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Userspace
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• High safety from crash
• Easy to maintain and develop
• High portability 
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§ FUSE consists of two main components:
• FUSE driver within the kernel
• FUSE daemon within the userspace

§ FUSE driver has 5 types of queues:
• Pending queue for synchronous requests
• Background queue for asynchronous requests
• Processing queue for in-flight requests
• Interrupt queue
• Forget queue
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§ Userspace filesystem tested
• NullFS: a very simple filesystem which only supports the LOOKUP on the root directory
• StackFS: a stackable filesystem that forwards incoming filesystem operations to an underlying 

in-kernel filesystem
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§ A single pending queue in FUSE fails to harness the full throughput potential 
of a high-performance device

x2.93

<Scalability of random read on StackFS over EXT4 (FUSE) vs. native EXT4>
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§ A userspace filesystem framework designed to support a modern hardware 
environment with high-performance and scalability

1. Scalable kernel-userspace communication 
• Per-core, NUMA-aware ring channels
• Worker thread management 

2. Efficient request transmission
• Hybrid polling  
• Load balancing of asynchronous requests

3. Full compatibility with existing FUSE-based filesystems
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§ RFUSE utilizes the ring buffer structure similar to the io_uring interface, 
specifically to meet the needs of the FUSE framework.
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§ The modifications to make use of the ring channels:
• The FUSE kernel driver 
• The layer of libfuse that handles message communication

§ No modifications of all FUSE APIs exposed to developers
• Both high-level FUSE API and low-level FUSE API
• Splicing I/O interface

§ Users do not need to rewrite their FUSE-based filesystem code when 
using RFUSE. 

struct fuse_operations {
.getattr = …
.readlink = …
.mkdir = …
... }

struct fuse_lowlevel_ops {
.init = …
.destroy    = …
.lookup     = …
... }
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§ Hardware Setup

§ Frameworks compared
• FUSE
• EXTFUSE [1] : Extended FUSE using eBPF
• XFUSE [2]  : FUSE with multiple pending queue (emulation) 

Machine Dell PowerEdge R750xs
CPU 2 x Intel(R) Xeon(R) Silver 4316 CPUs (80 logical cores)

DRAM DDR4 256GB
Disk 2TB Fadu Delta PCIe 4.0 SSD
OS Ubuntu 20.04.3 LTS

Linux Kernel v5.15.0

[1] Ashish Bijlani, et al. Extension Framework for File Systems in User space, USENIX ATC ’19
[2] Qianbo Huai, et al. XFUSE: An Infrastructure for Running Filesystem Services in User Space, USENIX ATC ’21
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§ CREAT() on root directory of NullFS, which promptly returns without performing 
any action

§ RFUSE demonstrates a 53% lower latency than FUSE
1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver
3. Short execution time for path traversal to verify the existence of subdirectories
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§ FIO benchmark on StackFS while increasing the number of threads
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§ FIO benchmark on StackFS while increasing the number of threads
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• 128GB file size in total 

x2.27
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§ FXMARK benchmark on StackFS
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§ FXMARK benchmark on StackFS

affected by
dcache
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§ Filebench benchmark on StackFS
• fileserver: 200K files using 50 threads
– Create file with a size of 128KB and then expanded through 16KB APPEND operations

• webserver: 1.25M files using 100 threads
– Create file with a relatively small size of 16KB and read whole file heavily
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§ More Details about RFUSE:
• Transmission of ring channel Information
• Load balancing of asynchronous requests
• Memory usage of ring channels
• …

§ More Experiment Results:
• FIO benchmark on Fuse-nfs
• Macro benchmarks 
• Factor analysis of RFUSE
• CPU utilization
• … 
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§ RFUSE: A userspace filesystem framework designed to support a scalable 
communication between the kernel and userspace

§ RFUSE can provide high-performance and scalability on a modern 
hardware environment

§ Source code is available at Github: https://github.com/snu-csl/rfuse

https://github.com/snu-csl/rfuse
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Thank you 


