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Userspace Filesystem

▪ Transition of filesystem design

• Traditionally, filesystems were implemented as part of OS kernels

• As complexity of filesystems grew, filesystems began being developed in userspace

▪ In-kernel vs. Userspace

• Low safety from crash

• Complex kernel interface

• Hard to add new functionality

• Native performance
In-kernel 

Filesystem

Userspace

Filesystem
• Poor performance

• High safety from crash

• Easy to maintain and develop

• High portability 
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FUSE (Filesystem in Userspace)

▪ High-level architecture

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)
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FUSE Internals

▪ Request submission 

1. User process submits an operation
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FUSE Internals

▪ Request submission 

1. User process submits an operation

2. VFS routes the operation to FUSE driver

3. The driver allocates a FUSE request and put it in a FUSE queue

4. The process that submitted the operation is put in a wait state 

ZZZ
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FUSE Internals

▪ Request handling & Response 

1. FUSE daemon copies the request from the kernel queue by reading /dev/fuse
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FUSE Internals

▪ Request handling & Response 

1. FUSE daemon copies the request from the kernel queue by reading /dev/fuse

2. The daemon processes the request

3. The daemon write the response back to /dev/fuse

4. The driver marks the request as completed and wakes up the user process 



13

FUSE Internals

▪ User-Kernel Protocol

• Kernel and user use identical header files for interoperability

• Kernel: (include/uapi/linux/fuse.h)

• Libfuse: (include/fuse_kernel.h)

<Common header> <Operation-specific header>
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FUSE Internals

▪ Request types
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FUSE Internals

▪ Request types

• INIT

– Sent by kernel during mounting process

– Check protocol version

– Set mutually supported capabilities and mount options

• DESTROY

– Sent by kernel during unmouting process

– FUSE daemon is expected to perform all cleanups
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FUSE Internals

▪ Request types

• INTERRUPT

– Sent by the kernel if any requests that were previously passed to the daemon are

no logger needed (e.g. when a user process blocked on READ is terminated)

– Each request has a unique sequence number which INTERRUPT used to identify victim requests

• FORGET

– Sent by kernel when an inode is removed from the kernel dcache

– The daemon might decide to deallocate any corresponding data structures
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FUSE Internals

▪ Splicing

• Prevent a memory copy between the kernel and userspace

• Useful for stackable filesystems

• However, memory copying is always performed for the header 

write()

Header

Data
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FUSE Internals

▪ Queues
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FUSE Internals

▪ Queues

• Pending queue

– Staging submitted request 

• Processing queue

– The oldest pending request is sent to 

the FUSE daemon and simultaneously 

moved to it 

• When the demon replies to the request, 

it is removed from processing queue 
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FUSE Internals

▪ Queues

• Background queue

– Staging asynchronous requests

(E.g. init, release, write-back, readahead)

– Limit the number of async request simultaneously

residing in the pending queue (default: 12)

– Limit the delay caused to important synchronous

requests by bursts of background request
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FUSE Internals

▪ Queues

• Interrupts queue

– For assigning high priority INTERRUPT requests

• Forgets queue

– For FORGET requests to differentiate them 

from non-forget requests

– To prevent FUSE daemon to be stuck by

bursty FORGET request
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FUSE Internals

▪ Library and API Levels

• Low-level API

– Flexibility

– Communicate with the kernel directly

– Take fuse request as an argument

– Need <fuse_inode - path> mapping

• High-level API

– Development ease

– Skip the implementation of fuse_inode-path mapping

– Not need forget() method
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FUSE Example

▪ Stackable Filesystem (StackFS)

• A stackable filesystem that forwards incoming filesystem operations to an 

underlying in-kernel filesystem (e.g. EXT4, F2FS, etc.)
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FUSE Example

▪ Parse fuse options and call “fuse_main()” function
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FUSE Example
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FUSE Example

▪ Parse fuse options and call “fuse_main()” function
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FUSE Example

▪ Declare “struct fuse_operations” 

. . .
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FUSE Example

▪ Declare “struct fuse_operations” 

. . .
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FUSE Example

▪ Implement filesystem operations
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FUSE Example

▪ Implement filesystem operations
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FUSE Example 

▪ Document: https://libfuse.github.io/doxygen/index.html

https://libfuse.github.io/doxygen/index.html
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FUSE Example 

▪ Document: https://libfuse.github.io/doxygen/index.html
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FUSE Overhead

▪ Sequential I/O on StackFS

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

* StackFS-Base: Single-threaded FUSE daemon and Copy-based I/O without write-back cache

* SOpt : Multi-threaded FUSE daemon and Splicing I/O 
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FUSE Overhead

▪ Random I/O on StackFS

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

* StackFS-Base: Single-threaded FUSE daemon and Copy-based I/O without write-back cache

* SOpt : Multi-threaded FUSE daemon and Splicing I/O 
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FUSE Overhead

▪ Metadata operations on StackFS

* To FUSE or Not to FUSE: Performance of User-Space File Systems (FAST’17)

* StackFS-Base: Single-threaded FUSE daemon and Copy-based I/O without write-back cache

* SOpt : Multi-threaded FUSE daemon and Splicing I/O 



ExtFUSE

* Extension Framework for File Systems in User space (ATC’19)
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Motivation 

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE
with splicing and 

system wide VFS cache
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Motivation 

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE

4x times 
fewer lookup()
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Motivation 

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE

atime changes during 
read() invalidate 
cached attributed 
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Motivation 

▪ FUSE performance

• “cd linux-4.18; make tinyconfig; make –j4

– # of Request received by FUSE

VFS issues getxattr() 
for each write() for 

reading security label
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Background

▪ eBPF (extended Berkely Packet Filter)

• Pseudo machine architecture

• C code compiled into BPF code 

• Verified and loaded into kernel 

• Executed under VM runtime

• Shared BPF maps with userspace
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ExtFUSE

▪ Extension framework for Filesystems in Userspace

• Register thin extensions 

– Handle requests in kernel 

– Avoid userspace context switch 

• Share data between FUSE daemon and extensions using BPF maps

– Cache metadata in the kernel 
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ExtFUSE

▪ Architecture
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ExtFUSE

▪ Examples
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ExtFUSE

▪ Performance

• “cd linux-4.18; make tinyconfig; make –j4



XFUSE

* XFUSE: An Infrastructure for Running Filesystem Services in User Space (ATC’21)
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Motivation

▪ Userspace filesystem

• Benefits

– Higher development efficiency and velocity

– Decreased dependency on OS

– In Cloud Service, providers can offer additional storage services to customers through storage 

client implemented in userspace

• Concerns

– Performance

– RAS (Reliability, Availability and Serviceability)

– Application and build changes may be required
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Motivation

▪ Backward compatible with FUSE

▪ Improvement of performance and RAS for XFUSE-optimized filesystems

▪ Large-scale and gradual rollout in production

▪ Designed for userspace filesystems that

• Use high speed storage devices

– PMEM, fast SSDs, distributed storage systems based on high performance network

• Are deployed in production environments

– With strict RAS requirements
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XFUSE

▪ Adaptive waiting

• Problem

– Kernel event-wait and notification 

take a few 𝜇𝑠 to deliver

– High perf storages (e.g. PMEM): 

metadata/data may become available sooner

▪ Use busy-wait period

• End-to-end latency can be as low as 3~4 𝜇𝑠
with busy waiting (vs. 8~9 𝜇𝑠 under event-wait)
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XFUSE

▪ Adaptive waiting

• if (actual time required to service) > (busy-wait period)

• Attempting to busy wait is futile and only wastes

CPU resources

• Dynamically predict if busy waiting is beneficial, and

• Turn on/off busy waiting accordingly
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XFUSE

▪ Increased parallelism

• FUSE

– New request → pending queue (one per mount)

– Request fetched → processing queue (one per FD)

• XFUSE

– Introduces multiple request pending queues

– Groups each pair of pending and processing 

queues as a channel

– New request → channel (per selection policy)
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XFUSE

▪ Business needs

• Fast paced rollout of new features and bug fixes for userspace filesystems

• Minimal disruption to tens or hundreds of mounts and apps on each host during 

upgrade

▪ Online upgrade  

• Extension to support an online upgrade workflow and a state transition

• Monitor Service

– Coordinates the interactions between two filesystem daemons

– Assists the transfer of filesystem internal states, including FDs (to special fuse device)
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XFUSE

▪ Online upgrade  



RFUSE

* RFUSE: Modernizing Userspace Filesystem Framework through Scalable Kernel-Userspace Communication (FAST’24)
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Motivation 
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<Latency overhead> <Scalability Issue>

▪ FUSE overhead

1. Long latency of no-op request handling

2. Low scalability of random read on StackFS
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Motivation 

▪ The SOTA studies focus on enhancing communication between the 

kernel and userspace, aiming for performance on par with in-kernel 

filesystems

▪ However, they are only partially effective because: 

• They often require additional development efforts, which demonstrate 

low compatibility with existing FUSE-based filesystems

• They still relies on a copy-based communication on single pending queue 
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RFUSE

▪ Architecture
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RFUSE

▪ Per-core ring channel
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RFUSE

▪ Per-core ring channel

Background

Pending Argument BufferHeader Buffer

Common Opaque Argument

Ring Channel

0 0 0 00 0 0 0

Application

VFS

Page Cache
/ dcache

Worker Thread



62

RFUSE

▪ Per-core ring channel

Background

Pending Argument BufferHeader Buffer

fuse_in_h rename_in_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Application

VFS

Page Cache
/ dcache

Worker ThreadRENAME(src, dest)
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RFUSE

▪ Per-core ring channel

Background

Pending Argument BufferHeader Buffer

fuse_in_h rename_in_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Application

VFS

Page Cache
/ dcache

Worker ThreadRENAME(src, dest)
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RFUSE

▪ Per-core ring channel

Background

Application

VFS

Page Cache
/ dcache

RENAME(src, dest)

Argument BufferPending Argument BufferHeader Buffer

fuse_out_h rename_out_h

Common Opaque Argument
src_name

dest_name

Ring Channel

1 1 0 01 0 0 0

Worker Thread
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RFUSE

▪ Full compatibility with FUSE

• No modifications of all FUSE APIs exposed to developers

– Both high-level FUSE API and low-level FUSE API

– Splicing I/O interface

• Users do not need to rewrite their FUSE-based filesystem code when 

using RFUSE. 

struct fuse_operations {

.getattr = …

.readlink = …

.mkdir = …

... }

struct fuse_lowlevel_ops {

.init = …

.destroy    = …

.lookup     = …

... }
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RFUSE 

▪ Latency overhead

• CREAT() on root directory, which promptly returns without performing any action
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RFUSE 

▪ I/O performance

• FIO benchmark on StackFS while increasing the number of threads

– Sequential I/O with 128KB size 

– Random I/O with 4KB size

– 128GB file size in total 
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RFUSE

▪ Metadata performance

• FXMARK benchmark on StackFS
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RFUSE

▪ Metadata performance

• FXMARK benchmark on StackFS

affected by

dcache



Thank you
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