
Application Performance Profiling using
Blocked Samples

02/18/2025

Jinkyu Jeong

Department of Computer Science and Engineering

Linux/Android FS/MM/Storage Workshop

Linux Performance Analysis

• Various system tools for
different system events

– Application

– OS

– Blocking I/O (device ops.)

• Linux perf is widely (and
generally) used performance
profiling tool

2Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Linux perf Subsystem

• Supports performance profiling through collecting execution information

– Collects IP and callchain

• Tracing vs. Sampling

– Tracing(=instrument): collects every events

• e.g., Linux ftrace or tracepoints

– Sampling: collects samples of events periodically

• e.g., Linux perf record task-clock

3Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

(foo

Task Tracing
(ftrace)

foo(

bar(

∙
Application
execution

)

)

∙ ∙
boo ()

(bar (boo bar)foo)boo)

∙

<Tracing example>

foo

Task Sampling
(task-clock)

foo(

bar(

∙
Application
execution

∙

boo (

foo bar boo bar fooboo

)

)

∙

)

∙

<Sampling example>

Linux perf Sampling (task-clock)

• Linux perf sampling co-operates with the periodic timer (i.e., HR timer)

– e.g., $perf record -g -e task-clock -c 1000000 ./a.out

• '-g': callchain, '-e task-clock': event to collect, '-c 1000000': period (=1ms)

4Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

void func_a() {
while (i < 20000000) i++;

}
void func_b() {

while (i < 40000000) i++;
}

int main (int argc, char *argv[]) {
func_a();
func_b();

return 0;
}

<Example of single sample ($perf script)>

<Statistical analysis result ($perf report)>

Sampling-Based Profilers (1/2)

• FlameGraph [Brendan Gregg]

– Callstack visualization of sampling results

5Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Sampling-Based Profilers (2/2)

• COZ [SOSP '15]

– Predict the impact of optimizing without actual optimization

6Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

while loop of func_b

while loop of func_a

P
ro

gr
a

m
 s

p
ee

d
u

p
P

ro
gr

a
m

 s
p

ee
d

u
pvoid func_a() {

while (i < 20000000) i++;
}
void func_b() {

while (i < 40000000) i++;
}

int main (int argc, char *argv[]) {
func_a();
func_b();

return 0;

}

Research Question

• Is sampling effective for real-world applications?

– Can sampling handle off-CPU events (e.g., blocking I/O, CPU scheduling, locks)?

7Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙

∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

Research Question

• Is sampling effective for real-world applications?

– Can sampling handle off-CPU events (e.g., blocking I/O, CPU scheduling, locks)?

8Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙

∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

Sampling is disabled
during off-CPU periods!

No! Sampling cannot collect off-CPU information
- Why the off-CPU analysis is important?

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

. . .

Past Computers

CPU

Storage Network

Network

9Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

. . .

On-CPU events:
Instructions executed

on the CPU

Past Computers

CPU

Storage Network

Network

Off-CPU events:
Waiting events during execution

10Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

. . .

On-CPU events:
Instructions executed

on the CPU

Past Computers

CPU

Storage Network

Network

Off-CPU events:
Waiting events during execution

Where are
Bottlenecks?

11Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

On-CPU Off-CPU (I/O) Off-CPU (I/O) Off-CPU (I/O)On-CPU On-CPU

12Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

▪ "kernel software is becoming the bottleneck", XRP [OSDI '22]
▪ "server CPU is becoming the bottleneck", XSTORE [OSDI '20]
▪ "Rocksdb is CPU-bound", Kvell [SOSP '19]
▪ "kernel I/O stack accounts for a large fraction", AIOS [ATC '19]
▪ "storage no longer being the bottleneck", uDepot [FAST '19]

On-CPU Off-CPU (I/O)

→ Bottleneck has shifted from blocking I/O to CPU

Off-CPU (I/O) Off-CPU (I/O)On-CPU On-CPU

Utilize faster
storage device

13Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

• (Computation) Shifting away from CPU-centric computations

Computation Computation Computation Computation

On-CPU On-CPU On-CPU On-CPU

14Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

• (Computation) Shifting away from CPU-centric computations

▪ "there are spare CPU and network bandwidth", BytePS [OSDI '20]
▪ "rapid increases in GPU will shift the bottleneck towards communication", PipeDream [SOSP '19]
▪ "DNN training is not scalable, mainly due to the communication overhead", ByteScheduler [SOSP '19]

Computation Computation Computation Computation

On-CPU On-CPU On-CPU On-CPU

→ Bottleneck has shifted from CPU computation to I/O and communication

Communication
(I/O)

GPUs (off-CPU) FPGAs (off-CPU)

Computation Computation
Communication

(I/O)

15Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Off-CPU Analysis (1/2)

• Existing off-CPU analysis relies on tracing

– Hot/Cold FlameGraph [Brendan Gregg]
• Traces all blocking events (i.e., schedule-in/out) using Linux perf subsystem

16Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

<Example of hot/cold FlameGraph>

Off-CPU Analysis (2/2)

• Existing off-CPU analysis relies on tracing

– wPerf [OSDI '18]
• Traces all waiting events between threads with their dependency

17Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

<Example of wPerf>

Limitations
#1) High overhead

- Frequent event tracing
#2) Lack of context information

- Missing code information

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

Blocked samples
(Linux perf subsystem)

Missing off-CPU samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

24Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

• Blocked samples: sampling technique for off-CPU events (task-clock-plus)

Blocked samples
(Linux perf subsystem)

Blocked samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

25Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

• Blocked samples: sampling technique for off-CPU events (task-clock-plus)

• Proposed profilers using blocked samples

• bperf: sampling-based statistical profiler on both on-/off-CPU events

• BCOZ: causal profiler that supports virtual speedup on both on-/off-CPU events

Blocked samples
(Linux perf subsystem)

Blocked samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

26Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Blocked Samples (task-clock-plus)

• Collected information

• IP and callchain

• Off-CPU subclass: reason for the blocking
• Blocking I/O, synchronization, CPU scheduling, etc.

• New subclasses can be defined as needed

• Weight: # of repeats
• Encode the number of blocked samples with the same attributes

IP: boo()
Callchain: foo()->bar()->boo()
Subclass: blocking I/O

Weight: 3

27Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

task-clock-plus Implementation

• Extending task-clock event in the Linux perf subsystem

28

– Hooks in scheduling-related operations

• Sched-out (prepare_task_switch→task_clock_event_del)

– Records timestamp, and off-CPU subclass

• Wake-up (try_to_wake_up)

– Records timestamp

• Sched-in (finish_task_switch→task_clock_event_add)

– 1) Calculate the length of blocking period

– 2) Calculate the number of off-CPU samples to record

– 3) (If exists) Record the off-CPU samples

* Samples are recorded only if sampling
points are overlap with off-CPU period
→ Differ from tracing

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

bperf : Statistical Profiler on Both On-/Off-CPU Events

• Extension of Linux perf tool to support blocked samples

• Sample accounting

• Result reporting
• [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others

• Both the last user-level IP and last kernel-level IP are reported for blocked samples

• Enables an in-depth understanding of off-CPU events

while(N++ < 100000) {
write();
fsync();

}

29Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

bperf : Statistical Profiler on Both On-/Off-CPU Events

• Extension of Linux perf tool to support blocked samples

• Sample accounting

• Result reporting
• [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others

• Both the last user-level IP and last kernel-level IP are reported for blocked samples

• Enables an in-depth understanding of off-CPU events

while(N++ < 100000) {
write();
fsync();

}

Data block write

Waiting for jbd2 thread

30Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Toy Program with Mixed of On-/Off-CPU Events

31Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

while (i < 300000) {
write();
fsync();

}

<w/o blocked samples>

Missing samples

→ 100% kernel I/O
stack

<Toy program>

Toy Program with Mixed of On-/Off-CPU Events

32Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

while (i < 300000) {
write();
fsync();

}

<w/o blocked samples>

<bperf>

Missing samples

Disk I/O events
- jbd2_log_wait_commit
- folio_wait_bit

→ 100% kernel I/O
stack

CPU: 55%, IO wait: 25.4%, Idle(jbd2 wait): 19.7%

<Toy program>

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Problem: frequent block (filter, index, data) read I/Os

Case Study – RocksDB (Block Read Operation)

33

Memory

Storage

F F I I D… …

…

…

L0

L1

Ln

Block cache

SST file

Filter blocks (F)

Index blocks (I)

Data blocks (D)

…
Cache miss leads to read I/OF

→ n * reads

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

→ 1 * read

→ 1 * read

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Case Study – RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

34

<bperf>

<BCOZ>

→Optimizing disk I/O of
filter block is most important!

Blocking disk I/O
Context information

<Wait-for graph of wPerf>

Identified bottleneck: blocking disk I/O
(Worker*→HARDIRQ)

→Contexts related to disk I/Os are missing
(Limitation #1)

Causality analysis

Filter? Index? Data block?

?
Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Case Study – RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Optimization: asynchronous I/O for filter and index blocks

35

CPU

Storage
Filter

block I/O
Filter

block I/O

Filter
block I/O

Index
block I/O

Data block
I/O

Data exists!

Filter
block I/O

…

Next level filter block (Last level only) Index block

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test
<Before>

<After>

<Optimization results>

1.8x

→ Blocking I/O decreased by 74%

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Profiling Overhead

36Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

Conclusion

• Profiling modern applications has become more challenging

• Blocked samples collects off-CPU events information

• bperf, provides statistical profiling of both on-/off-CPU events

• BCOZ, provides virtual speedup of both on-/off-CPU events

44

Blocked samples is available at:
https://github.com/s3yonsei/blocked_samples

https://github.com/s3yonsei/linux-blocked_samples

Thank you!
Credit:
Minwoo Ahn, Jeongmin Han, Youngjin Kwon, Jinkyu Jeong,
"Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples,"
OSDI 2024

Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

https://github.com/s3yonsei/blocked_samples
https://github.com/s3yonsei/linux-blocked_samples

45Jinkyu Jeong, NVRAaaaMOS 2024

Credit

• Minwoo Ahn, Jeongmin Han, Youngjin Kwon, Jinkyu Jeong,
“Identifying On-/Off-CPU Bottlenecks Together with Blocked Samples,”
OSDI 2024

• Most slides are from the OSDI’24 presentation slides

46Jinkyu Jeong, Linux/Android FS/MM/Storage Workshop

COZ (SOSP ’15)

• COZ: Finding Code that Counts with Causal Profiling, SOSP ‘15

– Charlie Curtsinger, Emery D. Berger

47Jinkyu Jeong, NVRAMOS 2024

a()

b()

Thread 1

Thread 2

Time Time

COZ (SOSP ’15)

Thread 1

Thread 2

A (6) B (3) C (5)

B (3) A (6) B (3)

Actual speedup
(B is actually
optimized by 1)

Virtual speedup
(B is virtually
optimized by 1)

Thread 1

Thread 2

A (6) B (2) C (5)

B (2) A (6) B (2)

Thread 1

Thread 2

A (6) B (3) C (5)

B (3) A (6) B (3)

Time

Time

Time

14

1413

16 17

1

1

1

Same effect as actual speedup

• Virtual speedup

– Predict speedup of functions without actually speeding up code lines

48Jinkyu Jeong, NVRAMOS 2024

COZ (SOSP ’15)

• COZ is causal profiler using the virtual speedup technique

– perf sampling + batch processing + thread sleeping and synchronization

Read samples

IP = speedup line ?

Callchain entry
= speedup line ?

Delay the threads

Yes

COZ

Memory

sa
m

p
le

sa
m

p
le

sa
m

p
le

sa
m

p
le

sa
m

p
le

sa
m

p
le

sa
m

p
le

sa
m

p
le

per-thread ring buffer

Instruction
Pointer

(IP)
Callchain

Sampling by perf_event API

Thread 1

Wait until next
period

Yes

No

No

Thread 2 Thread 3 Thread 4

49Jinkyu Jeong, NVRAMOS 2024

Research Question

• What if virtual speedup can be applied to I/O events

– COZ has profiled on-CPU events only

• How to make COZ apply the virtual speedup idea to I/O events (or off-CPU events)

– E.g., disk I/Os

50Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler for both On-/Off-CPU Events

• Virtual speedup the off-CPU events by blocked samples

– Shows potential speedup when off-CPU events are optimized

• Locks, I/O, scheduling delay, etc.

Program Speedup

Line
speedup

CPU
Black
box

CPU

CPU

CPU

CPU CPU
Black
box

Black
box

Black
box

<Virtual speedup of on-CPU events (COZ)>

<Potential speedup result>

virtual speedup

51Jinkyu Jeong, NVRAMOS 2024

BCOZ: Causal Profiler for both On-/Off-CPU Events

• Virtual speedup the off-CPU events by blocked samples

– Shows potential speedup when off-CPU events are optimized

• Locks, I/O, scheduling delay, etc.

Program Speedup

Line
speedup

CPU CPU

CPU

CPU

CPU CPU
Black
box

Black
box

Storage
I/O

Storage
I/O

Lock

Lock

<Potential speedup result>

<Virtual speedup of both on-/off-CPU events (BCOZ)>

virtual speedup

52Jinkyu Jeong, NVRAMOS 2024

<Virtual speedup of both on-/off-CPU events (BCOZ)>

BCOZ: Causal Profiler for both On-/Off-CPU Events

• Virtual speedup the off-CPU events by blocked samples

– Shows potential speedup when off-CPU events are optimized

• Locks, I/O, scheduling delay, etc.

Program Speedup

Line
speedup

Storage
I/O

Lock

Lock
Storage

I/O
CPU

Storage
I/O

CPU

CPU

CPU

CPU
Storage

I/O

Lock

Lock CPU

Storage I/O

<Potential speedup result>

<Virtual speedup of both on-/off-CPU events (BCOZ)>

53Jinkyu Jeong, NVRAMOS 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

. . .

Past Computers

CPU

Storage Network

Network

54Jinkyu Jeong, NVRAMOS 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

. . .

On-CPU events:
Instructions executed

on the CPU

Past Computers

CPU

Storage Network

Network

Off-CPU events:
Waiting events during execution

55Jinkyu Jeong, NVRAMOS 2024

Trend of Computing Environments

• Computing environments are becoming more complex and advanced

• Events executed outside the CPU (i.e., off-CPU) have become more diverse

Modern Computers
CPUs

Storage

Accelerators

. . .

On-CPU events:
Instructions executed

on the CPU

Past Computers

CPU

Storage Network

Network

Off-CPU events:
Waiting events during execution

Where are
Bottlenecks?

56Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

On-CPU Off-CPU (I/O) Off-CPU (I/O) Off-CPU (I/O)On-CPU On-CPU

57Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

▪ "kernel software is becoming the bottleneck", XRP [OSDI '22]
▪ "server CPU is becoming the bottleneck", XSTORE [OSDI '20]
▪ "Rocksdb is CPU-bound", Kvell [SOSP '19]
▪ "kernel I/O stack accounts for a large fraction", AIOS [ATC '19]
▪ "storage no longer being the bottleneck", uDepot [FAST '19]

On-CPU Off-CPU (I/O)

→ Bottleneck has shifted from blocking I/O to CPU

Off-CPU (I/O) Off-CPU (I/O)On-CPU On-CPU

Utilize faster
storage device

58Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

• (Computation) Shifting away from CPU-centric computations

Computation Computation Computation Computation

On-CPU On-CPU On-CPU On-CPU

59Jinkyu Jeong, NVRAMOS 2024

Bottlenecks of Modern Applications

• Bottlenecks of applications are diversifying

• (I/O) Boundary between CPU-bound and I/O-bound is blurred

• (Computation) Shifting away from CPU-centric computations

▪ "there are spare CPU and network bandwidth", BytePS [OSDI '20]
▪ "rapid increases in GPU will shift the bottleneck towards communication", PipeDream [SOSP '19]
▪ "DNN training is not scalable, mainly due to the communication overhead", ByteScheduler [SOSP '19]

Computation Computation Computation Computation

On-CPU On-CPU On-CPU On-CPU

→ Bottleneck has shifted from CPU computation to I/O and communication

Communication
(I/O)

GPUs (off-CPU) FPGAs (off-CPU)

Computation Computation
Communication

(I/O)

60Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

On-CPU

Off-CPU

61Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

On-CPU

Off-CPU

func A
func B

62Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

On-CPU

Off-CPU

func A
func B func A > func B

63Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

On-CPU

Off-CPU

func A
func B

Which code invoked
off-CPU events?

64Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

• (Challenge #2) Hard to assess the impact of optimizing off-CPU events

func A
func B

Execution time

What if optimized?

Execution time is unchanged
→ B is not on the critical path

65Jinkyu Jeong, NVRAMOS 2024

Profiling Challenge

• Both on-CPU and off-CPU events need to be considered simultaneously

• (Challenge #1) Analysis is conducted using only partial information

• (Challenge #2) Hard to assess the impact of optimizing off-CPU events

func A
func B

Execution time

What if optimized?

Execution time is unchanged
→ B is not on the critical path

66Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

• Linux perf sampling (task-clock)

• Feature in Linux kernel’s perf subsystem

• Collects profiling information (e.g., IP and callchain) periodically

• A Low overhead, effective technique to analyze on-CPU behavior

67Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

• Linux perf sampling (task-clock)

• Feature in Linux kernel’s perf subsystem

• Collects profiling information (e.g., IP and callchain) periodically

• A Low overhead, effective technique to analyze on-CPU behavior

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙

∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

68Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

• Linux perf sampling (task-clock)

• Feature in Linux kernel’s perf subsystem

• Collects profiling information (e.g., IP and callchain) periodically

• A Low overhead, effective technique to analyze on-CPU behavior

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙

∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

Sampling is disabled
during off-CPU periods!

69Jinkyu Jeong, NVRAMOS 2024

On-CPU Analysis

• COZ [SOSP ‘15]

• Predict the impact of optimizing the specific code line without actual optimization

• Virtual speedup

<Original application> <Actual speedup>

<Virtual speedup>

If line 320 becomes x% faster,
the program will become y% faster

COZ utilizes on-CPU sampling (Linux perf) → Virtual speedup is limited to only on-CPU events

(x,y)

70Jinkyu Jeong, NVRAMOS 2024

Off-CPU Analysis

• wPerf [OSDI ‘18]

• Traces all kinds of waiting events including I/O and their dependencies

• Wait-for graph: Dependency graph of executed threads

• Identifying closed loops (i.e., knots) through graph analysis

<Example wait-for graph>

71Jinkyu Jeong, NVRAMOS 2024

Off-CPU Analysis

• wPerf [OSDI ‘18]

• Traces all kinds of waiting events including I/O and their dependencies

• Wait-for graph: Dependency graph of executed threads

• Identifying closed loops (i.e., knots) through graph analysis

<Example wait-for graph>

Limitations
1) Does not provide context information of the bottleneck
→ Additional effort is needed to determine where to optimize

2) Does not provide the actual impact of optimization
→ Performance gain of the optimization could be marginal

72Jinkyu Jeong, NVRAMOS 2024

Summary of the Limitations

→ (Limitation #1) Focuses solely on either on-CPU or off-CPU events

→ (Limitation #2) Causality analysis is not supported for off-CPU events

Profiler Profiling Scope
Causality
Analysis

Linux perf
On-CPU

X

COZ (on-CPU only)

wPerf Off-CPU X

Blocked Samples Both on-/off-CPU O

73Jinkyu Jeong, NVRAMOS 2024

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

Blocked samples
(Linux perf subsystem)

Missing off-CPU samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

74Jinkyu Jeong, NVRAMOS 2024

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

• Blocked samples: sampling technique for off-CPU events

Blocked samples
(Linux perf subsystem)

Blocked samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

75Jinkyu Jeong, NVRAMOS 2024

Our Approach: Blocked Samples

• Goal: sampling on- and off-CPU events simultaneously

• Blocked samples: sampling technique for off-CPU events

• Proposed profilers using blocked samples

• bperf: sampling-based statistical profiler on both on-/off-CPU events

• BCOZ: causal profiler that supports virtual speedup on both on-/off-CPU events

Blocked samples
(Linux perf subsystem)

Blocked samples

User

Kernel

foo

Task Sampling
(task-clock)

foo(

bar(

∙

Syscall

Application
execution

. Off-CPU

Return to user

)

)

∙ ∙
∙

boo (∙
Interrupt

∙)

foo bar boo boo foo

I/O request

boo
(I/O)

boo
(I/O)

boo
(I/O)

76Jinkyu Jeong, NVRAMOS 2024

Blocked Samples

• Collected information

• IP and callchain

• Off-CPU subclass: reason for the blocking
• Blocking I/O, synchronization, CPU scheduling, etc.

• New subclasses can be defined as needed

• Weight: # of repeats
• Encode the number of blocked samples with the same attributes

IP: boo()
Callchain: foo()->bar()->boo()
Subclass: blocking I/O

Weight: 3

77Jinkyu Jeong, NVRAMOS 2024

bperf : Statistical Profiler on Both On-/Off-CPU Events

• Extension of Linux perf tool to support blocked samples

• Sample accounting

• Result reporting
• [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others

• Both the last user-level IP and last kernel-level IP are reported for blocked samples

• Enables an in-depth understanding of off-CPU events

while(N++ < 100000) {
write();
fsync();

}

78Jinkyu Jeong, NVRAMOS 2024

bperf : Statistical Profiler on Both On-/Off-CPU Events

• Extension of Linux perf tool to support blocked samples

• Sample accounting

• Result reporting
• [I]: blocking I/O, [L]: synchronization, [S]: CPU scheduling, [B]: others

• Both the last user-level IP and last kernel-level IP are reported for blocked samples

• Enables an in-depth understanding of off-CPU events

while(N++ < 100000) {
write();
fsync();

}

Data block write

Waiting for jbd2 thread

79Jinkyu Jeong, NVRAMOS 2024

BCOZ : Causal Profiler on Both On-/Off-CPU Events

• Extension of COZ to support blocked samples

• Virtual speedup of blocked samples

Thread 2

Thread 1

A B B (blocking I/O) C

Virtual speedup target: B

Expected runtime
(original runtime + inserted delay)

Predicted speedup

<Virtual speedup without blocked samples>

Original runtime

D E
Identified bottleneck by COZ: E
→ Optimizing B yields marginal gains

80Jinkyu Jeong, NVRAMOS 2024

BCOZ : Causal Profiler on Both On-/Off-CPU Events

• Extension of COZ to support blocked samples

• Virtual speedup of blocked samples

Thread 2

Thread 1

A B B (blocking I/O) C

Virtual speedup target: B

Thread 2

Thread 1

A B B (blocking I/O)

<Virtual speedup without blocked samples>

<BCOZ>

Actual runtime Expected runtime

Predicted
speedup

Delay caused by blocked samples

Identified bottleneck by BCOZ: B
→ Optimizing B is most important!

D E

C D E

81Jinkyu Jeong, NVRAMOS 2024

Features and Challenges of BCOZ

• Features

• Sampling kernel codes

• Virtual speedup of blocked samples

• Subclass-level virtual speedup

• Challenges

• Conflicts with optimization of original COZ

• Dependency handling + batch processing of samples

→ For more details, please refer to the paper

82Jinkyu Jeong, NVRAMOS 2024

Experimental Setup

• CPU: Intel Xeon Gold 5218 2.30GHz * 2

• OS: Ubuntu 20.04 Server (Linux kernel version: 5.3.7)

• Memory: DDR4 2933MHz, 384GB

• Storage devices: Samsung NVMe PM1735 (1,500K IOPS)

• Questions:

• Q1) Can blocked samples identify true bottlenecks?

• Q2) Differences from wPerf's results?

• Q3) Profiling overhead?
• Comparison of tracing (off-CPU only), sampling (on-CPU only), bperf (both on-/off-CPU)

• BCOZ overhead analysis

→ Please refer to the paper

83Jinkyu Jeong, NVRAMOS 2024

Summary of the Profiling Results

• Results included in the paper

• Results not included in the paper (optimization is ongoing)

Benchmark Workload Identified bottlenecks Optimization Speedup? Known solution?

RocksDB

prefix_dist Block cache contention - Sharding O (3.4x) Yes

allrandom Block read I/O - Asynchronous I/O O (1.8x) No

fillrandom Compaction, write stall

- No block compression
- Increase the number of
compaction thread
- Reduce write stall

O (2.6x) Yes

NPB Integer sort CPU contention - Allocate more CPU cores O (16.4x) Yes

Benchmark Identified Bottlenecks

HPCG Serialized SYMGS (Symmetric Gauss Seidel) kernel

LLaMA-cpp Blocking I/O in ggml_vec_dot

Case study 1

Case study 2

84Jinkyu Jeong, NVRAMOS 2024

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Problem: frequent block (filter, index, data) read I/Os

Case Study 1– RocksDB (Block Read Operation)

Memory

Storage

F F I I D… …

…

…

L0

L1

Ln

Block cache

SST file

Filter blocks (F)

Index blocks (I)

Data blocks (D)

…
Cache miss leads to read I/OF

→ n * reads

CPU

Storage

→ 1 * read

→ 1 * read

85Jinkyu Jeong, NVRAMOS 2024

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Problem: frequent block (filter, index, data) read I/Os

Case Study 1– RocksDB (Block Read Operation)

Memory

Storage

F F I I D… …

…

…

L0

L1

Ln

Block cache

SST file

Filter blocks (F)

Index blocks (I)

Data blocks (D)

…
Cache miss leads to read I/OF

→ n * reads

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

→ 1 * read

→ 1 * read

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test

86Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

Blocking disk I/O
Context information

87Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

<bperf>

<BCOZ>

→Optimizing disk I/O of
filter block is most important!

Blocking disk I/O
Context information

Causality analysis

88Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

<bperf>

<BCOZ>

→Optimizing disk I/O of
filter block is most important!

Blocking disk I/O
Context information

<Wait-for graph of wPerf>

Identified bottleneck: blocking disk I/O
(Worker*→HARDIRQ)

→Contexts related to disk I/Os are missing
(Limitation #1)

Causality analysis

89Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Identified bottlenecks: blocking disk I/O (filter, index, and data blocks)

<bperf>

<BCOZ>

→Optimizing disk I/O of
filter block is most important!

Blocking disk I/O
Context information

<Wait-for graph of wPerf>

Identified bottleneck: blocking disk I/O
(Worker*→HARDIRQ)

→Contexts related to disk I/Os are missing
(Limitation #1)

Causality analysis

Filter? Index? Data block?

?
90Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Optimization: asynchronous I/O for filter and index blocks

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test
<Before>

91Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Optimization: asynchronous I/O for filter and index blocks

CPU

Storage
Filter

block I/O
Filter

block I/O

Filter
block I/O

Index
block I/O

Data block
I/O

Data exists!

Filter
block I/O

…

Next level filter block (Last level only) Index block

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test
<Before>

<After>

92Jinkyu Jeong, NVRAMOS 2024

Case Study 1– RocksDB (Block Read Operation)

• Scenario: read-only workload (allrandom), small block cache (0.1% of dataset size)

• Optimization: asynchronous I/O for filter and index blocks

CPU

Storage
Filter

block I/O
Filter

block I/O

Filter
block I/O

Index
block I/O

Data block
I/O

Data exists!

Filter
block I/O

…

Next level filter block (Last level only) Index block

CPU

Storage
Filter

block I/O

…
Filter

block I/O
Filter

block I/O
Index

block I/O
Data

block I/O

Filter test Filter test Filter test

Data exists!

Filter
block I/O

Filter test
<Before>

<After>

<Optimization results>

1.8x

→ Blocking I/O decreased by 74%

93Jinkyu Jeong, NVRAMOS 2024

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Problem: block cache lock contention

Case Study 2 – RocksDB (Block Cache Contention)

…

Block cache

…

…

Lookup/Insert/Release/…

Frequent block cache access leads to lock contention

94Jinkyu Jeong, NVRAMOS 2024

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Identified bottlenecks: lock-waiting

. . .

Lock-waiting

Context information

Blocking I/O

→ Optimizing lock-contention is more
important than disk I/O

Identified bottleneck: blocking disk I/O, lock-waiting
(Worker*→HARDIRQ, Worker*→Worker*)

Causality analysis

95Jinkyu Jeong, NVRAMOS 2024

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Identified bottlenecks: lock-waiting

. . .

Lock-waiting

Context information

Blocking I/O

→ Optimizing lock-contention is more
important than disk I/O

Identified bottleneck: blocking disk I/O, lock-waiting
(Worker*→HARDIRQ, Worker*→Worker*)

(Limitation #2)
→ Actual impact of optimizing blocking disk I/O is missing

(Limitation #1)
→ Codes that invoke lock-contention are missing

Causality analysis

96Jinkyu Jeong, NVRAMOS 2024

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Identified bottlenecks: lock-waiting

. . .

Lock-waiting

Context information

Blocking I/O

→ Optimizing lock-contention is more
important than disk I/O

Identified bottleneck: blocking disk I/O, lock-waiting
(Worker*→HARDIRQ, Worker*→Worker*)

(Limitation #2)
→ Actual impact of optimizing blocking disk I/O is missing

(Limitation #1)
→ Codes that invoke lock-contention are missing

Causality analysis

Lock or I/O?

Lookup? Insert?
Release??

97Jinkyu Jeong, NVRAMOS 2024

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Optimization: apply sharding

98Jinkyu Jeong, NVRAMOS 2024

…

Block cache

…

…

Lookup/Insert/Release/…

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Optimization: apply sharding

…

Block cache

…

…

Lookup/Insert/Release/…

2 31 62 63 64…Shards

<Optimization (sharding)>

99Jinkyu Jeong, NVRAMOS 2024

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Optimization: apply sharding

<Optimization results>

3.4x gain from sharding

→ Lock-contention decreased by 97%

…

Block cache

…

…

Lookup/Insert/Release/…

2 31 62 63 64…Shards

<Optimization (sharding)>

100Jinkyu Jeong, NVRAMOS 2024

Case Study 2– RocksDB (Block Cache Contention)

• Scenario: read-only workload (prefix_dist), large block cache (10% of dataset size)

• Optimization: apply sharding

<Optimization results>

Marginal gain from blocking disk I/O

…

Block cache

…

…

Lookup/Insert/Release/…

2 31 62 63 64…Shards

<Optimization (sharding)>

101Jinkyu Jeong, NVRAMOS 2024

Profiling Overhead

102Jinkyu Jeong, NVRAMOS 2024

Conclusion

• Profiling modern applications has become more challenging

• Blocked samples collects off-CPU events information

• bperf, provides statistical profiling of both on-/off-CPU events

• BCOZ, provides virtual speedup of both on-/off-CPU events

• Blocked samples, a general solution for off-CPU sampling

• Planning on enriching blocked samples with off-CPU information details
(device-internal ops., remote ops.)

Blocked samples is available at:
https://github.com/s3yonsei/blocked_samples

Thank you!
103Jinkyu Jeong, NVRAMOS 2024

https://github.com/s3yonsei/blocked_samples

Appendix: FlameGraph with Blocked Samples

• Callchain visualization of both on-/off-CPU events

104Jinkyu Jeong, NVRAMOS 2024

Future Research Questions

• Q1) Does code context is enough to understand bottleneck?

– e.g., graph-processing applications

105Jinkyu Jeong, NVRAMOS 2024

Future Research Questions

• Q2) What if there is nothing to optimize?

106Jinkyu Jeong, NVRAMOS 2024

Thread 1

Thread 2

A B C

D E

→ Optimizing any single event does not improve performance
→ Does that mean there is no room for further optimization?
→ Optimizing both {A, E} can improve the performance

Appendix

107Jinkyu Jeong, NVRAMOS 2024

Case Study – HPCG (Serialized SYMGS Kernel)

• Scenario: 64 application threads on 64 logical cores

• Identified bottlenecks: computation
• ComputeSYMGS_ref (symmetric gauss seidel kernel)

• Needed optimization: parallelize the SYMGS kernel execution

<ComputeSYMGS_ref.cpp><BCOZ>

Identified bottlenecks in SYMGS code

108Jinkyu Jeong, NVRAMOS 2024

Implementation of COZ

Read pending
samples

process_samples

Wait until next
period

No

Yes

Self delayed
(Received delay – Sent delay)

No

Yes Delaying other threads
(Sent delay – Received delay)

Opt1: Batch processing of samples

Opt2: Delay cancellation

(Received delay – sent delay) < 0?{IP, callchain} ∋ target?

• process_samples: periodic virtual speedup operation

109Jinkyu Jeong, NVRAMOS 2024

• post_block: Delay exemption operation triggered at thread wakeup

(cont'd) Implementation of COZ

End

No

Yes Exempts accumulated delay
during blocked periods

Dependency exists?

Dependency handling

→ However, batch processing of blocked samples can compromise the dependency handling

Batch processing of samples

Delay cancellation

COZ

process_blocked_samples

Identical with original COZ

BCOZ

Maintained

post_block

Supplemented

110Jinkyu Jeong, NVRAMOS 2024

Virtual Speedup of Blocked Samples

• BCOZ handles dependencies between off-CPU events

• Events with dependencies cannot be sped up independently

cond_wait()

cond_signal()

Thread A

Thread B

Handling I/O
(target for virtual speedup)

Waking up

Waiting
Actual speedup

Actual speedup

111Jinkyu Jeong, NVRAMOS 2024

Virtual Speedup of Blocked Samples

• BCOZ handles dependencies between off-CPU events

• Events with dependencies cannot be sped up independently

• Batch processing of samples can cause inaccurate virtual speedup to occur after wakeup

Thread A

Thread B

Handling I/O
(target for virtual speedup)

Process blocked samples

Delaying

Delay=slowdown
→ Predicted performance gain is zero

This delay caused the
incorrectness

Incorrect
virtual speedupXBlocked samples for I/O

② Processing is postponed by batching
(COZ #1)

① Accumulated delay during
blocking is exempted

(COZ #2)

112Jinkyu Jeong, NVRAMOS 2024

Virtual Speedup of Blocked Samples

• BCOZ handles dependencies between off-CPU events

• Events with dependencies cannot be sped up independently

• Batch processing of samples can cause inaccurate virtual speedup to occur after wakeup

• BCOZ processes blocked samples immediately when a thread wakes up another thread

Thread A

Thread B

Handling I/O
(target for virtual speedup)

Process blocked samples

Delaying

Delay is exempted! Intended slowdown

Predicted speedup (okay)
② Accumulated delay during

blocking is exempted
(COZ #2)

① Process blocked samples immediately

Correct
virtual speedupO

113Jinkyu Jeong, NVRAMOS 2024

	Slide 1: Application Performance Profiling using Blocked Samples
	Slide 2: Linux Performance Analysis
	Slide 3: Linux perf Subsystem
	Slide 4: Linux perf Sampling (task-clock)
	Slide 5: Sampling-Based Profilers (1/2)
	Slide 6: Sampling-Based Profilers (2/2)
	Slide 7: Research Question
	Slide 8: Research Question
	Slide 9: Trend of Computing Environments
	Slide 10: Trend of Computing Environments
	Slide 11: Trend of Computing Environments
	Slide 12: Bottlenecks of Modern Applications
	Slide 13: Bottlenecks of Modern Applications
	Slide 14: Bottlenecks of Modern Applications
	Slide 15: Bottlenecks of Modern Applications
	Slide 16: Off-CPU Analysis (1/2)
	Slide 17: Off-CPU Analysis (2/2)
	Slide 24: Our Approach: Blocked Samples
	Slide 25: Our Approach: Blocked Samples
	Slide 26: Our Approach: Blocked Samples
	Slide 27: Blocked Samples (task-clock-plus)
	Slide 28: task-clock-plus Implementation
	Slide 29: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 30: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 31: Toy Program with Mixed of On-/Off-CPU Events
	Slide 32: Toy Program with Mixed of On-/Off-CPU Events
	Slide 33: Case Study – RocksDB (Block Read Operation)
	Slide 34: Case Study – RocksDB (Block Read Operation)
	Slide 35: Case Study – RocksDB (Block Read Operation)
	Slide 36: Profiling Overhead
	Slide 44: Conclusion
	Slide 45
	Slide 46: Credit
	Slide 47: COZ (SOSP ’15)
	Slide 48: COZ (SOSP ’15)
	Slide 49: COZ (SOSP ’15)
	Slide 50: Research Question
	Slide 51: BCOZ: Causal Profiler for both On-/Off-CPU Events
	Slide 52: BCOZ: Causal Profiler for both On-/Off-CPU Events
	Slide 53: BCOZ: Causal Profiler for both On-/Off-CPU Events
	Slide 54: Trend of Computing Environments
	Slide 55: Trend of Computing Environments
	Slide 56: Trend of Computing Environments
	Slide 57: Bottlenecks of Modern Applications
	Slide 58: Bottlenecks of Modern Applications
	Slide 59: Bottlenecks of Modern Applications
	Slide 60: Bottlenecks of Modern Applications
	Slide 61: Profiling Challenge
	Slide 62: Profiling Challenge
	Slide 63: Profiling Challenge
	Slide 64: Profiling Challenge
	Slide 65: Profiling Challenge
	Slide 66: Profiling Challenge
	Slide 67: On-CPU Analysis
	Slide 68: On-CPU Analysis
	Slide 69: On-CPU Analysis
	Slide 70: On-CPU Analysis
	Slide 71: Off-CPU Analysis
	Slide 72: Off-CPU Analysis
	Slide 73: Summary of the Limitations
	Slide 74: Our Approach: Blocked Samples
	Slide 75: Our Approach: Blocked Samples
	Slide 76: Our Approach: Blocked Samples
	Slide 77: Blocked Samples
	Slide 78: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 79: bperf : Statistical Profiler on Both On-/Off-CPU Events
	Slide 80: BCOZ : Causal Profiler on Both On-/Off-CPU Events
	Slide 81: BCOZ : Causal Profiler on Both On-/Off-CPU Events
	Slide 82: Features and Challenges of BCOZ
	Slide 83: Experimental Setup
	Slide 84: Summary of the Profiling Results
	Slide 85: Case Study 1– RocksDB (Block Read Operation)
	Slide 86: Case Study 1– RocksDB (Block Read Operation)
	Slide 87: Case Study 1– RocksDB (Block Read Operation)
	Slide 88: Case Study 1– RocksDB (Block Read Operation)
	Slide 89: Case Study 1– RocksDB (Block Read Operation)
	Slide 90: Case Study 1– RocksDB (Block Read Operation)
	Slide 91: Case Study 1– RocksDB (Block Read Operation)
	Slide 92: Case Study 1– RocksDB (Block Read Operation)
	Slide 93: Case Study 1– RocksDB (Block Read Operation)
	Slide 94: Case Study 2 – RocksDB (Block Cache Contention)
	Slide 95: Case Study 2– RocksDB (Block Cache Contention)
	Slide 96: Case Study 2– RocksDB (Block Cache Contention)
	Slide 97: Case Study 2– RocksDB (Block Cache Contention)
	Slide 98: Case Study 2– RocksDB (Block Cache Contention)
	Slide 99: Case Study 2– RocksDB (Block Cache Contention)
	Slide 100: Case Study 2– RocksDB (Block Cache Contention)
	Slide 101: Case Study 2– RocksDB (Block Cache Contention)
	Slide 102: Profiling Overhead
	Slide 103: Conclusion
	Slide 104: Appendix: FlameGraph with Blocked Samples
	Slide 105: Future Research Questions
	Slide 106: Future Research Questions
	Slide 107: Appendix
	Slide 108: Case Study – HPCG (Serialized SYMGS Kernel)
	Slide 109: Implementation of COZ
	Slide 110: (cont'd) Implementation of COZ
	Slide 111: Virtual Speedup of Blocked Samples
	Slide 112: Virtual Speedup of Blocked Samples
	Slide 113: Virtual Speedup of Blocked Samples

