
Accelerating Page Migrations with

Intel Data Streaming Accelerator

Jongho Baik†, Jonghyeon Kim†, Chang Hyun Park‡, and Jeongseob Ahn§

Appeared in IEEE Computer Architecture Letters, 24(1), 2025

† ‡ §

Linux/Android FS/MM/Storage Workshop 2025

Motivation : Traditional CPU-based Data Processing

• Data generation, transfer, and processing are

escalating to unprecedented levels

• In the same way, Datacenter Taxes

(e.g., memcpy, hashing) has grown fast

• NUMA System, Tiered Memory (PMEM, CXL)

makes memory managing important

• Google[ISCA ‘23] : up to 40% of CPU cycles

are spent on datacenter taxes

• Facebook[ASPLOS ‘20] : up to 37% of

datacenter taxes are spent on memory
functions (e.g., memcpy, malloc, memmove).

Source: Profiling Hyperscale Big Data Processing, Gonzalez et al., ISCA ‘23

Source: Accelerometer: Understanding Acceleration Opportunities for Data
Center Overheads at Hyperscale, Sriraman et al., ASPLOS ‘20

Intel® Data Streaming Accelerator

• On-chip accelerator since 4th Gen Xeon® processor

• Data move, fill, compare, and more

• Offloads data copy and

data transformation operations

• Freeing up CPU resources

(Increasing compute capacity)

• Accelerate data movement throughput

On-chip accelerators
- Intel DSA

Intel® Data Streaming Accelerator

No attempt has been made to utilize DSA

for operating systems

• On-chip accelerator since 4th Gen Xeon® processor

• Data move, fill, compare, and more

• Offloads data copy and

data transformation operations

• Freeing up CPU resources

(Increasing compute capacity)

• Accelerate data movement throughput

On-chip accelerators
- Intel DSA

Where to assist OS as an memcpy accelerator?

• In the Linux kernel, memcpy() operates based on per page (e.g., 4 KB)

• To maximize the efficiency with DSA, we need to find tasks that moves

large amounts of data in the kernel

Where to assist OS as an memcpy accelerator?

migrate_pages()!

• In the Linux kernel, memcpy() operates based on per page (e.g., 4 KB)

• To maximize the efficiency with DSA, we need to find tasks that moves

large amounts of data in the kernel

Where to assist OS as an memcpy accelerator?

• migrate_pages() in the Linux kernel :

Where to assist OS as an memcpy accelerator?

• migrate_pages() in the Linux kernel :

Such tasks in OS are critical
• Directly impact system performance and resource management

• Especially in HPC and large-scale data centers

Offloading Costs to DSA

1 Create DSA descriptors that specifies the tasks

Submit the descriptors to DSA workqueue

A processing engine (PE) of DSA dispatches a
descriptor from its workqueue

Perform the operation

Wait for completion

• Offloading memory operations to DSA :
- OPCODE

- SRC_ADDR

- DST_ADDR

- DATA_SIZE

…

D
esc #

1

D
esc #

2

**

WQ

PE DSA descriptor #9

- DSA_OPCODE_MEMMOVE

- 0x1000

- 0x4000

- 64KB

DSA

SW

HW

System Memory

1

2 2

3

3

4

4

5

Offloading Costs to DSA

• To create a descriptor in OS:

• After the operation is done:

1. Create 2 scatter-gather(SG) tables

- Tracking src and dst pages, respectively

- Pages may not be contiguous

2. Map the SG tables to get DMA-capable addresses(IOVA)

3. Create DSA descriptors through DMA-mapped addresses

4. Unmap the DMA-mappings and Clean up the SG tables

Offloading Costs to DSA

<Performance breakdown of copying pages: CPU vs DSA>

Due to the offloading costs, DSA is preferred when the

number of pages exceeds 32

Accelerated migrate_pages()with DSA

• Designed to exploit the performance advantages of DSA

• THRESHOLD : 32

• # pages > THRESHOLD

• Migrating pages with DSA

Evaluation

• System

• Intel Xeon Gold 6430 CPU @ 2.10GHz x 2 sockets

• Each socket has 1 DSA device

• 128GB DDR5 DRAM per socket

• Linux kernel 6.8 with Ubuntu 22.04

• Benchmark

• Memory Compaction: kcompactd

• Memory Promotion: DAMON

• XSBench

• GAP Benchmark(SSSP)

Evaluation: Memory Compaction (kcompactd)

• Proactive Compaction

• Start when the node's fragmentation score exceeds the high threshold(90)

• For defragmentation and Reduce higher-order memory allocation latencies

• DSA shows an improved throughput of 1.2x

Evaluation: Memory Promotion (DAMON)

• HMSDK merged into DAMON for memory tiering (e.g., CXL Memory)

• Emulation: lowering the uncore frequency of the remote NUMA node

• Memory Promotion : Promoting data from slow-tier to fast-tier memory

• For SSSP, it improves the execution time by 31%

Evaluation: Page size and Performance Interference

• Base (4KB) page vs. large (2MB) page)

• Contention in DSA

• Non-sharing: user and kernel threads use two different PEs, respectively

• Sharing: a single PE is shared by the user and kernel threads

Summary & Future work

• Traditional CPU-based memory operations are not negligible in system

performance and efficiency

• Accelerating migrate_pages() with DSA can lead to more efficient

memory management and improve overall system performance

• We plan to explore the other kernel components that can benefit from DSA

• Storage and network related memory copy operations

• Also, we need to search for the right abstraction for such accelerators

• Coordination for both applications and kernel

Thank You!

	Slide 2
	Slide 3: Motivation : Traditional CPU-based Data Processing
	Slide 4: Intel® Data Streaming Accelerator
	Slide 5: Intel® Data Streaming Accelerator
	Slide 6: Where to assist OS as an memcpy accelerator?
	Slide 7: Where to assist OS as an memcpy accelerator?
	Slide 8: Where to assist OS as an memcpy accelerator?
	Slide 9: Where to assist OS as an memcpy accelerator?
	Slide 10: Offloading Costs to DSA
	Slide 11: Offloading Costs to DSA
	Slide 12: Offloading Costs to DSA
	Slide 13: Accelerated migrate_pages()with DSA
	Slide 14: Evaluation
	Slide 15: Evaluation: Memory Compaction (kcompactd)
	Slide 16: Evaluation: Memory Promotion (DAMON)
	Slide 17: Evaluation: Page size and Performance Interference
	Slide 18: Summary & Future work
	Slide 19: Thank You!

