Linux/Android FS/MM/Storage Workshop

Application Performance Profiling using
Blocked Samples

02/18/2025
Jinkyu Jeong

Department of Computer Science and Engineering

§ SAICHS

& ¢) YONSEI UNIVERSITY

Linux Performance Analysis

* Various system tools for

. Linux Performance Observability Tools
different system events

strace Operating System Hardware Various:
ltrace ss nstat sar /proc
/\ I. t. N opensnoop \ / [/ dmesg dstat
— pp ICation lsof \ e gethostlatency
fatrace /
—_— OS fl;:;iﬁ: \ 1 System lerarles/ / / e}::sinaic’p turbostat
rofile showboost
. . bert Y System Call Interfaci /// / Eunqlen i
— Blocking 1/O (device ops.) |Furace e e fscheauer o ofecpucine |
Bcé'g File Systems TCP/UDP softirgs
° H f H H (bpftrace Volume Manager IP Virtual
Linux perf is widely (and e Block Dowcef | Werberiey)\ Memory Y top atop | CPUS
tasl % .
generally) used performance v f;forzt:;:er / ETEEETEE [\ o iptop
- nfs,xfs,zfs) mdflush t:.giz; tcpdump\ tcplife \ slabtop o
prOfI I I ng tOOI tcpretrans free
iostat udpconnect DRAM
biosnoop /0 Bridge hardirgs
biolatency [| criticalstat T
biotop
blktrace \ /0 Controller Network Controller |y numastat
nicstat
netstat
Disk | | Disk | | Disk Port | | Port | | Port ip
* ’ * ittp://www.brendangregg.com/
SCSl log swapon ethtool snmpget lldptool T inuxperf htmil, 2021

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop 2

Linux perf Subsystem

e Supports performance profiling through collecting execution information
— Collects IP and callchain

* Tracing vs. Sampling
— Tracing(=instrument): collects every events

e e.g., Linux ftrace or tracepoints

— Sampling: collects samples of events periodically

* e.g., Linux perf record task-clock

Task Tracing - ----=-==-=m==p=mmmmmm oo oo » Task SamMPliNg oo >
(foo (bar (boo boo) bar)foo) foo foo bar boo boo bar foo
| foo(------------ .) | foo(---------- . o)
Application bar(- o) Application bar(-~ o)
execmlJtion oY) E—) exechJtion Y))
<Tracing example> <Sampling example>

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Linux perf Sampling (task-clock)

* Linux perf sampling co-operates with the periodic timer (i.e., HR timer)
—e.g., Sperf record -g -e task-clock -c 1000000 ./a.out

e '-g': callchain, '-e task-clock': event to collect, '-c 1000000': period (=1ms)

a.out 37196 331011.093831: 1000000 task-clock:

V0|d fu NC a() { 55fda5e0d13e func_a+0x15 (/home/mw/benchmarks/a.out)
. _ . 55fda5e0d17f mair_1+0x12 (/home/mw/penchmarks/a.out)] .] . .
. + - .S0.
while (i <20000000) i++; 75e0c102de76 Uibc_start mainGOCLIEC. 2. 3440486 (/usr/local/ 1b/giibe.testing/Lib/iibe. s0.6)
} 55fda5e0d065 _start+0x25 (/home/mw/benchmarks/a.out)
void func_b() { <Example of single sample ($perf script)>
Whlle (I < 40000000) |++I Samples: 2K of event 'task-clock', Event count (approx.): 2920000000
} Overhead Command Shared Object Symbol
- a.out a.out [.] func_b
func_b
])) main
int main (int argc, char *argv(]) { __libc_start_call_main
f . __libc_start_main@@GLIBC_2.34
unc_a(), _start
func b(); - a.out a.out [.] func_a
- func_a
main
__libc_start_call_main
return O; " libc_start main@eGLIBC_2.34

} _start
<Statistical analysis result ($perf report)>

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop 4

Sampling-Based Profilers (1/2)

* FlameGraph [Brendan Gregg]
— Callstack visualization of sampling results

Flame Graph

3

o

5
=
o

IU’I

T

o

&
c
5
(o]
|

Ul

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Sampling-Based Profilers (2/2)

* COZ[SOSP '15]

— Predict the impact of optimizing without actual optimization

void func_a() {

}
void func_b() {

}

func_al();
func_b();

return O;

}

while (i < 20000000)

while (i < 40000000)

int main (int argc, char *argv(]) {

Program speedup

Program speedup

0%

test.c:7
while loop of func_a

0%

20% 40% 60% 80% 100%
Line speedup

test.c:13
while loop of func_b

0%

20% 40% 60% 80% 100%
Line speedup

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop 6

Research Question

* |s sampling effective for real-world applications?

— Can sampling handle off-CPU events (e.g., blocking I/0, CPU scheduling, locks)?
Task Sampling

(task-clock) | ____________ | | ___________ | __ | ____________ | ______ >
foo foo bar boo boo foo
foo(--------mmooooe . oo)
bar(-------------- . °----)
Application | i User
execution . Syscall ===~ Return to user ————K—————I-
: i erne
boo (---- : P)
I/O request l Off-CPU Interrupt

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop 7

Research Question

* |s sampling effective for real-world applications?

— Can sampling handle off-CPU events (e.g., blocking I/0, CPU scheduling, locks)?
Task Sampling

(task-clock) | | | | [] | |
foo foo bar boo boo foo
foo(----mmrmoe- ; Sampling is disabled o)
bar(-~ - during off-CPU periods! .---)
Application User
execution Syscall ~————=———==————— Return to user ——————----
| | Kernel
boo (- T)
1/0 req uestl Off-CPU Interrupt

No! Sampling cannot collect off-CPU information
- Why the off-CPU analysis is important?

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop 8

Trend of Computing Environments

* Computing environments are becoming more complex and advanced

* Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Computers N

CPU

mp

_Storage Network)

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

-

Modern Computers

CPUs
|

[

|

HE|NN
HE|NN
|
[

~

Accelerators

[

SSD't

SSD't

Storage

Trend of Computing Environments

* Computing environments are becoming more complex and advanced

* Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Computers)

CPU

_Storage Network)

mp

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

4 Modern Computers)

CPUs Accelerators
| |

On-CPU events:

Instructions executed
on the CPU

Off-CPU events:
Waiting events during execution

Storage Network

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
* Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Computers N

([J~ » Where are
— Bottlenecks?

_Storage Network)

Z”

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/O) Boundary between CPU-bound and I/O-bound is blurred

On-CPU Off-CPU (I/0) On-CPU Off-CPU (1/0) On-CPU Off-CPU (1/0)
|\ A A |\ A

-' i [

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (1/O) Boundary between CPU-bound and 1/O-bound is blurred

On-CPU Off-CPU (I/0) On-CPU Off-CPU (I/0) On-CPU Off-CPU (I/0)
| (A i A | A
Utilize faster
storage device

- Bottleneck has shifted from blocking 1/0 to CPU

= "kernel software is becoming the bottleneck", XRP [OSDI '22]
= "server CPU is becoming the bottleneck", XSTORE [OSDI ‘20]

= "Rocksdb is CPU-bound", Kvell [SOSP '19]

= "kernel I/O stack accounts for a large fraction", AlOS [ATC '19]
= "storage no longer being the bottleneck", uDepot [FAST '19]

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/O) Boundary between CPU-bound and I/O-bound is blurred
* (Computation) Shifting away from CPU-centric computations

On—FPU On-FPU On-FPU On-FPU

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/O) Boundary between CPU-bound and I/O-bound is blurred
* (Computation) Shifting away from CPU-centric computations

On—FPU On-FPU On—FPU On-FPU
Communication Communication
(1/0) (1/0)

O

— Bottleneck has shifted from CPU computation to I/O and communication

= "there are spare CPU and network bandwidth", BytePS [OSDI '20]
= "rapid increases in GPU will shift the bottleneck towards communication", PipeDream [SOSP '19]
= "DNN training is not scalable, mainly due to the communication overhead", ByteScheduler [SOSP '19]

FPGAs (off-CPU)

& =) GPUs (off-CPU)

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop 15

Off-CPU Analysis (1/2)

e Existing off-CPU analysis relies on tracing
— Hot/Cold FlameGraph [Brendan Gregg]

* Traces all blocking events (i.e., schedule-in/out) using Linux perf subsystem

Hot Cold Flame Graph

<Example of hot/cold FlameGraph>

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Off-CPU Analysis (2/2)

e Existing off-CPU analysis relies on tracing
— wPerf [OSDI '18]

* Traces all waiting events between threads with their dependency

ParallelGC* RespProc(MemStore)
°

Bottleneck o
}*, » : Wem&ore)

_ ke

\

Limitations
#1) High overhead
- Frequent event tracing

X #2) Lack of context information

\ LO\gBO“éF) - M1ssIing code Information
\ P \

\

"~ IPE Client(HDFS)
- ,___:Zﬁ"

<Example of wPerf>

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Our Approach: Blocked Samples

* Goal: sampling on- and off-CPU events simultaneously

Missing off-CPU samples
Task Sampling - s L. >

(task-clock) | | | |

foo foo bar boo boo foo
| foQ (+--------~- : oo)
Blocked samples | bar(—------—s -
. Application | :
(Linux perf subsystem) PP - ! User
execution ---—----——---—- Syscall ==--———----—- Return to user ———-—
; : Kernel
| e ,
/O req uestl OFff-CPU ‘Interrupt

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Our Approach: Blocked Samples

* Goal: sampling on- and off-CPU events simultaneously
 Blocked samples: sampling technigue for off-CPU events (task-clock-plus)

Blocked samples
Task Sampling - p—_____________ >

(task-clock) | | | | | | |
foo foo bar bool boo boo boo

(I/0) (/o) (1/0)

boo foo

| foQ (+--------~- : oo)
Blocked samples | bar(—------—s -
. Application | |
(Linux perf subsystem) P> - ! User
execution ---—----——---—- Syscall ==--———----—- Return to user ———-—
; : Kernel
| T ,
/O req uestl OFff-CPU ‘Interrupt

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Our Approach: Blocked Samples

* Goal: sampling on- and off-CPU events simultaneously
 Blocked samples: sampling technique for off-CPU events (task-clock-plus)

* Proposed profilers using blocked samples
* bperf: sampling-based statistical profiler on both on-/off-CPU events

* BCOZ: causal profiler that supports virtual speedup on both on-/off-CPU events
_ Blocked samples
Task Sampling - p—_____________ >
(task-clock) | | | | | | |
foo foo bar boo]l boo boo boo

(I/0) (/o) (1/0)

boo foo

| foQ (+--------~- : oo)
Blocked samples | bar(—------—s -
. Application | |
(Linux perf subsystem) P> - ! User
execution ---—----——---—- Syscall ==--———----—- Return to user ———--
; : Kernel
| T ,
/O req uestl Off-CPU ‘Interrupt

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Blocked Samples (fask-clock-plus)

e Collected information

e |P and callchain

* Off-CPU subclass: reason for the blocking
* Blocking 1/O, synchronization, CPU scheduling, etc.
* New subclasses can be defined as needed

* Weight: # of repeats

* Encode the number of blocked samples with the same attributes

Task Sampling o e———___________
(task-clock) | | | | | | | | |
foo foo bar boo| boo boo boo |boo foo
)

(/0) (I/0) (I/0 IP: boo()
foo(------------ . ' ,
o bar] ereeeees Callchain: foo()->bar()->boo()
Application | | Subclass: blocking 1/0
tion - Syscall ——————-————— Return to user ----- :
execution ysica eturn :co user Kormel Welght: 3
| boo (s e)

I/O requestl Off-CPU llnterrupt

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

task-clock-plus Implementation

* Extending task-clock event in the Linux perf subsystem

Conventional sample Blocked sample

I Period T Peﬁod T Peﬁod T Peﬁ'od T

A

Thread —= " S e
R4| wake-up T R, time
it v | .
schedule-out V ______tschedule-in
Tblocked Tsched

— Hooks in scheduling-related operations
 Sched-out (prepare _task switch—>task clock event del)
— Records timestamp, and off-CPU subclass
* Wake-up (try_to_wake _up)
— Records timestamp
 Sched-in (finish_task switch—>task clock event add)

— 1) Calculate the length of blocking period * Samples are recorded only if sampling
— 2) Calculate the number of off-CPU samples to record poinjcs are overlap _With off-CPU period
— 3) (If exists) Record the off-CPU samples = Differ from tracing

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

bperf: Statistical Profiler on Both On-/0ff-CPU Events

* Extension of Linux perf tool to support blocked samples
* Sample accounting

* Result reporting
* [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others
* Both the last user-level IP and last kernel-level IP are reported for blocked samples
* Enables an in-depth understanding of off-CPU events

Shared Object

while(N++ < 100000) {

vvrite(); i [kernel.vmlinux] [f!_Ya?t¥:;ﬁgage_bit
fSVT]C(); [kernel.vmlinux] [B] jbd2_log_wait_commit

---[.] fsync
} [kernel.vmlinux] [k] copy_user_enhanced_fast_string
test_io [kernel.vmlinux] [k] _raw_spin_unlock_irqrestore

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

bperf: Statistical Profiler on Both On-/0ff-CPU Events

* Extension of Linux perf tool to support blocked samples
* Sample accounting

* Result reporting
* [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others
* Both the last user-level IP and last kernel-level IP are reported for blocked samples
* Enables an in-depth understanding of off-CPU events

Shared Object

while(N++ < 100000) {

vvrite(); i [kernel.vmlinux] [f!_Ya?t¥:;ﬁgage_bit
fSVT]C(); [kernel.vmlinux] [B] jbd2_log_wait_commit

---[.] fsync
} [kernel.vmlinux] [k] copy_user_enhanced_fast_string
test_io [kernel.vmlinux] [k] _raw_spin_unlock_irqrestore

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Toy Program with Mixed of On-/0ff-CPU Events

<Toy program> | while (i <300000) {
write();
fsync();

Samples: 32K of event 'task-clock', Event count (approx.): 32620000000
Overhead Command Shared Object Symbol
test io [kernel.kallsyms] [k] raw spin_unlock irqrestore _ : ..
test_io [kernel.kallsyms] [kl _raw_spin_unlock irq E———— e B (e MlSSlng SampleS
test io [kernel.kallsyms] [k] try charge_memcg T e = = = = == - - ->
test_%o [kernel.kallsyms] [k] _ rcu read unlock L 9 100% kernel I/O
test io [kernel.kallsyms] [k] clear_page erms :
test_io [kernel.kallsyms] [k] rep_movs_alternative L — StaCk
test_io [kernel.kallsyms] [k] get_mem_cgroup_from_mm —

+ + + + + + +

<w/o blocked samples>

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Toy Program with Mixed of On-/0ff-CPU Events

<Toy program> | while (i <300000) {
write();
fsync();

Samples: 32K of event 'task-clock', Event count (approx.): 32620000000

Overhead Command Shared Object Symbol
test io [kernel.kallsyms] [k] raw spin_unlock irqrestore . w— _ ..
test_io [kernel.kallsyms] [k] _raw_spin_unlock_irq e 1 A MlSSlng samples
test_io [kernel.kallsyms] [k] try charge_memcg e = = = = = e = = - - -»>
test_%o [kernel.kallsyms] [k] _ rcu _read unlock . o 9 100% kernel I/O
test_io [kernel.kallsyms] [k] clear_page_erms - T
test_io [kernel.kallsyms] [k] rep_movs_alternative i T — StaCk
test_io [kernel.kallsyms] [k] get_mem_cgroup_from_mm T

+ + + + + + +

<w/o blocked samples>

CPU: 55%, 10 wait: 25.4%, Idle(jbd2 wait): 19.7% Disk /O events
| - jbd2_log_wait_commit

- - folio_wait_bit

Samples: 56K of event 'task-clock-plus', Event count (approx.): 56140000000
Overhead Command Shared Object Symbol
test io [kernel.kallsyms] |[[I] folio wait bit

e 1
| ge..]
[|

by |
test_ io [kernel.kallsyms] |[B] jbd2 log wait commit |l = \cﬁﬁ:ﬂ| - R ot o
test io [kernel.kallsyms] [k] _raw spin_unlock irqrestore e | b do_uriepages

IR flem..
| ¢ Semersetroio exblatkE | blo..
oxtsgavrtebegn =t @ __flemap_fdatawait_range
extd_fc_commit file_write_and_wait_range

test io [kernel.kallsyms] [k] _raw spin_unlock irq
test_io [kernel.kallsyms] [k] try_charge_memcg
test io [kernel.kallsyms] [k] _ rcu read unlock

test io [kernel.kallsyms] [k] clear_page erms
test_io [kernel.kallsyms] [k] rep_movs_alternative
test io [kernel.kallsyms] [k] get mem cgroup from mm

<bperf> | -

I generic_perform_write

vfs_fsync_range
I vfs_write do_fsync
__xB4_sys_fsync

__x64_sys_write x64_sys_call
I x64_sys_call

entry_SYSCALL 64

++ + ++ o+ +

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Case Study - RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Problem: frequent block (filter, index, data) read I/Os

Data exists!
cpL]] N [Data ex
Filter test/l/—| Filter test)LI Filter test)LI . Filter test)ﬁ
Storgge Index Data
g block I/O | block I/O

Block cache

L1][p]| Cache missleads to read /O

4~ SSTfile O\

/
U

/s Index blocks (1) | | = 1 * read

Ln — Cl _Data blocks (D)j - 1 * read

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

Case Study - RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk I/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000 .
Filter? Index? Data block?

Overhead Command Shared Object Symbol
- db_bench_vanill Tlibpthread-2.30.so0 [I] _ libc_pread64
- __ libc_pread64
- rocksdb: :PosixRandomAccessFile: :Read

rocksdb: :RandomAccessFileReader: :Read
- rocksdb: :BlockFetcher: :ReadBlockContents

- 45.09% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :Block>
- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb: :DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb: :IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: : ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :ParsedFullFilterBlock>
rocksdb: :PartitionedFilterBlockReader: :GetFilterPartitionBlock

Causality analysis <bperf>
§100 ® |/O subclass
é: 80 m GetFilterPartitionBlock (I/O) ‘ '
2 60 4 IndexBlocklter (I/O)) '
2, + DataBlocklter (I/O . .
2 40 staBlockltr (D) - Optimizing disk 1/0 of R ()
5 20 filter block is most important! _ o
g o —> Contexts related to disk I/Os are missing

10 20 30 40 50 60 70 80 90
Line Speedup (%)

<BCOZ>

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

100 (Limitation #1)

Case Study - RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Optimization: asynchronous I/O for filter and index blocks

Data exists!

<Before>
& block I/0 | block 1/0
35 -+
Data exists! 230 -
CPU e
M 25 - 1.8x
St 520 -
orage = i
<After> & Eis
Index 210 -
block 1/0 = 5
Data block =
/0 0 | |
| \ | Baseline AIO
r ! <Optimization results>
Next level filter block (Last level only) Index block

- Blocking 1/O decreased by 74%

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop 35

[\
o

—_
W

Performance drop (%)
w o

<

Profiling Overhead

@ Tracing O Sampling O bperf

@ Tracing O Sampling © bperf

\®]
o

“141.24 & "33.03 | | 43.64 "143.89
315
M =
. =10 u
Q
=
g\ 5 0.50
 Enl s =, B N g 1 | [
RocksDB-1 RocksDB-2 RocksDB-3 NPB-is NPB-ep Hackbench Geomean RocksDB-1 RocksDB-2 RocksDB-3 NPB-is NPB-ep Hackbench Geomean

o0
-

-

Overhead (%)
SR -
S O

)

RocksDB-1

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

RocksDB-2 RocksDB-3 NPB-is NPB-ep Geomean
@ Startup O Sampling O Delays

Conclusion

* Profiling modern applications has become more challenging

* Blocked samples collects off-CPU events information
* bperf, provides statistical profiling of both on-/off-CPU events

* BCOZ, provides virtual speedup of both on-/off-CPU events

Blocked samples is available at:
https://github.com/s3yonsei/blocked samples
https://github.com/s3yonsei/linux-blocked samples

Credit:
Minwoo Ahn, Jeongmin Han, Youngjin Kwon, Jinkyu Jeong,

Thank yo u ! "Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples,"

O S DI 2 O 2 4 ARTIFACT ARTIFACT ARTIFACT

EVALUATED EVALUATED EVALUATED
yusenix rusenix rusenix

AVAILABLE REPRODUCED

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

https://github.com/s3yonsei/blocked_samples
https://github.com/s3yonsei/linux-blocked_samples

Jinkyu Jeong, NVRAaaaMOS 2024

Credit

* Minwoo Ahn, Jeongmin Han, Youngjin Kwon, Jinkyu Jeong,
“Ildentifying On-/Off-CPU Bottlenecks Together with Blocked Samples,”

OSDI 2024

* Most slides are from the OSDI’24 presentation slides

Jinkyu Jeong, Linux/Android FS/MM /Storage Workshop

COZ (SOSP’15)

* COZ: Finding Code that Counts with Causal Profiling, SOSP ‘15
— Charlie Curtsinger, Emery D. Berger

I
Thread 1 a() I
example. cpp I
Thread 2 b() I
1| void a() { // ~6.7 seconds] >
2 for (volatile size_t x=0; x<2000000000; =x++) {} Time Time
31}
4| void b() { // “6.4 seconds
s| for(volatile size_t y=0; y<1900000000; y++) {} Causal Profile For example . cpp
6|} line 2 (a) line 5 (b)
71 int main () { %69/— "
8 // Spawn both threads and wait for them. B 0 .p._l.‘.-.;.-.
thread a_thread(a), b_thread(b); &4%_ ../.' y
10 a_thread. join(); b_thread. join () ; Cg :’ o
1|} g52% -, A AA
i Z A, ap Aaph AT~
o 0% —® A A _“ A A
o A
| | | | 1 | | | | |
0% 25% 50% 75% 100%0% 25% 50% 75% 100%
Line Speedup

(b) Causal profile for example. cpp

Jinkyu Jeong, NVRAMOS 2024

COZ (SOSP’15)

* Virtual speedup

— Predict speedup of functions without actually speeding up code lines

Thread 1 A (6) B (3) C (5)
Thread 2 B (3) A (6) B (3) :
» Time
14 «—>
I
Actual speedup Thread 1 A (6) B (2) C (5) |
(B is actually | :
optimized by 1) Thread 2 | B (2) A (6) B (2) | |
3 14 » Time
Same effect as actual speedup
M
Virtual speedup Thread 1 1, A (6) B (3) 1, C (5) I
(B is virtually 4 7 t ,
optimized by 1) Thread 2 B (3) A (6) 1= B (3) : : .
— e 17 » Time

Jinkyu Jeong, NVRAMOS 2024

COZ (SOSP’15)

 COZ is causal profiler using the virtual speedup technique

— perf sampling + batch processing + thread sleeping and synchronization

Coz

Yes

Read samples

Yes

A

Delay the threads

IP =speedup line ?

Callchain entry
= speedup line ?

Wait until next
period

Instruction
Pointer
(IP)

Callchain

=
-
-
P
-
-
-
-
-
-
P

,,,,,,,, per-thread ring buffer

sample| -
sample

Memory

sample
sample
sample

sample
sample
sample

»

Thread 1
4

Sampling by perf_event API

Thread 2 Thread 3 Thread 4
4 A A

Jinkyu Jeong, NVRAMOS 2024

Research Question

* What if virtual speedup can be applied to I/0 events
— COZ has profiled on-CPU events only

* How to make COZ apply the virtual speedup idea to I/O events (or off-CPU events)
— E.g., disk I/Os

Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler for both On-/0ff-CPU Events

* Virtual speedup the off-CPU events by blocked samples

— Shows potential speedup when off-CPU events are optimized
* Locks, 1/0, scheduling delay, etc.

Program Speedup
A

CPU Black CPU Black CPU -
box box
lvirtual speedup
& cpu Black CPU Black CPU
box box

<Virtual speedup of on-CPU events (COZ)>

Line

<Potential speedup result>
speedup

Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler for both On-/0ff-CPU Events

* Virtual speedup the off-CPU events by blocked samples

— Shows potential speedup when off-CPU events are optimized
* Locks, 1/0, scheduling delay, etc.

Program Speedup
A
Storage
CPU CPU Lock CPU <
1/0
lvirtual speedup
& cPU Lock CPU St‘l’;gge CPU

<Virtual speedup of both on-/off-CPU events (BCOZ)>

Line

<Potential speedup result>
speedup

Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler for both On-/0ff-CPU Events

* Virtual speedup the off-CPU events by blocked samples

— Shows potential speedup when off-CPU events are optimized
* Locks, 1/0, scheduling delay, etc.

cru [Pt cpy o Lock CPU <
——1 —1

l l l Storage
o CPU Lock /s CPU /0 CPU

<Virtual speedup of both on-/off-CPU events (BCOZ)>

Jinkyu Jeong, NVRAMOS 2024

Program Speedup

N Storage I/O

Line

<Potential speedup result>
speedup

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
* Events executed outside the CPU (i.e., off-CPU) have become more diverse

4 Modern Computers)
(" Past Computers) CPUs Accelerators

[| [

||» {“_M EEEE ! E@E
L TLLL IIIIrIII —‘ ‘
‘lp.:_.{# E“S@" o E°SSD°

_Storage Network) .£200.f .00}

\ Storage

CPU

Jinkyu Jeong, NVRAMOS 2024

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
* Events executed outside the CPU (i.e., off-CPU) have become more diverse

4 Modern Computers)
(" Past Computers) CPUs Accelerators
CPU On-C.PU events:
Instructions executed
on the CPU
H Off-CPU events:
_Storage Network Waiting events during execution

Storage Network

Jinkyu Jeong, NVRAMOS 2024

Trend of Computing Environments

* Computing environments are becoming more complex and advanced
* Events executed outside the CPU (i.e., off-CPU) have become more diverse

(" Past Computers N

([J~ » Where are
— Bottlenecks?

_Storage Network)

Z”

Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/O) Boundary between CPU-bound and I/O-bound is blurred

On-CPU Off-CPU (I/0) On-CPU Off-CPU (1/0) On-CPU Off-CPU (1/0)
|\ A A |\ A

-' i [

Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (1/O) Boundary between CPU-bound and 1/O-bound is blurred

On-CPU Off-CPU (I/0) On-CPU Off-CPU (I/0) On-CPU Off-CPU (I/0)
| (A i A | A
Utilize faster
storage device

- Bottleneck has shifted from blocking 1/0 to CPU

= "kernel software is becoming the bottleneck", XRP [OSDI '22]
= "server CPU is becoming the bottleneck", XSTORE [OSDI ‘20]

= "Rocksdb is CPU-bound", Kvell [SOSP '19]

= "kernel I/O stack accounts for a large fraction", AlOS [ATC '19]
= "storage no longer being the bottleneck", uDepot [FAST '19]

Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/O) Boundary between CPU-bound and I/O-bound is blurred
* (Computation) Shifting away from CPU-centric computations

On—FPU On-FPU On-FPU On-FPU

Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

* Bottlenecks of applications are diversifying
* (I/O) Boundary between CPU-bound and I/O-bound is blurred
* (Computation) Shifting away from CPU-centric computations

On—FPU On-FPU On—FPU On-FPU
Communication Communication
(1/0) (1/0)

O

— Bottleneck has shifted from CPU computation to I/O and communication

= "there are spare CPU and network bandwidth", BytePS [OSDI '20]
= "rapid increases in GPU will shift the bottleneck towards communication", PipeDream [SOSP '19]
= "DNN training is not scalable, mainly due to the communication overhead", ByteScheduler [SOSP '19]

FPGAs (off-CPU)

& =) GPUs (off-CPU)

Jinkyu Jeong, NVRAMOS 2024 60

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

On-CPU {

Off-CPU <

Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

func A ¢ 3
On-CPU { unc

Off-CPU <

Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

i func A f B: func A > funcB
|

Off-CPU <

Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

On-CPU {

Off-CPU < Which code invoked

off-CPU events?

Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

* (Challenge #2) Hard to assess the impact of optimizing off-CPU events

func A
(func B

Execution time < Execution time is unchanged

— B is not on the critical path

Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

 Both on-CPU and off-CPU events need to be considered simultaneously

* (Challenge #1) Analysis is conducted using only partial information

* (Challenge #2) Hard to assess the impact of optimizing off-CPU events

func A
(func B

Execution time < Execution time is unchanged
— B is not on the critical path
What if optimized?

Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

* Linux perf sampling (task-clock)

* Feature in Linux kernel’s perf subsystem

* Collects profiling information (e.g., IP and callchain) periodically

* A Low overhead, effective technique to analyze on-CPU behavior

Jinkyu Jeong, NVRAMOS 2024

Samples: 1M of event 'task-clock', Event count (approx.): 1097249000000
Overhead Command Shared Object Symbol
+ db_bench_vanill [kernel.vmlinux] [k] native_queued_spin_lock_ slowpath
db_bench_vanill 1libpthread-2.30.so0 [L] _ 111 lock wait
- 24.09% 111 _lock wait
- _ pthread_mutex_lock
- rocksdb: :port::Mutex::Lock
- 12.51% rocksdb: :LRUCacheShard: : Lookup
rocksdb: :ShardedCache: : Lookup
- rocksdb: :BlockBasedTable: : GetEntryFromCache
+ 8.05% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :Block>
+ 4.46% rocksdb: :BlockBasedTable: : GetDataBlockFromCache<rocksdb: :ParsedFullFilterBlock=>
+ 11.55% rocksdb: :LRUCacheShard: :Release
db_bench_vanill [kernel.vmlinux] [k] _raw_spin_unlock_irgrestore

On-CPU Analysis

* Linux perf sampling (task-clock)
* Feature in Linux kernel’s perf subsystem
* Collects profiling information (e.g., IP and callchain) periodically

* A Low overhead, effective technique to analyze on-CPU behavior

Task Sampling
(task-clock) ||| """""" | --- || >

foo foo bar boo

foo(---------------- .

bar!(---------- .. T _“_!)

Application i :
PP ' ! ' User
execution ____________________ Syscall --———————————— Return to user —————————-

Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

* Linux perf sampling (task-clock)
* Feature in Linux kernel’s perf subsystem
* Collects profiling information (e.g., IP and callchain) periodically

* A Low overhead, effective technique to analyze on-CPU behavior

Task sampling .
(task-clock) | | | | [] | |
foo foo bar boo boo foo
foo(~-mmrrmmemeee ': Sampling is disabled .)
Yy f— . during off-CPU periods! 7----3
Application | User

execution ____________________ Syscall --———————————— Return to user —————————-

Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

COZ [SOSP ‘15]
* Predict the impact of optimizing the specific code line without actual optimization

* Virtual speedup If line 320 becomes x% faster,
14 13 14 the program will become y% faster

\} NN ////// A 777777 o
T1 \\Am)\f B() 4 C5) T1 N A(6)\ B(2) C(5)
//////// rrrrrr N o A

5 Line 320
77777 \ ///////y 1 7777 P o, 0/
/ / / : 11 IOOA)
2w o o] | omfpel o] i B
Time Time S 75% =
<Original application> <Actual speedup> A o (x,y)
— I
Original runtime (14) + all inserted delay (3) E 50% ° ‘
<
™ EREEEE - 51 25% . .’
T1 §¢ o\ ror A e e) on®
NN ///i///ﬂltz: asEStIThess B S: 0% _‘
///////’ RN ///// : : I I I
o] = Ml | 0% 50% 100%
16 17 Time Line Speedup

<Virtual speedup>

COZ utilizes on-CPU sampling (Linux perf) = Virtual speedup is limited to only on-CPU events

Jinkyu Jeong, NVRAMOS 2024 70

Off-CPU Analysis

* wPerf [OSDI ‘18]
* Traces all kinds of waiting events including 1/0 and their dependencies

* Wait-for graph: Dependency graph of executed threads
* |dentifying closed loops (i.e., knots) through graph analysis

k ParallelGC* RespProc(MemStore)

Bottlenec .
* ! " Wem&om)

= J
Streamer(Log)

: 2R RN ¢ CacheFlushy
B - VM iroad——he
s =reC - P74
. / NP
> - <

w7 IPE Client(HDFS)

,4“.

<Example v(/a_i’;-for graph>

Jinkyu Jeong, NVRAMOS 2024

Off-CPU Analysis

* wPerf [OSDI ‘18]
* Traces all kinds of waiting events including 1/0 and their dependencies

* Wait-for graph: Dependency graph of executed threads
* |dentifying closed loops (i.e., knots) through graph analysis

ParallelGC* RespProc(MemStore)
[)

Bottleneck ;
* | % Wem&om)

Streamer(Log)) Y & : v 7 LimitatiOnS
| Ca@“ef"‘?}“‘/ 1) Does not provide context information of the bottleneck
- Additional effort is needed to determine where to optimize

CancurrentGC

s W, Pallelcis : : L
" LogRoller « 2)Does not provide the actual impact of optimization
s - Performance gain of the optimization could be marginal

sl IPE Client(HDFS)

<Example v(/a_i{-for graph>

Jinkyu Jeong, NVRAMOS 2024

Summary of the Limitations

— (Limitation #1) Focuses solely on either on-CPU or off-CPU events
— (Limitation #2) Causality analysis is not supported for off-CPU events

: - Causality
Profiler Profiling Scope el
Linux perf X
On-CPU
COzZ /\(on-CPU only)
wPerf Off-CPU X
Blocked Samples | Both on-/off-CPU O

Jinkyu Jeong, NVRAMOS 2024

Our Approach: Blocked Samples

* Goal: sampling on- and off-CPU events simultaneously

Missing off-CPU samples
Task Sampling - s L. >

(task-clock) | | | |

foo foo bar boo boo foo
| foQ (+--------~- : oo)
Blocked samples | bar(—------—s -
. Application | :
(Linux perf subsystem) PP - ! User
execution ---—----——---—- Syscall ==--———----—- Return to user ———-—
; : Kernel
| e ,
/O req uestl OFff-CPU ‘Interrupt

Jinkyu Jeong, NVRAMOS 2024

Our Approach: Blocked Samples

* Goal: sampling on- and off-CPU events simultaneously
* Blocked samples: sampling technique for off-CPU events

Blocked samples
Task Sampling - p—_____________ >

(task-clock) | | | | | | |
foo foo bar bool boo boo boo

(I/0) (/o) (1/0)

boo foo

| foQ (+--------~- : oo)
Blocked samples | bar(—------—s -
. Application | |
(Linux perf subsystem) P> - ! User
execution ---—----——---—- Syscall ==--———----—- Return to user ———-—
; : Kernel
| T ,
/O req uestl OFff-CPU ‘Interrupt

Jinkyu Jeong, NVRAMOS 2024

Our Approach: Blocked Samples

* Goal: sampling on- and off-CPU events simultaneously
* Blocked samples: sampling technique for off-CPU events

* Proposed profilers using blocked samples
* bperf: sampling-based statistical profiler on both on-/off-CPU events

* BCOZ: causal profiler that supports virtual speedup on both on-/off-CPU events
_ Blocked samples
Task Sampling - p—_____________ >
(task-clock) | | | | | | |
foo foo bar boo]l boo boo boo

(I/0) (/o) (1/0)

boo foo

| foQ (+--------~- : oo)
Blocked samples | bar(—------—s -
. Application | |
(Linux perf subsystem) P> - ! User
execution ---—----——---—- Syscall ==--———----—- Return to user ———--
; : Kernel
| T ,
/O req uestl Off-CPU ‘Interrupt

Jinkyu Jeong, NVRAMOS 2024

Blocked Samples

e Collected information

e |P and callchain

* Off-CPU subclass: reason for the blocking
* Blocking 1/O, synchronization, CPU scheduling, etc.
* New subclasses can be defined as needed

* Weight: # of repeats

* Encode the number of blocked samples with the same attributes

Task Sampling o e———___________
(task-clock) | | | | | | | | |
foo foo bar boo| boo boo boo |boo foo
)

(/0) (I/0) (I/0 IP: boo()
foo(------------ . ' .
o bar] ereeeees Callchain: foo()->bar()->boo()
Application | | Subclass: blocking 1/0
tion ———-mmmm Syscall ——-—————————- Return to user --—-- :
execution ysica eturn :co user Kormel Welght: 3
| boo (s e)

1/0 requestl Off-CPU llnterrupt

Jinkyu Jeong, NVRAMOS 2024

bperf: Statistical Profiler on Both On-/0ff-CPU Events

* Extension of Linux perf tool to support blocked samples
* Sample accounting

* Result reporting
* [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others
* Both the last user-level IP and last kernel-level IP are reported for blocked samples
* Enables an in-depth understanding of off-CPU events

Shared Object

while(N++ < 100000) {

vvrite(); i [kernel.vmlinux] [f!_Ya?t¥:;ﬁgage_bit
fSVT]C(); [kernel.vmlinux] [B] jbd2_log_wait_commit

---[.] fsync
} [kernel.vmlinux] [k] copy_user_enhanced_fast_string
test_io [kernel.vmlinux] [k] _raw_spin_unlock_irqrestore

Jinkyu Jeong, NVRAMOS 2024

bperf: Statistical Profiler on Both On-/0ff-CPU Events

* Extension of Linux perf tool to support blocked samples
* Sample accounting

* Result reporting
* [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others
* Both the last user-level IP and last kernel-level IP are reported for blocked samples
* Enables an in-depth understanding of off-CPU events

Shared Object

while(N++ < 100000) {

vvrite(); i [kernel.vmlinux] [f!_Ya?t¥:;ﬁgage_bit
fSVT]C(); [kernel.vmlinux] [B] jbd2_log_wait_commit

---[.] fsync
} [kernel.vmlinux] [k] copy_user_enhanced_fast_string
test_io [kernel.vmlinux] [k] _raw_spin_unlock_irqrestore

Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler on Both On-/0ff-CPU Events

* Extension of COZ to support blocked samples

_ Expected runtime
* Virtual speedup of blocked samples

Original runtime (original runtime + inserted delay)

N,
Thread 1

/ Predicted speedup

-

Virtual speedup target: B <
B (blocking 1/0) Identlfl.ed. I?oﬁlengck by CO;: E _
— Optimizing B yields marginal gains

<Virtual speedup without blocked samples>

Thread 2

Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler on Both On-/0ff-CPU Events

* Extension of COZ to support blocked samples

* Virtual speedup of blocked samples

Thread 1

Virtual speedup target: B

PR
>

<Virtual speedup without blocked samples> actyal runtime Expected runtime
7
N

Thread 2 B (blocking 1/0)

Predicted

* speedup
Delay caused by blocked samples < t

Thread 1

Thread 2

B (blocking 1/0)

o
Identified bottleneck by BCOZ: B@
<BCOZ> - Optimizing B is most important!

Jinkyu Jeong, NVRAMOS 2024 81

Features and Challenges of BCOZ

- For more details, please refer to the paper

Jinkyu Jeong, NVRAMOS 2024

Experimental Setup

* CPU: Intel Xeon Gold 5218 2.30GHz * 2

* OS: Ubuntu 20.04 Server (Linux kernel version: 5.3.7)

* Memory: DDR4 2933MHz, 384GB

 Storage devices: Samsung NVMe PM1735 (1,500K IOPS)

* Questions:
* Q1) Can blocked samples identify true bottlenecks?
* (Q2) Differences from wPerf's results?

* Q3) Profiling overhead?
* Comparison of tracing (off-CPU only), sampling (on-CPU only), bperf (both on-/off-CPU)
* BCOZ overhead analysis

—> Please refer to the paper

Jinkyu Jeong, NVRAMOS 2024

Summary of the Profiling Results

* Results included in the paper

Benchmark | Workload | Identified bottlenecks Optimization Speedup?| Known solution?
prefix_dist | Block cache contention | - Sharding O (3.4x) Yes Case study 2
allrandom Block read I/O - Asynchronous /O O (1.8x) No Case study 1
RocksDB - No block compression

- Increase the number of

fillrandom | Compaction, write stall compaction thread O (2.6x) Yes
- Reduce write stall
NPB Integer sort CPU contention - Allocate more CPU cores | O (16.4x) Yes

* Results not included in the paper (optimization is ongoing)

Benchmark Identified Bottlenecks
HPCG Serialized SYMGS (Symmetric Gauss Seidel) kernel
LLaMA-cpp Blocking I/0 in ggml_vec dot

Jinkyu Jeong, NVRAMOS 2024

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Problem: frequent block (filter, index, data) read I/Os

CPU

Storage

Block cache

Cache miss leads to read I/O
wemoy | - -5 /

Storage Lo E
- 4~ SSTfile O\
U4
oL

/s Index blocks (1) | | = 1 * read

Ln — Cl _Data blocks (D)j - 1 * read

Jinkyu Jeong, NVRAMOS 2024

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Problem: frequent block (filter, index, data) read I/Os

Data exists!
cpL]] N [Data ex
Filter test/l/—| Filter test)LI Filter test)LI . Filter test)ﬁ
Storgge Index Data
g block I/O | block I/O

Block cache

L1][p]| Cache missleads to read /O

4~ SSTfile O\

/
U

/s Index blocks (1) | | = 1 * read

4

Ln — Cl _Data blocks (D)j - 1 * read

Jinkyu Jeong, NVRAMOS 2024

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk I/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000
Overhead Command Shared Object Symbol
- db_bench_vanill Tlibpthread-2.30.so0 [I] _ libc_pread64
- __ libc_pread64
- rocksdb: :PosixRandomAccessFile: :Read

rocksdb: :RandomAccessFileReader: :Read
- rocksdb: :BlockFetcher: :ReadBlockContents

- 45.09% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :Block>
- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb: :DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb: :IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: : ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :ParsedFullFilterBlock>
rocksdb: :PartitionedFilterBlockReader: :GetFilterPartitionBlock

Jinkyu Jeong, NVRAMOS 2024

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk I/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000
Overhead Command Shared Object Symbol
- db_bench_vanill Tlibpthread-2.30.so0 [I] _ libc_pread64
- __ libc_pread64
- rocksdb: :PosixRandomAccessFile: :Read

rocksdb: :RandomAccessFileReader: :Read
- rocksdb: :BlockFetcher: :ReadBlockContents

- 45.09% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :Block>
- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb: :DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb: :IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: : ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :ParsedFullFilterBlock>
rocksdb: :PartitionedFilterBlockReader: :GetFilterPartitionBlock

Causality analysis <bperf>
;{9100 ® [/O subclass
;n: 80 m GetFilterPartitionBlock (I/O)
2 60 4 IndexBlocklter (I/O)
2, * DataBlocklter (1/O o :
0 aBlocidier /9) - Optimizing disk 1/0 of
5 20 filter block is most important!
g0
(=1

10 20 30 40 50 60 70 80 90
Line Speedup (%)

<BCOZ>

Jinkyu Jeong, NVRAMOS 2024

100

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk I/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000
Overhead Command Shared Object Symbol
- db_bench_vanill Tlibpthread-2.30.so0 [I] _ libc_pread64
- __ libc_pread64

Identified bottleneck: blocking disk I/O
(Worker*—>HARDIRQ)

- rocksdb: :PosixRandomAccessFile: :Read

rocksdb: :RandomAccessFileReader: :Read Worker_']
- rocksdb: :BlockFetcher: :ReadBlockContents
- 45.09% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :Block> Worker_8 Worker‘2

- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb: :DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb: :IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: : ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :ParsedFullFilterBlock>
rocksdb: :PartitionedFilterBlockReader: :GetFilterPartitionBlock

Causality analysis <bperf>
§100 ® |/O subclass
\é: 80 m GetFilterPartitionBlock (I/O)
?3 60 4 IndexBlocklter (I/O)
o 4 * Deablocidier (00) ~Optimizing disk 1/0 of <Wait-for graph of wPerf>
5 20 filter block is most important! _ o
g o —> Contexts related to disk I/Os are missing

10 20 30 40 50 60 70 80 90
Line Speedup (%)

<BCOZ>

Jinkyu Jeong, NVRAMOS 2024

100 (Limitation #1)

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* |dentified bottlenecks: blocking disk I/O (filter, index, and data blocks)

Samples: 1M of event 'task-clock', Event count (approx.): 1074412000000 .
Filter? Index? Data block?

Overhead Command Shared Object Symbol
- db_bench_vanill Tlibpthread-2.30.so0 [I] _ libc_pread64
- __ libc_pread64
- rocksdb: :PosixRandomAccessFile: :Read

rocksdb: :RandomAccessFileReader: :Read
- rocksdb: :BlockFetcher: :ReadBlockContents

- 45.09% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: :Block>
- rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :Block>
+ 23.37% rocksdb: :BlockBasedTable: :NewDataBlockIterator<rocksdb: :DataBlockIter>
+ 21.40% rocksdb::BlockBasedTable: :NewDataBlockIterator<rocksdb: :IndexBlockIter>
- 40.23% rocksdb: :BlockBasedTable: :MaybeReadBlockAndLoadToCache<rocksdb: : ParsedFullFilterBlock>
rocksdb: :BlockBasedTable: :RetrieveBlock<rocksdb: :ParsedFullFilterBlock>
rocksdb: :PartitionedFilterBlockReader: :GetFilterPartitionBlock

Causality analysis <bperf>
§100 ® |/O subclass
é: 80 m GetFilterPartitionBlock (I/O) ‘ '
2 60 4 IndexBlocklter (I/O)) '
2, + DataBlocklter (I/O . .
2 40 staBlockltr (D) - Optimizing disk 1/0 of R ()
5 20 filter block is most important! _ o
g o —> Contexts related to disk I/Os are missing

10 20 30 40 50 60 70 80 90
Line Speedup (%)

<BCOZ>

Jinkyu Jeong, NVRAMOS 2024

100 (Limitation #1)

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Optimization: asynchronous I/O for filter and index blocks

Data exists!

Filter Filter Filter Filter Index Data

StOrage = yiock 1/0 || block /0 || block /0 block 1/0 | | _block 1/0 | block I/0

<Before>

Jinkyu Jeong, NVRAMOS 2024

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Optimization: asynchronous I/O for filter and index blocks

Data exists!

<Before> , . _ ,
Storase — Filter | Filter i Filter Filter . Index Data
g block I/0 block 1/0 block I/0 block 1/0 block /O | block I/O
Data exists!
CPU
Storgce — Filter Filter
<After> g block 1/0 block 1/0
Filter Index
block 1/0 block I/0
Filter Data block
block 1/0 /O
\ J \ J
| |
Next level filter block (Last level only) Index block

Jinkyu Jeong, NVRAMOS 2024

Case Study 1- RocksDB (Block Read Operation)

 Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)
* Optimization: asynchronous I/O for filter and index blocks

Data exists!

<Before> , . _ .
Storage — Filter | | Filter || Filter Filter | | Index Data
block I/0 block 1/0 block I/0 block 1/0 block /O | block I/O
. 35 -
Data exists! 230 -
CPU =

25 - 1.8X

Storage — Filter Filter 320]

<After> & block I/O block I/O <15 -

Filter Index 210 -

block I/0 block I/0 = 5

Filter Data block = 0
block 1/0 /O

\ | \ | Baseline AIO

! ! <Optimization results>

- Blocking 1/O decreased by 74%

Jinkyu Jeong, NVRAMOS 2024 93

Next level filter block (Last level only) Index block

Case Study 2 - RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)
* Problem: block cache lock contention

S S $ s
\\ %kup/lnsert/Release/

———————————————————————————————————————

/

Frequent block cache access leads to lock contention

——————————————\
L R B R R R

s

Jinkyu Jeong, NVRAMOS 2024

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

* Identified bottlenecks: lock-waiting <100
N @ GetDataBlockFromCache (lock)

B ReadBlockContents (I/O)

o0
S

Samples: 1M of event 'task-clock', Event count (approx.): 1097249000000
Overhead Command Shared Object Symbol
+ db_bench_vanill [kernel.vmlinux] [k] native_queued_spin_lock_slowpath
db_bench_vanill 1libpthread-2.30.so0 [L] __111_lock wait
- 24.09% __ 111_lock wait
- _ pthread_mutex_lock

(o))
ja)

- rocksdb::port::Mutex: :Lock
- 12.51% rocksdb: :LRUCacheShard: : Lookup
rocksdb: :ShardedCache: : Lookup
- rocksdb: :BlockBasedTable: : GetEntryFromCache
+ 8.05% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :Block>

o)
)

Program Speedup (
o s

10 20 30 40 50 60 70 80 90 100

+ 4.46% rocksdb::BlockBasedTable: :GetDataBlockFromCache<rocksdb: :ParsedFullFilterBlock> H 0
+ 11.55% rocksdb: : LRUCacheShard: :Release Line Speedup (%)

db_bench_vanill [kernel.vmlinux] [k] _raw_spin_unlock _irgrestore 9 OptImIZIng |Ock_contention iS more

db_bench_vanill libpthread-2.30.s0 [1] _Libc_preadod ICIeIelq[at-MVA®) important than disk 1/0

Jinkyu Jeong, NVRAMOS 2024

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

* Identified bottlenecks: lock-waiting <100
N @ GetDataBlockFromCache (lock)

B ReadBlockContents (I/O)

o0
S

Samples: 1M of event 'task-clock', Event count (approx.): 1097249000000
Overhead Command Shared Object Symbol
+ db_bench_vanill [kernel.vmlinux] [k] native_queued_spin_lock_slowpath
db_bench_vanill 1libpthread-2.30.so0 [L] __111_lock wait
- 24.09% __ 111_lock wait
- _ pthread_mutex_lock

(o))
ja)

- rocksdb::port::Mutex: :Lock
- 12.51% rocksdb: :LRUCacheShard: : Lookup
rocksdb: :ShardedCache: : Lookup
- rocksdb: :BlockBasedTable: : GetEntryFromCache
+ 8.05% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :Block>

o)
)

Program Speedup (
o s

10 20 30 40 50 60 70 80 90 100

+ 4.46% rocksdb::BlockBasedTable: :GetDataBlockFromCache<rocksdb: :ParsedFullFilterBlock> H 0
+ 11.55% rocksdb: : LRUCacheShard: :Release Line Speedup (%)

db_bench_vanill [kernel.vmlinux] [k] _raw_spin_unlock _irgrestore 9 OptImIZIng |OCk-C0ntenti0n iS more

db_bench_vanill libpthread-2.30.so (1] _libc_preadsd MCYIele{[at-2VA® important than disk |/O

|dentified bottleneck: blocking disk 1/0O, lock-waiting

(Worker*—>HARDIRQ, Worker* €< —>Worker*) (Limitation #1)
worers & s R - Codes that invoke lock-contention are missing
¥ . ;, Refining ~.

g g |y v %%.gz@kers (Limitation #2)
ﬁ;’%‘":{ or “K\ /k.4 —> Actual impact of optimizing blocking disk 1/0 is missing

deﬁr.g Woxker-5

Jinkyu Jeong, NVRAMOS 2024 96

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

* |dentified bottlenecks: lock-waiting o detDitaBlockbromiCache (Ibek)
(& atabloc romoeacne (10cC

B ReadBlockContents (I/O)

Samples: 1M of event 'task-clock', Event count (approx.): 1097249000000
Overhead Command Shared Object Symbol
+ db_bench_vanill [kernel.vmlinux] [k] native_queued_spin_lock_slowpath

db_bench_vanill 1libpthread-2.30.so0 [L] __111_lock wait
- 24.09% __111_lock_wait
__pthread_mutex_lock
- rocksdb::port::Mutex: :Lock
- 12.51% rocksdb: :LRUCacheShard: : Lookup

rocksdb: :ShardedCache: : Lookup

- rocksdb: :BlockBasedTable: : GetEntryFromCache
+ 8.05% rocksdb: :BlockBasedTable: :GetDataBlockFromCache<rocksdb: :Block>

—_—
N BB 0 O
o o o o O

Program Speedup (%)
o

10 20 30 40 50 60 70 80 90 100

+ 4.46% rocksdb::BlockBasedTable: :GetDataBlockFromCache<rocksdb: :ParsedFullFilterBlock> H 0
+ 11.55% rocksdb: : LRUCacheShard: :Release Line Speedup (%)

db_bench_vanill [kernel.vmlinux] [k] _raw_spin_unlock _irgrestore 9 OptImIZIng |Ock_contention is more

db_bench_vanill libpthread-2.30.s0 [1] _Libc_preadod ICIeIelq[at-MVA®) important than disk 1/0

Lock or 1/O? (Limitation #1)
@@ —> Codes that invoke lock-contention are missing

Lookup? Insert? (Limitation #2)
—_— ? P —> Actual impact of optimizing blocking disk 1/0 is missing
Release?

Jinkyu Jeong, NVRAMOS 2024 97

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)
e Optimization: apply sharding

S S § s
\\ %kup/lnsert/Release/

———————————————————————————————————————

I

o —

B ————

s
\

Jinkyu Jeong, NVRAMOS 2024

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)
e Optimization: apply sharding

1

1 Lookup/Insert/Release/...

Shards!| | 1 || 2 || 3 62 || 63 || 64

A~ AN ~ ~
H H HBIock cache H H H

) - LR

<Optimization (sharding)>

Jinkyu Jeong, NVRAMOS 2024

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)
e Optimization: apply sharding

g g g g 3.4x gain from sharding
S N

250
| Lookup/Insert/Release/... £.200
150 -
Shards|| 1 || 2 || 3 62 || 63 || 64 Z 100 -
v v v v v v % 58 | |—| ‘_| H
A\ N\ N\ ™\ I\ = [} + N < o o o <t
K K KiBlock cache K 1N O 203 8|3z oz i3
f f f f M = 3 5 | un un 2 2| =2
: 1 | i 1 1 : v wn | ©»
! i j I : :I I 10 Lock Contention
1 [1 I
] T [T T
1 .
: ‘ ' I—i - Lock-contention decreased by 97%
I il I T R y
ese I
:-__jﬁ.:'__..: '~___,"___,=' i <Optimization results>

<Optimization (sharding)>

Jinkyu Jeong, NVRAMOS 2024

Case Study 2- RocksDB (Block Cache Contention)

* Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)
e Optimization: apply sharding

g g g g Marginal gain from blocking disk |/O

250
1 Lookup/Insert/Release/... £.200
3150
Shards|| 1 || 2 || 3 62 || 63 || 64 = 100
25 miml
e 0
A\ N\ N\ ™\ I\ = [} + N < o o o <t
Kl KN ElBlock cache KN KN KN Eoo2ely11g g
= i} - k: 5w B £ 2 2
II 1 ves ! I: I 2 7p] N
I | : :] 10 Lock Contention
I |
I |

CH - T
_______ —— e <Optimization results>

<Optimization (sharding)>

Jinkyu Jeong, NVRAMOS 2024

Profiling Overhead

@ Tracing O Sampling O bperf @ Tracing O Sampling © bperf

[\
o
[\
o

“141.24 M33.03 | 43.64 ~143.89

[E—
W
p—
(V)]

0.50

] (5 D (| WU i.. H‘fi&i“ﬁ i:h

RocksDB-1 RocksDB-2 RocksDB-3 NPB-is NPB-ep Hackbench Geomean RocksDB-1 RocksDB-2 RocksDB-3 NPB-is NPB-ep Hackbench Geomean

i
()}

Performance drop (%)
=
]
CPU cycle overhead (%)
=
=

<
<

o0
-

-

-

6
=
0 40
5
> 2
@

Jinkyu Jeong, NVRAMOS 2024

)

RocksDB-1 RocksDB-2 RocksDB-3 NPB-is NPB-ep Geomean
@ Startup O Sampling O Delays

Conclusion

* Profiling modern applications has become more challenging

* Blocked samples collects off-CPU events information
* bperf, provides statistical profiling of both on-/off-CPU events

* BCOZ, provides virtual speedup of both on-/off-CPU events

* Blocked samples, a general solution for off-CPU sampling

* Planning on enriching blocked samples with off-CPU information details
(device-internal ops., remote ops.)

Blocked samples is available at:
https://github.com/s3yonsei/blocked samples

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Thank you!

Jinkyu Jeong, NVRAMOS 2024

AVAILABLE REPRODUCED

https://github.com/s3yonsei/blocked_samples

FlameGraph with Blocked Samples

IX

Append

* Callchain visualization of both on-/off-CPU events

)il path

rwsem_down_read_slow

A ;n.-__.H... .
3 ﬂ -
_ R T -..-.ni.l._
| | :

blk io schedule

PartitionedFilterBlockRead:

ocksdb:

futex_ wait

do_futex
__x64_sys_fu.
x64 sys call

blk io schedule

—T

<5l h
moE ..----.m

o _Wm___mm

rocksdb: :PartitionedFilterBlockRead..

rwsem down write

= Ny

4
-}
—

Jinkyu Jeong, NVRAMOS 2024

Future Research Questions

* Q1) Does code context is enough to understand bottleneck?

—e.g., graph-processing applications

[tensore J

[weighte] [tensorl] [tensor2 J

OP_MULMAT
tensor3

OP_MULMAT
tensord

OP_MULMAT

tensoré

Graph Input ‘

N

compute_graph()

for (tensor# in graph->tensors)
switch (tensor->op)

{

case OP_ADD:
compute_add(tensor)

case OP_MUL:
compute_mul(tensor)

case OP_MATMUL:
compute_matmul (tensor)

)

Jinkyu Jeong, NVRAMOS 2024

Graph information is missing...
—> Which tensor invokes matmul?

‘ Sampling with blocked samples

Overhead IP/Callchain (Symbol)

175 00% [I] compute matmul I
: L—~—c0mpute_graph 1

S T
15.90% [.] compute mul

L— compute_graph

10.00% [.] compute_add
L— compute_graph

Future Research Questions

* Q2) What if there is nothing to optimize?

Thread 1

—> Optimizing any single event does not improve performance

-> Does that mean there is no room for further optimization?
—> Optimizing both {A, E} can improve the performance

Jinkyu Jeong, NVRAMOS 2024

Appendix

Jinkyu Jeong, NVRAMOS 2024

Case Study - HPCG (Serialized SYMGS Kernel)

e Scenario: 64 application threads on 64 logical cores

* |dentified bottlenecks: computation
* ComputeSYMGS _ref (symmetric gauss seidel kernel)

* Needed optimization: parallelize the SYMGS kernel execution

Identified bottlenecks in SYMGS code . , , :
for (j=0; j< currentNumberOfNonzeros; j++) {
ComputeSYMGS_ref.cpp:76 ComputeSYMGS_ref.cpp:95 local int t curCol = currentColIndices[j];
o o sum -= currentValues[j] * xv[curCol];
b | » -)
g 50% s 1 ® e | E 50% }
g ’,,Jr"/.' Baili * a __m‘ﬁ*'o”""“““
"E‘ R e "E‘ 0% oo
T [
cg” -50% g‘ -50% for (j = 7; j< currentNumberOfNonzeros; j++) {
e a. local_int_t curCol = currentColIndices[j];
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% sum -= currentValues[j]*xv[curCol];
Line speedup Line speedup }
<BCOZ> <ComputeSYMGS _ref.cpp>

Jinkyu Jeong, NVRAMOS 2024

Implementation of COZ

* process_samples: periodic virtual speedup operation

Qrocess_samp/e9

Read pending
samples

i Optl: Batch processing of samples

Opt2: Delay cancellation

S NN NN NN NN NN NN NN NN NN NN NN SN NN SN NN SN NN SN NN SN SN SN SN SN SN S NN SN SN SN SN BN SN SN SN BN SN BN SN NN SN NN SN NN SN NN SN NN SN BN SN BN SN BN BN BN S BN By

Yes

Delaying other threads
(Sent delay — Received delay)

{IP, callchain} 3 target? Received delay — sent delay) < 0?

Self delayed
(Received delay — Sent delay)

A i e e s e o S o e e B e s P

Wait until next\A
period j

gen TEN EEN NN EEN NN BN BN BN NN BN N B
p

Jinkyu Jeong, NVRAMOS 2024

(cont'd) Implementation of COZ

* post_block: Delay exemption operation triggered at thread wakeup

———

e (post_block Dependency handling
]]
])
: Exempts accumulated delay i
! during blocked periods !
]]
| |
| |
| |
\\ ’l

S e S S S S BN NN BN NN BN NN NN SN BN SN NN NN SN SN SN BN BN SN SN NN SN NN SN NN SN NN SN SN SN SN SN BN SN BN SN BN SN BN S S

- However, batch processing of blocked samples can compromise the dependency handling

COZ

BCOZ

n
o
»

Maintained

Jinkyu Jeong, NVRAMOS 2024

Virtual Speedup of Blocked Samples

* BCOZ handles dependencies between off-CPU events
* Events with dependencies cannot be sped up independently

cond_wait() Actual speedup

Thread A N\, Waiting I—‘—’I

Waking up

cond_signal() Actual speedup

Thread B _|. —<—>|

Handling I/O
(target for virtual speedup)

Jinkyu Jeong, NVRAMOS 2024

Virtual Speedup of Blocked Samples

* BCOZ handles dependencies between off-CPU events
* Events with dependencies cannot be sped up independently

* Batch processing of samples can cause inaccurate virtual speedup to occur after wakeup

(D Accumulated delay during ~ This delay caused the

blocking is exempted incorrectness Delay=slowdown
(COZ #2) \ —> Predicted performance gain is zero
G
Thread A H -------------
_ Incorrect
Blocked samples for 1/0 Delaying X

virtual speedup

N \
IT I T: /Processblocked samples

Handling 1/O (2) Processing is postponed by batching
(COZ #1)

(target for virtual speedup)

Jinkyu Jeong, NVRAMOS 2024

Virtual Speedup of Blocked Samples

* BCOZ handles dependencies between off-CPU events
* Events with dependencies cannot be sped up independently

* Batch processing of samples can cause inaccurate virtual speedup to occur after wakeup

* BCOZ processes blocked samples immediately when a thread wakes up another thread

(2 Accumulated delay during

blocking is exempted Predicted speedup (okay)
(COZ #2) ~_ Delay is exempted! _~ Intended slowdown

Delavin O Correct
ying virtual speedup

Process blocked samples

Handling I/0 @ Process blocked samples immediately

(target for virtual speedup)

Jinkyu Jeong, NVRAMOS 2024

	Slide 1: Application Performance Profiling using Blocked Samples
	Slide 2: Linux Performance Analysis
	Slide 3: Linux perf Subsystem
	Slide 4: Linux perf Sampling (task-clock)
	Slide 5: Sampling-Based Profilers (1/2)
	Slide 6: Sampling-Based Profilers (2/2)
	Slide 7: Research Question
	Slide 8: Research Question
	Slide 9: Trend of Computing Environments
	Slide 10: Trend of Computing Environments
	Slide 11: Trend of Computing Environments
	Slide 12: Bottlenecks of Modern Applications
	Slide 13: Bottlenecks of Modern Applications
	Slide 14: Bottlenecks of Modern Applications
	Slide 15: Bottlenecks of Modern Applications
	Slide 16: Off-CPU Analysis (1/2)
	Slide 17: Off-CPU Analysis (2/2)
	Slide 24: Our Approach: Blocked Samples
	Slide 25: Our Approach: Blocked Samples
	Slide 26: Our Approach: Blocked Samples
	Slide 27: Blocked Samples (task-clock-plus)
	Slide 28: task-clock-plus Implementation
	Slide 29: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 30: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 31: Toy Program with Mixed of On-/Off-CPU Events
	Slide 32: Toy Program with Mixed of On-/Off-CPU Events
	Slide 33: Case Study – RocksDB (Block Read Operation)
	Slide 34: Case Study – RocksDB (Block Read Operation)
	Slide 35: Case Study – RocksDB (Block Read Operation)
	Slide 36: Profiling Overhead
	Slide 44: Conclusion
	Slide 45
	Slide 46: Credit
	Slide 47: COZ (SOSP ’15)
	Slide 48: COZ (SOSP ’15)
	Slide 49: COZ (SOSP ’15)
	Slide 50: Research Question
	Slide 51: BCOZ: Causal Profiler for both On-/Off-CPU Events
	Slide 52: BCOZ: Causal Profiler for both On-/Off-CPU Events
	Slide 53: BCOZ: Causal Profiler for both On-/Off-CPU Events
	Slide 54: Trend of Computing Environments
	Slide 55: Trend of Computing Environments
	Slide 56: Trend of Computing Environments
	Slide 57: Bottlenecks of Modern Applications
	Slide 58: Bottlenecks of Modern Applications
	Slide 59: Bottlenecks of Modern Applications
	Slide 60: Bottlenecks of Modern Applications
	Slide 61: Profiling Challenge
	Slide 62: Profiling Challenge
	Slide 63: Profiling Challenge
	Slide 64: Profiling Challenge
	Slide 65: Profiling Challenge
	Slide 66: Profiling Challenge
	Slide 67: On-CPU Analysis
	Slide 68: On-CPU Analysis
	Slide 69: On-CPU Analysis
	Slide 70: On-CPU Analysis
	Slide 71: Off-CPU Analysis
	Slide 72: Off-CPU Analysis
	Slide 73: Summary of the Limitations
	Slide 74: Our Approach: Blocked Samples
	Slide 75: Our Approach: Blocked Samples
	Slide 76: Our Approach: Blocked Samples
	Slide 77: Blocked Samples
	Slide 78: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 79: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 80: BCOZ : Causal Profiler on Both On-/Off-CPU Events
	Slide 81: BCOZ : Causal Profiler on Both On-/Off-CPU Events
	Slide 82: Features and Challenges of BCOZ
	Slide 83: Experimental Setup
	Slide 84: Summary of the Profiling Results
	Slide 85: Case Study 1– RocksDB (Block Read Operation)
	Slide 86: Case Study 1– RocksDB (Block Read Operation)
	Slide 87: Case Study 1– RocksDB (Block Read Operation)
	Slide 88: Case Study 1– RocksDB (Block Read Operation)
	Slide 89: Case Study 1– RocksDB (Block Read Operation)
	Slide 90: Case Study 1– RocksDB (Block Read Operation)
	Slide 91: Case Study 1– RocksDB (Block Read Operation)
	Slide 92: Case Study 1– RocksDB (Block Read Operation)
	Slide 93: Case Study 1– RocksDB (Block Read Operation)
	Slide 94: Case Study 2 – RocksDB (Block Cache Contention)
	Slide 95: Case Study 2– RocksDB (Block Cache Contention)
	Slide 96: Case Study 2– RocksDB (Block Cache Contention)
	Slide 97: Case Study 2– RocksDB (Block Cache Contention)
	Slide 98: Case Study 2– RocksDB (Block Cache Contention)
	Slide 99: Case Study 2– RocksDB (Block Cache Contention)
	Slide 100: Case Study 2– RocksDB (Block Cache Contention)
	Slide 101: Case Study 2– RocksDB (Block Cache Contention)
	Slide 102: Profiling Overhead
	Slide 103: Conclusion
	Slide 104: Appendix: FlameGraph with Blocked Samples
	Slide 105: Future Research Questions
	Slide 106: Future Research Questions
	Slide 107: Appendix
	Slide 108: Case Study – HPCG (Serialized SYMGS Kernel)
	Slide 109: Implementation of COZ
	Slide 110: (cont'd) Implementation of COZ
	Slide 111: Virtual Speedup of Blocked Samples
	Slide 112: Virtual Speedup of Blocked Samples
	Slide 113: Virtual Speedup of Blocked Samples

