broker framework consisting of the
resource scheduling service and the resource selection
service. Since the resource scheduling service and the
resource selection service themselves are implemented
as Grid Services, they do not have to be on the same
machine and it is possible to add a new resource
scheduling service without change to the resource
selection service. Finally, our resource broker service
considers resource owner policies as well as user
requirements on the resources. Resource owners
specify the conditions of preferred jobs in much the
same way as users specify the conditions of preferred
resources for their jobs. When a job submission request
arrives, our resource broker service performs
matchmaking of those two conditions and selects
appropriate resource candidates.

3. System Design

3.1. Overall Architecture

This subsection presents the overall architecture of
the proposed Grid resource broker service. As shown in
figure 1, the broker service consists of two Grid
Services, Scheduling Service (SS) and Resource
Selection Service (RSS). On the whole, the broker
service receives job information as an input and
produces the corresponding result of scheduling as an
output. The job information is basically written in RSL-
2, but has additional requirements to specify the job’s
preferences for resources.

 RSS is responsible for discovering and selecting a
set of resource candidates, which satisfy the job’s
requirement. SS picks out one or more resources

Figure 1. Overall Architecture

among resource candidates set based on its own
scheduling criteria, and actually assigns the job on the
target resource(s). Separating the resource selection
phase (RSS) from the resource scheduling phase (SS)
increases the modularity of the Grid resource broker
service; it is easy to replace the default Scheduling
Service and is even possible for several Scheduling
Services that have different scheduling criteria to
coexist in the system. More detailed description of our
broker service architecture is presented in the following
subsections.

3.2. Specifying Job Information

Because RSS is an OGSI-compliant Grid service,

anyone, who knows the service URI and is permitted to
access the service, can get a set of resource candidates
from RSS. Contacting RSS requires a description of
job information. Figure 2(a) shows an example of how
to specify job information in XML1.

In figure 2(a), the <input id> tag means the job’s ID,
which is used by SS to distinguish incoming job
submission requests. Users specify the requirements on
the resources for the submitting job in
<resourcePreference>. The specification divides into
two parts, namely <constraints> and <ranks>. The
<constraints> part describes the minimal conditions
that resources should meet for the job, while the
<ranks> part presents the list of preferred conditions.

For example, in figure 2(a), it is specified in
<constraints> that the operating system should be
Linux to run the job. Note that we are using GLUE
schema to describe various attributes of a resource. Not
only the operating system but also available memory,
CPU clock speed, hard disk capacity, and any attributes
defined in GLUE schema can be used to specify
resource constraints.

When multiple resources meet the <constraints>, the
<ranks> part specifies the order of preference of those
resources. This is very similar to Condor’s matchmaker.
In Condor, when multiple resources satisfy a user
request, a ranking mechanism sorts available resources
based on user-supplied criteria and selects the best
match. However, because the matchmaker and the
ClassAds language used in Condor were designed for
selecting a single machine on which to run a job, it has
limited applicability in the situation where a job
requires multiple resources. Moreover, in contrast to
Condor where the preference is represented as a single
arithmetic expression, we use a more versatile point-

1 In figure 2(a), we have omitted the job specification
part written in RSL-2.

based mechanism. In figure 2(a), if the available space
in “/tmp” partition is larger than 700MB, the point is
calculated by multiplying 10 by the value of available
space in /tmp. All resources need not have the space
larger than 700MB in /tmp, but those resources which
meet the condition are more preferred by the job.

Resource Information used in Scheduling Service

Resource Constraints

Rank Points

<?xml version="1.0"?>
<rss>
<input id="12345">
<resourcePreference>

<constraints>

<constraint type="glue"><element name="ce:OperatingSystem">
<attribute name="ce:Name" value="Linux" condition="=" />

</element>
</constraint>
...

</constraints>

<ranks>

<rank>
<condition type="glue">

<element name="ce:FileSystem">
<attribute name="ce:Name" value="/tmp" condition="=" />
<attribute name="ce:AvailableSpace" value="700" condition=">=" />

</element>
</condition>
<point>

<operator type="multiply">
<operand type="glue">

<element name="ce:FileSystem">
<attribute name="ce:Name" value="/tmp" />
<attribute name="ce:AvailableSpace" />

</element>
</operand>
<operand type="integer">

10
</operand>

</operator>
</point>

</rank>
...

</ranks>

</resourcePreference>
<resourceCount min="1" max="10"/>
<userSN value="/O=Grid/O=Globus/OU=kaist.ac.kr/CN=Youngseok Kim"/>
</input>
</rss>

(a) Job information

<?xml version="1.0"?>
<rss>
<output id="12345">

<resourceList>

<resource name="cc10.kaist.ac.kr" id="cc10.kaist.ac.kr">
<rank jobPoint="95" resPoint="95"/>

</resource>
<resource name="cc1.kaist.ac.kr" id="cc1.kaist.ac.kr">

<rank jobPoint="80" resPoint="90"/>
</resource>
<resource name="cc8.kaist.ac.kr" id="cc8.kaist.ac.kr">

<rank jobPoint="70" resPoint="80"/>
</resource>
<resource name="cc7.kaist.ac.kr" id="cc7.kaist.ac.kr">

<rank jobPoint="80" resPoint="60"/>
</resource>
<resource name="cc5.kaist.ac.kr" id="cc5.kaist.ac.kr">

<rank jobPoint="50" resPoint="40"/>
</resource>

</resourceList>

</output>
</rss>

(b) Result produced by RSS

Figure 2. An Example of Job Information and
the Corresponding Result from RSS

Another interesting elements in figure 2(a) are
<resourceCount> and <userSN>. The
<resourceCount> denotes the minimum and the
maximum number of resources that are requested by SS.
If RSS finds resources less than the minimum value, it
informs SS of the failure in resource selection.
Otherwise, RSS returns the list of resource candidates
to SS, but the number of resources does not exceed the
maximum value. Finally, the <userSN> represents the
job owner’s ID. It is used by RSS when a resource has
different usage policies depending on the job owner.

The corresponding sample output generated by RSS
is shown in figure 2(b). Note that two values, jobPoint
and resPoint are associated with each resource. The
jobPoint is the sum of the points that a resource has
earned as a result of evaluating the <ranks> part in
figure 2(a). In addition, jobPoint is normalized with
respect to the maximum jobPoint of all the resources.
Therefore, jobPoint indicates how much the resource is
preferred by the job. On the contrary, resPoint, which
is also normalized with respect to the maximum
resPoint, is used to represent how much the job is
preferred by the resource. How resPoint is calculated
will be explained in the next subsection.

3.3. Specifying Resource Owner Policies
(ROPs)

In the traditional Grid computing architecture,
resources are passive and available for any jobs. The
only thing resource owners can do is to permit or to
restrict access rights to selected users. However, our
Grid resource broker service provides a mechanism for
resource owners to tightly control the usage of their
resources based on the time the job is submitted, the
user who submits the job, the current load level of the
system, and any combinations of such policies2.

 Figure 3 shows an example of how resource owners
can specify such policies. First, the line <rop
id=”cc10.kaist.ac.kr”> represents that this ROP
(resource owner policy) is for the node, cc10.kaist.ac.kr.
In the following <policy> part, we define a number of
service classes based on the job submission time, the
job owner, and the load level of the system. Each
service class or any logical combinations of such
service classes get points in the <ranks> part, according
to their preferences given by the resource owner. Such
points are summed up and returned to SS as a resPoint
mentioned in section 3.2 (cf. figure 2(b)). When the

2 Note that our resource broker service framework can
be extended easily to include other resource owner
policies, if any.

resPoint is zero for a given job, the corresponding
resource is not considered by RSS, even though the
resource has the highest jobPoint among resources (i.e.,
it is the most preferred resource by the job).

Time Group

User Group

Load Group

Rank Point Example 1

Rank Point Example 2

<?xml version="1.0"?>
<rop id="cc10.kaist.ac.kr">
<policy>

<group name="timeGroup" valueType="time"
condType="range" zoneOffset="9">

<class name="TG1">
<range from="02:00" to="08:00"/>

</class>
<class name="TG2">

<range from="any" to="any"/>
</class>

</group>

<group name="userGroup" valueType="sn" condType="single">

<class name="UG1">
<single value="/O=Grid/O=Globus/OU=kaist.ac.kr"/>

</class>
<class name="UG2">

<single value="/O=Grid/O=Globus/OU=kisti.or.kr"/>
</class>
<class name="UG3">

<single value="/O=Grid/O=Globus/OU=hufs.ac.kr/CN=rhee yunseok"/>
</class>

</group>

<group name="loadGroup" valueType="load" condType="range">

<class name="LG1">
<range from="0" to="5"/>

</class>
</group>

</policy>
<ranks>

<rank>
<!-- condition : TG1&&(UG1||UG3) -->

<condition type="operator">
<operator type="and">

<operand type="string">TG1</operand>
<operand type="operator">

<operator type="or">
<operand type="string">UG1</operand>
<operand type="string">UG3</operand>

</operator>
</operand>

</operator>
</condition>
<point type="value">100</point>

</rank>

<rank>
<!-- condition : !UG1&&LG1 -->

<condition type="operator">
<operator type="and">

<operand type="string">LG1</operand>
<operand type="operator">

<operator type="not">
<operand type="string">UG1</operand>

</operator>
</operand>

</operator>
</condition>
<point type="value">50</point>

</rank>

<default>

<point type="value">0</point>
</default>

</ranks>
</rop>

Figure 3. An Example of Resource Owner
Policy

In figure 3, the highest priority (100 resource points)
is given to the user who belongs to kaist.ac.kr (UG1) or
whose name is “rhee yunseok” in hufs.ac.kr (UG3)
during office hours (TG1). Other users (~UG1) are
allowed to use the resource with the lower priority (50
resource points) as long as the load average is less than
5 (LG1).

Resource owners should publish their ROPs in
advance and a good place to do so is GT3 Index
Service. We install a host script provider for each
resource which reports its ROP to Index Service, so
that the resource broker service makes use of them
during the resource selection phase. Although it is
somewhat complex and verbose to represent ROPs in
XML, we believe a simple GUI program can assist the
generation of such XML documents. This also applies
to the generation of job information described in
section 3.2.

4. Implementation

4.1. Resource Selection Service (RSS)

As illustrated in figure 4, RSS consists of five

components: Job Information Parser, Query Processor,
Index Service Agent (IS Agent), Cache Manager, and
Resource Selector. When RSS receives job information
from SS, Job Information Parser separates resource
constraints from job specification. Then Query
Processor converts resource constraints into XPath
queries and passes them to IS Agent to search for the
resources satisfying the job’s requirements in GT3
Index Service.

Cache Manager interacts with three other
components: a local cache, Index Service, and
Resource Information Provider Service (RIPS). The
role of Cache Manager is to store the frequently used
and searched resource information in its own local
cache in order to reduce the number of times Index
Service is accessed. When some period of time has
elapsed, however, we cannot guarantee whether the
information in the cache is still up-to-date or not.
Cache Auto Updater (CAU) module in Cache Manager
is used to maintain the up-to-date resource information
in the cache. CAU subscribes to RIPS on the resource
site to receive a periodic notification of change in
resource information.

After receiving query result from Cache Manager,
IS Agent forwards this resource information to Job
Information Parser through Query Processor. It is then
combined with job specification in Job Information
Parser and sent to Resource Selector.

Resource Selector, the core module in RSS, selects
resource candidates on which the job may be executed.
As discussed in the previous section, Resource Selector
considers both the job’s preferences on the resources
(specified in job information) and the resource’s
preferences on the jobs (specified in resource
information). In other words, Resource Selector
calculates jobPoint and resPoint from rank points of the
job information and the resource owner policy. If a
jobPoint or resPoint of a resource equal to zero,
Resource Selector ignores the resource. After that,
Resource Selector selects the resources with the higher
jobPoint or resPoint and returns them to SS. After that,
Resource Selector selects the number of resources
(between min and max) among resources with the
higher jobPoint or resPoint.

4.2. Scheduling Service (SS)

SS receives a list of resource candidates from RSS

and assigns the job to one or more resources among the
resource candidates. As figure 2(b) shows, each
resource information returned from RSS presents
jobPoint and resPoint. With these point values, SS can
perform various scheduling. For example, SS can only
consider one of the jobPoint and resPoint or both of
them as the criteria to schedule the job. Currently, we
have implemented a SS that considers both jobPoint
and resPoint with the same ratio, and have used it in
our experiments.

Furthermore, the schedulers may need more detail
information about resources other than jobPoint or
resPoint for more sophisticated scheduling algorithm.

Figure 4. RSS Architecture

For this, the schedulers can include <arguments>3 part
in the job information, requesting interesting attributes
of the resources such as CPU power, available memory
space, and available disk space, etc. After receiving the
values of such attributes from RSS, SS can arrange the
resources according to its own scheduling criteria to
select the best target resource(s).

5. Experimental Results

5.1. Experimental Setup

Our experimental testbed consists of six 2.4GHz

uniprocessor Pentium 4 nodes running Linux (cf.
Figure 5). One node is dedicated to run our resource
broker service and another node is used for generating
job submission workloads. The remaining four nodes
are used as worker nodes, on which the job is actually
allocated and executed. One of the worker nodes
additionally runs GT3 Index Service for aggregating
host information from each worker node.

Applications used in this experiment perform simple
arithmetic evaluation in a loop for 20 to 40 minutes.
The actual running time follows a uniform distribution.
This meaningless application is only used for
introducing some CPU load during the running time.
We also simulate the allocation of parallel jobs; a job
may need a node count ranging from 1 to 4. If the node
count is larger than 1, the same job is duplicated in the
selected nodes.

5.2. RSS Performance

First, we have measured the performance of RSS.
Table 1 summarizes the average execution time spent
in each RSS component. We can see that most of times
are spent for communicating with Index Service. This
result effectively confirms our design choice that it is
necessary to have Cache Manager to increase the
performance of RSS and to reduce network traffics. If
Index Services were located over wide area networks
(WAN), the access cost would be increased much more
substantially.

The actual advantage of using Cache Manager
heavily depends on the cache hit rate. However, we are
unable to get the meaningful data on the typical cache
hit rate due to the small size of our testbed. It is
interesting to study the performance of Cache Manager
in heterogeneous, large-scale Grid environment, and
we leave it for future work.

3 Detail description of <arguments> is not included
here due to space limitation.

5.3. Enforcing Resource Owner Policies

The purpose of next experiments is to test whether
RSS enforces ROPs (resource owner policies)
effectively during the resource selection phase.
Currently, resource owners can specify their own
policies based on the job owner, the job submission
time, and the load level of the system. Each policy type
is investigated independently in the following
subsections.

5.3.1. Policies on the job owner

To test whether user policy is effectively reflected
to the resource selection result, we have configured that
each node has different user group-related policy. Job
generating/submitting agent generates and submits 100
jobs with the randomly selected userSN and the node
count. And then Resource Broker Service selects
resources and allocates jobs to selected resources.
UserSN is selected among
“/O=Grid/O=Globus/OU=kaist.ac.kr” (KAIST) and
“/O=Grid/O=Globus/OU=kisti.or.kr” (KISTI) and the
node count is selected from 1 to 3. We have configured
that W1 (W2) permit the jobs only from KAIST
(KISTI) user group, and W3 allows all users to use it.
In this experiment, ROP of W1 (W2) assigns the
highest rank point to KAIST (KISTI), and ROP of W3
assigns 80 rank points to all users.

Figure 6 shows the distribution of jobs among three
nodes. We can see that all jobs which are submitted
from KAIST (KISTI) and require only one node, are
allocated to W1 (W2). W3 is shared by all users
according to the ROP of W3. Note that if a job requires

Figure 5. Experimental Setup

Table 1. Average Execution Time Spent in
Each RSS Component

Module Time(ms)
Query Generator 5.01

XML Parser 14.81
Query to Local Cache 59.87
Query to Remote IS 870.17
Resource Selector 4.25

more than one node, the job can be allocated to nodes
with higher resPoint.

5.3.2 Policies on the load level

If CPU load level becomes higher, resource owners

may want to restrict other users to use their resources.
Table 2 shows a scenario used in this experiment,
where each node has different limit on the load level.
For example, the worker node W2 accepts incoming
jobs as long as its load level is less than 5. We have
generated 400 job submission requests and their arrival
rate follows a Poisson distribution with a mean of 1
request per minute.

Figure 7 shows the changes in the load level of
worker nodes with respect to the elapsed time. We can
see that the load level of W2, W3, and W4 does not
significantly exceed the upper limit configured by the
resource owner, while that of W1 increases
continuously as W1 does not control the load level,
increases continuously. The reason why the load level
is not strictly kept under the upper limit is because the
load level is not updated instantly in the Linux system
(instead, it is calculated as an average over past 1
minute). The propagation delay of load information
from a resource to Index Service and the time taken in
allocating a job also contribute the deviation of the
result from the expected value. If the inter-arrival time
of job submission requests increases, RSS can select
resources using relatively fresh information, so the
error could be reduced.

5.3.3 Policies on the job submission time

Resource owners can also describe when other
users can use their resources in ROP. Table 3 shows a
service scenario, which has different policies on the job
submission time. In this scenario, the resource owner of
W2 simply does not want to offer the resource to Grid
users during daytime (from 8:00 to 20:00), while W1
has no such restriction. In this experiment, we have

generated job submission requests whose arrival rate
follows a Poisson distribution with a mean of 10
requests per hour.

Figure 8 presents the changes in the load level of
W1 and W2 with respect to the elapsed time. It is
obvious from the graph that no job has been allocated
in W2 during daytime. Note that the load level is not
decreased to 0 immediately at 8:00. This is because we
assume the running jobs once allocated are not killed.

As W2 does not accept any job submission during
daytime, we can see that all the jobs are allocated to
W1, which increases the load level of W1 for the same
period.

6. Conclusion and Future Work

In this paper, we have designed and implemented a
new OGSI-compliant Grid resource broker service. Our
resource broker service performs resource discovering
and scheduling and hides the underlying complexity of
Grid resources from Grid users. It can be easily
extended to incorporate various resource scheduling
services and other features as it supports a very general
resource broker framework. Moreover, the proposed
resource broker service considers resource owner
policies as well as user requirements on the resources.
Through experimental evaluations, we have
successfully shown that the proposed resource broker
service can effectively enforce resource usage policies

33

0

18

0

31

15

0

5

10

15

20

25

30

35

W1 W 2 W3

W orker Node

T
h
e
 n

u
m

b
e
r

o
f

a
llo

c
a
tio

n

The number of allocation from KAIST The numnber of allocation from KISTI

Figure 6. Number of Allocated Jobs to Each
Worker Node

Figure 7. Differentiated Allocation Based on
the Load Level

0

5

10

15

20

0 50 100 150 200 250 300 350 400

Time(min)

L
o
a
d

W1 W2 W3 W4

Table 2. Service Scenario Based on the Load
Level

Node ID Condition about load level Rank point
W1 Default 10

0~5 100 W2
5~ 0

0~10 100 W3 10~ 0
0~15 100 W4
15~ 0

based on the job owner, the job submission time, and
the load level.

As experiments have been conducted on a rather
small Grid testbed, however, it is necessary to
investigate the scalability of the broker service on a
much larger-scale Grid testbed. In addition, we plan to
refine our broker service to minimize resource conflicts
when parallel jobs are allocated.

7. References

[1] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations”,
International Journal of High Performance Computing
Applications, 15(3):200-222. 2001.

[2] D. Abramson, R. Buyya, and J. Giddy, “A Computational
Economy for Grid Computing and Its Implementation in the
Nimrod-G Resource Broker,” Future Generation Computer
Systems, 18:1061-1074, 2002

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, “Unraveling the Web Services Web:
An Introduction to SOAP, WSDL, and UDDI,” IEEE
Internet Computing, 2002.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration.”, Open Grid Service
Infrastructure WG, Global Grid Forum, 2002.

[5] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “Grid
Services for Distributed System Integration,” IEEE
Computer, June 2002.

[6] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, and
D. Snelling, “Open Grid Services Infrastructure (OGSI)
Version 1.0.” Global Grid Forum Draft Recommendation,
6/27/2003.

[7] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman,
and S. Tuecke. “Security for Grid Services.” Proc. 12th
International Symposium on High Performance Distributed
Computing, 2003.

[8] “Information Services in the Globus Toolkit® 3.0”,
http://www.globus.org/mds/

[9] “Resource Management : GT2 GRAM and GT3 GRAM”,
http://www-unix.globus.org/developer/resource-
management.html

[10] K. Czajkowski, S. Fitzgerald, I. Foster, and C.
Kesselman. “Grid Information Services for Distributed
Resource Sharing.” Proc. 10th International Symposium on
High-Performance Distributed Computing, 2001.

[11] “Data Management Services”, http://www-
unix.globus.org/developer/data-management.html

[12] “GRAM RSL Schema Documentation”, http://www-
unix.globus.org/developer/data-management.html

[13]“GLUE Schema Activity”, http://www.cnaf.infn.it
/~sergio/datatag/glue/

[14] K. Krauter, R. Buyya, and M. Maheswaran, “A
Taxonomy and Survey of Grid resource Management
Systems”, Software Practice and Experience, 32(2): 135-164,
2002.

[15] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.
Shao, “Application-Level Scheduling on Distributed
Heterogeneous Networks”, Proceedings of Supercomputing
'96, 1996.

[16] D. Abramson, R. Buuya, and J. Giddy, “A
Computational Economy for Grid Computing and its
Implementation in the Nimrod-G Resource Broker”, Future
Generation Computer Systems. 18(8), 2002.

[17] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S.
Tuecke, “Condor-G: A Computation Management Agent for
Multi-Institutional Grids.” Cluster Computing, 5(3):237-246,
2002.

[18] B. Chapman et al, “EZ-Grid Resource Brokerage
System”, http://www.cs.uh.edu/~ezgrid/ , 2001.

[19] D. Thain, T. Tannenbaum, and M. Livny, “Condor and
the Grid", in Fran Berman, Anthony J.G. Hey, Geoffrey Fox,
editors, Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, 2003.

Figure 8. Differentiated Allocation Based on
the Job Submission Time

0

5

10

15

20

25

0 5 10 15 20
Time(hour)

Lo
a
d

W1 W2

Table 3. Service Scenario Based on the Load
Level

Node ID Condition about time Rank point
W1 default 100

8:00~20:00 0 W2
the rest 100

