
Kyu-Jin Cho

Seoul National University

RFUSE: Modernizing Userspace Filesystem Framework
through Scalable Kernel-Userspace Communication

Linux/Android FS/MM/Storage Workshop

2

§ File system designs have evolved in response to technology
• High-performance storage devices
• Large number of cores in the machine

3

§ File system designs have evolved in response to technology
• High-performance storage devices
• Large number of cores in the machine

§ In-kernel vs. Userspace

• Low safety from crash
• Complex kernel interface
• Hard to add new functionality

• Native performanceIn-kernel
Filesystem

4

§ File system designs have evolved in response to technology
• High-performance storage devices
• Large number of cores in the machine

§ In-kernel vs. Userspace

• Low safety from crash
• Complex kernel interface
• Hard to add new functionality

• Native performanceIn-kernel
Filesystem

Userspace
Filesystem

• High safety from crash
• Easy to maintain and develop
• High portability

5

§ FUSE consists of two main components:
• FUSE driver within the kernel
• FUSE daemon within the userspace

6

§ FUSE consists of two main components:
• FUSE driver within the kernel
• FUSE daemon within the userspace

§ FUSE driver has 5 types of queues:
• Pending queue for synchronous requests
• Background queue for asynchronous requests
• Processing queue for in-flight requests
• Interrupt queue
• Forget queue

7

§ Userspace filesystem tested
• NullFS: a very simple filesystem which only supports the LOOKUP on the root directory
• StackFS: a stackable filesystem that forwards incoming filesystem operations to an underlying

in-kernel filesystem

<NullFS>

Application

VFS

Page Cache
/ dcache

User library

NullFS

Driver

Device File

Application

VFS

Page Cache
/ dcache

EXT4

User library

StackFS

SSD
Driver

Device File

<StackFS>

8

0 50 100 150 200 250 300

context switch + path lookup prepare req
copy args send req
context switch + daemon execution send reply + context switch
prepare return wake up app + return

μs

FUSE 199 39 274.4μs

1.22.2 18.1 1.1 7.86

Path
traversal

CREAT(/A)

9

0 50 100 150 200 250 300

context switch + path lookup prepare req
copy args send req
context switch + daemon execution send reply + context switch
prepare return wake up app + return

μs

FUSE 199 39 274.4μs

1.22.2 18.1 1.1 7.86

10

0 50 100 150 200 250 300

context switch + path lookup prepare req
copy args send req
context switch + daemon execution send reply + context switch
prepare return wake up app + return

μs

FUSE 199 39 274.4μs

1.22.2 18.1 1.1 7.86

11

0 50 100 150 200 250 300

context switch + path lookup prepare req
copy args send req
context switch + daemon execution send reply + context switch
prepare return wake up app + return

μs

FUSE 199 39 274.4μs

1.22.2 18.1 1.1 7.86

ZZZ

12

0 50 100 150 200 250 300

context switch + path lookup prepare req
copy args send req
context switch + daemon execution send reply + context switch
prepare return wake up app + return

μs

FUSE 199 39 274.4μs

1.22.2 18.1 1.1 7.86

ZZZ

write()

13

0 50 100 150 200 250 300

context switch + path lookup prepare req
copy args send req
context switch + daemon execution send reply + context switch
prepare return wake up app + return

μs

FUSE 199 39 274.4μs

1.22.2 18.1 1.1 7.86

14

§ A single pending queue in FUSE fails to harness the full throughput potential
of a high-performance device

x2.93

<Scalability of random read on StackFS over EXT4 (FUSE) vs. native EXT4>

15

§ A userspace filesystem framework designed to support a modern hardware
environment with high-performance and scalability

1. Scalable kernel-userspace communication
• Per-core, NUMA-aware ring channels
• Worker thread management

2. Efficient request transmission
• Hybrid polling
• Load balancing of asynchronous requests

3. Full compatibility with existing FUSE-based filesystems

16

17

RFUSE driver

Application

VFS

Page Cache
/ dcache

RFUSE daemon

18

RFUSE driver

Application

VFS

Page Cache
/ dcache

RFUSE daemon

Ring Channel #1

Core #1 Core #2 Core #N

. . . .

Ring Channel #2 Ring Channel #N

19

RFUSE driver

Application

VFS

Page Cache
/ dcache

RFUSE daemon

Ring Channel #1

Core #1 Core #2 Core #N

. . . .

NUMA 0 NUMA 1

Ring Channel #2 Ring Channel #N

20

RFUSE driver

Application

VFS

Page Cache
/ dcache

RFUSE daemon

Ring Channel #1

Core #1 Core #2 Core #N

. . . .

Ring Channel #2 Ring Channel #N

21

RFUSE driver

Application

VFS

Page Cache
/ dcache

RFUSE daemon

Ring Channel #1

Core #N

. . . .

Core #2

Core #1

Ring Channel #2 Ring Channel #N

22

RFUSE driver

Application

VFS

Page Cache
/ dcache

RFUSE daemon

Ring Channel #1 Ring Channel #2 Ring Channel #N

Core #N

. . . .
Core #1 Core #2

23

§ RFUSE utilizes the ring buffer structure similar to the io_uring interface,
specifically to meet the needs of the FUSE framework.

24

Background

Pending Argument BufferHeader Buffer

fuse_in_h rename_in_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Application

VFS

Page Cache
/ dcache

Worker ThreadRENAME(src, dest)

§ Hybrid polling mechanism

25

Background

Application

VFS

Page Cache
/ dcache

RENAME(src, dest)

Argument BufferPending Argument BufferHeader Buffer

fuse_out_h rename_out_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Worker Thread

§ Hybrid polling mechanism

26

§ The modifications to make use of the ring channels:
• The FUSE kernel driver
• The layer of libfuse that handles message communication

§ No modifications of all FUSE APIs exposed to developers
• Both high-level FUSE API and low-level FUSE API
• Splicing I/O interface

§ Users do not need to rewrite their FUSE-based filesystem code when
using RFUSE.

struct fuse_operations {
.getattr = …
.readlink = …
.mkdir = …
... }

struct fuse_lowlevel_ops {
.init = …
.destroy = …
.lookup = …
... }

27

§ Hardware Setup

§ Frameworks compared
• FUSE
• EXTFUSE [1] : Extended FUSE using eBPF
• XFUSE [2] : FUSE with multiple pending queue (emulation)

Machine Dell PowerEdge R750xs
CPU 2 x Intel(R) Xeon(R) Silver 4316 CPUs (80 logical cores)

DRAM DDR4 256GB
Disk 2TB Fadu Delta PCIe 4.0 SSD
OS Ubuntu 20.04.3 LTS

Linux Kernel v5.15.0

[1] Ashish Bijlani, et al. Extension Framework for File Systems in User space, USENIX ATC ’19
[2] Qianbo Huai, et al. XFUSE: An Infrastructure for Running Filesystem Services in User Space, USENIX ATC ’21

28

§ CREAT() on root directory of NullFS, which promptly returns without performing
any action

29

§ CREAT() on root directory of NullFS, which promptly returns without performing
any action

§ RFUSE demonstrates a 53% lower latency than FUSE

53%↓

30

§ CREAT() on root directory of NullFS, which promptly returns without performing
any action

§ RFUSE demonstrates a 53% lower latency than FUSE
1. No context switches when processing requests and replies

31

§ CREAT() on root directory of NullFS, which promptly returns without performing
any action

§ RFUSE demonstrates a 53% lower latency than FUSE
1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver

32

§ CREAT() on root directory of NullFS, which promptly returns without performing
any action

§ RFUSE demonstrates a 53% lower latency than FUSE
1. No context switches when processing requests and replies
2. Low wake-up overhead within the kernel driver
3. Short execution time for path traversal to verify the existence of subdirectories

33

§ FIO benchmark on StackFS while increasing the number of threads
• Sequential I/O with 128KB size
• Random I/O with 4KB size
• 128GB file size in total

34

§ FIO benchmark on StackFS while increasing the number of threads
• Sequential I/O with 128KB size
• Random I/O with 4KB size
• 128GB file size in total

x2.27

35

§ FXMARK benchmark on StackFS

36

§ FXMARK benchmark on StackFS

affected by
dcache

37

§ Filebench benchmark on StackFS
• fileserver: 200K files using 50 threads
– Create file with a size of 128KB and then expanded through 16KB APPEND operations

• webserver: 1.25M files using 100 threads
– Create file with a relatively small size of 16KB and read whole file heavily

38

§ More Details about RFUSE:
• Transmission of ring channel Information
• Load balancing of asynchronous requests
• Memory usage of ring channels
• …

§ More Experiment Results:
• FIO benchmark on Fuse-nfs
• Macro benchmarks
• Factor analysis of RFUSE
• CPU utilization
• …

39

§ RFUSE: A userspace filesystem framework designed to support a scalable
communication between the kernel and userspace

§ RFUSE can provide high-performance and scalability on a modern
hardware environment

§ Source code is available at Github: https://github.com/snu-csl/rfuse

https://github.com/snu-csl/rfuse

40

Thank you

