
FUSE

(Filesystem in Userspace)

Kyu-Jin Cho
(bori19960@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring, 2024

2

Contents

▪ Userspace Filesystem

▪ FUSE (Filesystem in Userspace)

▪ Recent studies

• ExtFUSE (ATC’19)

• XFUSE (ATC’21)

• RFUSE (FAST’24)

3

Userspace Filesystem

▪ Transition of filesystem design

• Traditionally, filesystems were implemented as part of OS kernels

• As complexity of filesystems grew, filesystems began being developed in userspace

▪ In-kernel vs. Userspace

• Low safety from crash

• Complex kernel interface

• Hard to add new functionality

• Native performance
In-kernel

Filesystem

Userspace

Filesystem
• Poor performance

• High safety from crash

• Easy to maintain and develop

• High portability

4

FUSE (Filesystem in Userspace)

▪ High-level architecture

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

5

FUSE Internals

▪ Request submission

1. User process submits an operation

6

FUSE Internals

▪ Request submission

1. User process submits an operation

2. VFS routes the operation to FUSE driver

7

FUSE Internals

▪ Request submission

1. User process submits an operation

2. VFS routes the operation to FUSE driver

3. The driver allocates a FUSE request and put it in a FUSE queue

8

FUSE Internals

▪ Request submission

1. User process submits an operation

2. VFS routes the operation to FUSE driver

3. The driver allocates a FUSE request and put it in a FUSE queue

4. The process that submitted the operation is put in a wait state

ZZZ

9

FUSE Internals

▪ Request handling & Response

1. FUSE daemon copies the request from the kernel queue by reading /dev/fuse

10

FUSE Internals

▪ Request handling & Response

1. FUSE daemon copies the request from the kernel queue by reading /dev/fuse

2. The daemon processes the request

11

FUSE Internals

▪ Request handling & Response

1. FUSE daemon copies the request from the kernel queue by reading /dev/fuse

2. The daemon processes the request

3. The daemon write the response back to /dev/fuse

12

FUSE Internals

▪ Request handling & Response

1. FUSE daemon copies the request from the kernel queue by reading /dev/fuse

2. The daemon processes the request

3. The daemon write the response back to /dev/fuse

4. The driver marks the request as completed and wakes up the user process

13

FUSE Internals

▪ User-Kernel Protocol

• Kernel and user use identical header files for interoperability

• Kernel: (include/uapi/linux/fuse.h)

• Libfuse: (include/fuse_kernel.h)

<Common header> <Operation-specific header>

14

FUSE Internals

▪ Request types

15

FUSE Internals

▪ Request types

• INIT

– Sent by kernel during mounting process

– Check protocol version

– Set mutually supported capabilities and mount options

• DESTROY

– Sent by kernel during unmouting process

– FUSE daemon is expected to perform all cleanups

16

FUSE Internals

▪ Request types

• INTERRUPT

– Sent by the kernel if any requests that were previously passed to the daemon are

no logger needed (e.g. when a user process blocked on READ is terminated)

– Each request has a unique sequence number which INTERRUPT used to identify victim requests

• FORGET

– Sent by kernel when an inode is removed from the kernel dcache

– The daemon might decide to deallocate any corresponding data structures

17

FUSE Internals

▪ Splicing

• Prevent a memory copy between the kernel and userspace

• Useful for stackable filesystems

• However, memory copying is always performed for the header

write()

Header

Data

18

FUSE Internals

▪ Queues

19

FUSE Internals

▪ Queues

• Pending queue

– Staging submitted request

• Processing queue

– The oldest pending request is sent to

the FUSE daemon and simultaneously

moved to it

• When the demon replies to the request,

it is removed from processing queue

20

FUSE Internals

▪ Queues

• Background queue

– Staging asynchronous requests

(E.g. init, release, write-back, readahead)

– Limit the number of async request simultaneously

residing in the pending queue (default: 12)

– Limit the delay caused to important synchronous

requests by bursts of background request

21

FUSE Internals

▪ Queues

• Interrupts queue

– For assigning high priority INTERRUPT requests

• Forgets queue

– For FORGET requests to differentiate them

from non-forget requests

– To prevent FUSE daemon to be stuck by

bursty FORGET request

22

FUSE Internals

▪ Library and API Levels

• Low-level API

– Flexibility

– Communicate with the kernel directly

– Take fuse request as an argument

– Need <fuse_inode - path> mapping

• High-level API

– Development ease

– Skip the implementation of fuse_inode-path mapping

– Not need forget() method

23

FUSE Example

▪ Stackable Filesystem (StackFS)

• A stackable filesystem that forwards incoming filesystem operations to an

underlying in-kernel filesystem (e.g. EXT4, F2FS, etc.)

24

FUSE Example

▪ Parse fuse options and call “fuse_main()” function

25

FUSE Example

▪ Parse fuse options and call “fuse_main()” function

26

FUSE Example

▪ Parse fuse options and call “fuse_main()” function

27

FUSE Example

▪ Declare “struct fuse_operations”

. . .

28

FUSE Example

▪ Declare “struct fuse_operations”

. . .

29

FUSE Example

▪ Implement filesystem operations

30

FUSE Example

▪ Implement filesystem operations

31

FUSE Example

▪ Implement filesystem operations

32

FUSE Example

▪ Implement filesystem operations

33

FUSE Example

▪ Document: https://libfuse.github.io/doxygen/index.html

https://libfuse.github.io/doxygen/index.html

34

FUSE Example

▪ Document: https://libfuse.github.io/doxygen/index.html

https://libfuse.github.io/doxygen/index.html

35

FUSE Overhead

▪ Sequential I/O on StackFS

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

* StackFS-Base: Single-threaded FUSE daemon and Copy-based I/O without write-back cache

* SOpt : Multi-threaded FUSE daemon and Splicing I/O

36

FUSE Overhead

▪ Random I/O on StackFS

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

* StackFS-Base: Single-threaded FUSE daemon and Copy-based I/O without write-back cache

* SOpt : Multi-threaded FUSE daemon and Splicing I/O

37

FUSE Overhead

▪ Metadata operations on StackFS

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

* StackFS-Base: Single-threaded FUSE daemon and Copy-based I/O without write-back cache

* SOpt : Multi-threaded FUSE daemon and Splicing I/O

ExtFUSE

* Extension Framework for File Systems in User space (ATC’19)

39

Motivation

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE
with splicing and

system wide VFS cache

40

Motivation

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE

4x times
fewer lookup()

41

Motivation

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE

atime changes during
read() invalidate
cached attributed

42

Motivation

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE

VFS issues getxattr()
for each write() for

reading security label

43

Background

▪ eBPF (extended Berkely Packet Filter)

• Pseudo machine architecture

• C code compiled into BPF code

• Verified and loaded into kernel

• Executed under VM runtime

• Shared BPF maps with userspace

44

ExtFUSE

▪ Extension framework for Filesystems in Userspace

• Register thin extensions

– Handle requests in kernel

– Avoid userspace context switch

• Share data between FUSE daemon and extensions using BPF maps

– Cache metadata in the kernel

45

ExtFUSE

▪ Architecture

46

ExtFUSE

▪ Examples

47

ExtFUSE

▪ Performance

• “cd linux-4.18; make tinyconfig; make –j4

XFUSE

* XFUSE: An Infrastructure for Running Filesystem Services in User Space (ATC’21)

49

Motivation

▪ Userspace filesystem

• Benefits

– Higher development efficiency and velocity

– Decreased dependency on OS

– In Cloud Service, providers can offer additional storage services to customers through storage

client implemented in userspace

• Concerns

– Performance

– RAS (Reliability, Availability and Serviceability)

– Application and build changes may be required

50

Motivation

▪ Backward compatible with FUSE

▪ Improvement of performance and RAS for XFUSE-optimized filesystems

▪ Large-scale and gradual rollout in production

▪ Designed for userspace filesystems that

• Use high speed storage devices

– PMEM, fast SSDs, distributed storage systems based on high performance network

• Are deployed in production environments

– With strict RAS requirements

51

XFUSE

▪ Adaptive waiting

• Problem

– Kernel event-wait and notification

take a few 𝜇𝑠 to deliver

– High perf storages (e.g. PMEM):

metadata/data may become available sooner

▪ Use busy-wait period

• End-to-end latency can be as low as 3~4 𝜇𝑠
with busy waiting (vs. 8~9 𝜇𝑠 under event-wait)

52

XFUSE

▪ Adaptive waiting

• if (actual time required to service) > (busy-wait period)

• Attempting to busy wait is futile and only wastes

CPU resources

• Dynamically predict if busy waiting is beneficial, and

• Turn on/off busy waiting accordingly

53

XFUSE

▪ Increased parallelism

• FUSE

– New request → pending queue (one per mount)

– Request fetched → processing queue (one per FD)

• XFUSE

– Introduces multiple request pending queues

– Groups each pair of pending and processing

queues as a channel

– New request → channel (per selection policy)

54

XFUSE

▪ Business needs

• Fast paced rollout of new features and bug fixes for userspace filesystems

• Minimal disruption to tens or hundreds of mounts and apps on each host during

upgrade

▪ Online upgrade

• Extension to support an online upgrade workflow and a state transition

• Monitor Service

– Coordinates the interactions between two filesystem daemons

– Assists the transfer of filesystem internal states, including FDs (to special fuse device)

55

XFUSE

▪ Online upgrade

RFUSE

* RFUSE: Modernizing Userspace Filesystem Framework through Scalable Kernel-Userspace Communication (FAST’24)

57

Motivation

x2.93

Th
ro

ug
hp

ut
 (K

IO
PS

)

<Latency overhead> <Scalability Issue>

▪ FUSE overhead

1. Long latency of no-op request handling

2. Low scalability of random read on StackFS

58

Motivation

▪ The SOTA studies focus on enhancing communication between the

kernel and userspace, aiming for performance on par with in-kernel

filesystems

▪ However, they are only partially effective because:

• They often require additional development efforts, which demonstrate

low compatibility with existing FUSE-based filesystems

• They still relies on a copy-based communication on single pending queue

59

RFUSE

▪ Architecture

60

RFUSE

▪ Per-core ring channel

61

RFUSE

▪ Per-core ring channel

Background

Pending Argument BufferHeader Buffer

Common Opaque Argument

Ring Channel

0 0 0 00 0 0 0

Application

VFS

Page Cache
/ dcache

Worker Thread

62

RFUSE

▪ Per-core ring channel

Background

Pending Argument BufferHeader Buffer

fuse_in_h rename_in_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Application

VFS

Page Cache
/ dcache

Worker ThreadRENAME(src, dest)

63

RFUSE

▪ Per-core ring channel

Background

Pending Argument BufferHeader Buffer

fuse_in_h rename_in_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Application

VFS

Page Cache
/ dcache

Worker ThreadRENAME(src, dest)

64

RFUSE

▪ Per-core ring channel

Background

Application

VFS

Page Cache
/ dcache

RENAME(src, dest)

Argument BufferPending Argument BufferHeader Buffer

fuse_out_h rename_out_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Worker Thread

65

RFUSE

▪ Full compatibility with FUSE

• No modifications of all FUSE APIs exposed to developers

– Both high-level FUSE API and low-level FUSE API

– Splicing I/O interface

• Users do not need to rewrite their FUSE-based filesystem code when

using RFUSE.

struct fuse_operations {

.getattr = …

.readlink = …

.mkdir = …

... }

struct fuse_lowlevel_ops {

.init = …

.destroy = …

.lookup = …

... }

66

RFUSE

▪ Latency overhead

• CREAT() on root directory, which promptly returns without performing any action

67

RFUSE

▪ I/O performance

• FIO benchmark on StackFS while increasing the number of threads

– Sequential I/O with 128KB size

– Random I/O with 4KB size

– 128GB file size in total

68

RFUSE

▪ Metadata performance

• FXMARK benchmark on StackFS

69

RFUSE

▪ Metadata performance

• FXMARK benchmark on StackFS

affected by

dcache

Thank you

	슬라이드 1: FUSE (Filesystem in Userspace)
	슬라이드 2: Contents
	슬라이드 3: Userspace Filesystem
	슬라이드 4: FUSE (Filesystem in Userspace)
	슬라이드 5: FUSE Internals
	슬라이드 6: FUSE Internals
	슬라이드 7: FUSE Internals
	슬라이드 8: FUSE Internals
	슬라이드 9: FUSE Internals
	슬라이드 10: FUSE Internals
	슬라이드 11: FUSE Internals
	슬라이드 12: FUSE Internals
	슬라이드 13: FUSE Internals
	슬라이드 14: FUSE Internals
	슬라이드 15: FUSE Internals
	슬라이드 16: FUSE Internals
	슬라이드 17: FUSE Internals
	슬라이드 18: FUSE Internals
	슬라이드 19: FUSE Internals
	슬라이드 20: FUSE Internals
	슬라이드 21: FUSE Internals
	슬라이드 22: FUSE Internals
	슬라이드 23: FUSE Example
	슬라이드 24: FUSE Example
	슬라이드 25: FUSE Example
	슬라이드 26: FUSE Example
	슬라이드 27: FUSE Example
	슬라이드 28: FUSE Example
	슬라이드 29: FUSE Example
	슬라이드 30: FUSE Example
	슬라이드 31: FUSE Example
	슬라이드 32: FUSE Example
	슬라이드 33: FUSE Example
	슬라이드 34: FUSE Example
	슬라이드 35: FUSE Overhead
	슬라이드 36: FUSE Overhead
	슬라이드 37: FUSE Overhead
	슬라이드 38: ExtFUSE
	슬라이드 39: Motivation
	슬라이드 40: Motivation
	슬라이드 41: Motivation
	슬라이드 42: Motivation
	슬라이드 43: Background
	슬라이드 44: ExtFUSE
	슬라이드 45: ExtFUSE
	슬라이드 46: ExtFUSE
	슬라이드 47: ExtFUSE
	슬라이드 48: XFUSE
	슬라이드 49: Motivation
	슬라이드 50: Motivation
	슬라이드 51: XFUSE
	슬라이드 52: XFUSE
	슬라이드 53: XFUSE
	슬라이드 54: XFUSE
	슬라이드 55: XFUSE
	슬라이드 56: RFUSE
	슬라이드 57: Motivation
	슬라이드 58: Motivation
	슬라이드 59: RFUSE
	슬라이드 60: RFUSE
	슬라이드 61: RFUSE
	슬라이드 62: RFUSE
	슬라이드 63: RFUSE
	슬라이드 64: RFUSE
	슬라이드 65: RFUSE
	슬라이드 66: RFUSE
	슬라이드 67: RFUSE
	슬라이드 68: RFUSE
	슬라이드 69: RFUSE
	슬라이드 70: Thank you

