
Log-Structured

File System

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

(M. Rosenblum and J. K. Ousterhout, SOSP 1991)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Technology Trends

▪ CPU speed is increasing at an exponential rate

▪ Main memory size is increasing at an exponential rate

▪ Disk technology is also improving rapidly, in the areas of cost and

capacity rather than performance

• Disk bandwidth can be improved substantially with the use of disk arrays and

parallel-head disks

• No major improvements for access time

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Workloads Trends

▪ Office and engineering applications tend to be dominated by accesses to

small files

• Small random disk I/Os

• File creation and deletion times are dominated by updates to file system metadata

▪ Larger main memories make larger file caches possible

• Disk traffic will become more and more dominated by _________

• They can serve as write buffers; large numbers of modified disk blocks can be

collected

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

FFS Example

▪ Reading "/foo/a"

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Problems

▪ Too many _______ accesses

• The inode for a file and the directory entry containing the file's name are separated

from the file's contents

• Several disk I/Os needed to create a new file

▪ The disk traffic is dominated by __________ metadata writes

• Directories and inodes are written synchronously

• Defeat the potential use of the file caches as a write buffer

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Sprite LFS

▪ Buffer a sequence of file system changes in the file cache

▪ Write all the changes to disk in a sequential structure called the ______

▪ Improves the write performance by eliminating almost all seeks

▪ The sequential nature of logs permits much faster ______________

▪ How to retrieve information from the log?

▪ How to manage the free space on disk?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Inode

▪ The inode structure is same

• File attributes

• Disk addresses of the first ten blocks

• Indirect and double indirect blocks for handling large files

▪ LFS inodes are not in fixed locations on disk

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Inode Map

▪ Maintain the current location of each inode

• An array indexed by the file's i-number

• <the current inode address, flags, version number, the last access time of the file>

• The maximum number of inode map entries is fixed

(BSD LFS uses inode file: the maximum number of inodes can grow)

▪ Divided into blocks that are written to the log much like file data blocks

• The locations of the inode map blocks are kept in a fixed _____________ on disk

• Frequently accessed blocks of the inode map are cached

• Hit rate for inode map reference: 99.1% ~ 99.9%

(On average only 15% of the inode map blocks is cached)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Segments

▪ The disk is divided into fixed-size segments

• All live data must be copied out of a segment before the segment can be rewritten

• The log can be __________ through clean segments

▪ Segments should be large enough

• The transfer time to read/write a whole segment should be much greater than the

cost of a __________

• 512KB or 1MB in Sprite LFS

▪ Segment cleaning

• Generates clean segments from segments containing live blocks

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Segment Summary Block

▪ Used to identify live blocks

• <file's i-number, version number, block number within the file> for each data block

• Used to find and update the file's inode to reflect the block's new location during

segment cleaning

▪ A block is …

• Live if the block is still pointed by __________________

– No free-block list or bitmap needed → save space, simplify crash recovery

• Not live if the file's version number (in the segment summary block) does not

match the version number stored in ________________

– The version number is incremented whenever the file is deleted or truncated to length zero

– No need to examine the file's inode to discard such a block

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Example

▪ File 2 modified, file 3 created, and two blocks append to file 1

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Write Cost

▪ The performance metric for cleaning policies

• The average amount of time the disk is busy per byte of new data written, including

all the cleaning overheads

• Utilization u: the fraction of data still live in segments

• Seek and rotational latency are negligible in LFS

• Normalized to the ideal write time (no cleaning, no seek time or rotational delay)

𝒘𝒓𝒊𝒕𝒆 𝒄𝒐𝒔𝒕 =
𝒕𝒐𝒕𝒂𝒍 𝒃𝒚𝒕𝒆𝒔 𝒓𝒆𝒂𝒅 𝒂𝒏𝒅 𝒘𝒓𝒊𝒕𝒕𝒆𝒏

𝒏𝒆𝒘 𝒅𝒂𝒕𝒂 𝒘𝒓𝒊𝒕𝒕𝒆𝒏
=
𝒓𝒆𝒂𝒅 𝒔𝒆𝒈𝒔 + 𝒘𝒓𝒊𝒕𝒆 𝒍𝒊𝒗𝒆 + 𝒘𝒓𝒊𝒕𝒆 𝒏𝒆𝒘

𝒏𝒆𝒘 𝒅𝒂𝒕𝒂 𝒘𝒓𝒊𝒕𝒕𝒆𝒏

=
𝑵 +𝑵 ∗ 𝒖 + 𝑵 ∗ (𝟏 − 𝒖)

𝑵 ∗ (𝟏 − 𝒖)
=

𝟐

𝟏 − 𝒖

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Utilization vs. Write Cost

~0.5

Ideal

(with logging, delayed
writes, and disk scheduling)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Greedy Policy

▪ Choose the _________ segments

▪ LFS Uniform

• Uniform file access patterns

▪ LFS Hot-and-cold

• 10% of files are accessed

90% of the time

• Sorts the live data by age before

writing it out again

▪ No variance

• All segments always have exactly

the same utilization
File size: 4KB

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Greedy Policy: Analysis

▪ "Hot-and-cold" is worse than "Uniform"!

• What's wrong?

Disk capacity
utilization: 75%

?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Cost-Benefit Policy

▪ Choose the segment with the _________ ratio of benefit to cost

▪ Free space in a ______ segment is more valuable than free space in a

______ segment

• Once a cold segment has been cleaned, it will take a long time before it

reaccumulates the unusable free space

• It is less beneficial to clean a hot segment because the data will likely die quickly

• The most recent modified time of any block in the segment is used as an estimate

of how long the space is likely to stay free

𝒃𝒆𝒏𝒆𝒇𝒊𝒕

𝒄𝒐𝒔𝒕
=
𝒇𝒓𝒆𝒆 𝒔𝒑𝒂𝒄𝒆 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝒅 ∗ 𝒂𝒈𝒆 𝒐𝒇 𝒅𝒂𝒕𝒂

𝒄𝒐𝒔𝒕
=

𝟏 − 𝒖 ∗ 𝒂𝒈𝒆

𝟏 + 𝒖

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Cost-Benefit Policy: Goal

▪ Produces the _________ distribution of segments

• Cleans cold segments at about 75%

utilization

• But waits until hot segment reach about

15% utilization before cleaning them

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Cost-Benefit Policy: Results

▪ LFS outperforms the best possible Unix FFS even at relatively high disk

capacity utilization

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Segment Usage Table

▪ Used to guide in the selection of segments to clean and to keep track of

clean segments

▪ For each segment, segment usage table describes

• The state of the segment (clean/dirty)

• The number of live bytes in the segment

• An estimate of the age of the youngest block in the segment

(using the modified time for a file)

▪ The segment usage table is broken into blocks that can be cached in the

file cache

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Checkpoints

▪ Creating a checkpoint

• Write out all modified information to the log

– File data blocks, indirect blocks, inodes, blocks of the inode map, segment usage table

• Write a checkpoint region to a special fixed position on disk

– The addresses of all the blocks in _____________ and _____________

– A pointer to the last segment written

– The current time (in the last block of the checkpoint region)

▪ Handling a crash during a checkpoint operation

• Use two checkpoint regions

• Alternate checkpoint operations between them

• If the checkpoint fails, the time will not be updated

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Roll-forward

▪ Recover inode map using segment summary blocks

• The presence of a new inode → update the inode map

• Data blocks without a new copy of the file's inode → ignored

▪ Adjust the utilizations in the _________________

• Maybe increased due to the live data left after roll-forward

• Maybe decreased due to file deletions and overwrites

▪ Restore consistency between directory entries and inodes

• ___________________ for each directory change

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Small-file Performance

▪ 10x performance for the creation and deletion of small files

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Large-file Performance

▪ Terrible sequential read after random write

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Major Data Structures
Name Purpose Location

Inode Locates blocks of file, holds protection bits, modify time, etc. Log

Inode map
Locates position of inode in log, holds time of last access and
version number

Log

Indirect block Locates blocks of large files Log

Segment summary
Identifies contents of segments (file number and offset for each
block)

Log

Segment usage table
Counts live bytes still left in segments, stores last write time for
data in segments

Log

Superblock
Holds static configuration information such as number of
segments and segment size

Fixed

Checkpoint region
Locates blocks of inode map and segment usage table, identifies
last checkpoint in log

Fixed

Directory change log
Records directory operations to maintain consistency of
reference counts in inodes

Log

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Summary: FFS vs. LFS

FFS LFS

Assign disk addresses Block creation Segment write

Allocate inodes Fixed location Appended to log

Max number of inodes Statically determined
Statically determined or

Grows dynamically

Map inode numbers to
disk addresses

Static address Lookup in inode map

Maintain free space Bitmaps
Cleaner

Segment usage table

Make file system state
consistent

fsck
Checkpoints and

Roll-forward

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Seltzer vs. Ousterhout Debate

▪ Margo Seltzer implemented LFS on BSD and published a paper

• M. Seltzer et al., “An Implementation of a Log-Structured File System for UNIX”,

Proc. Winter 1993 USENIX Conference.

▪ A Critique of Seltzer’s 1993 USENIX Paper (Ousterhout)

▪ Seltzer published revised paper

• M. Seltzer et al., “File System Logging Versus Clustering: A Performance Comparison,”

Proc. Winter 1995 USENIX Conference.

▪ A Critique of Seltzer’s LFS Measurements (Ousterhout)

▪ A Response to Ousterhout’s Critique of LFS Measurements (Seltzer)

▪ A Response to Seltzer's Response (Ousterhout)

	슬라이드 1: Log-Structured File System
	슬라이드 2: Technology Trends
	슬라이드 3: Workloads Trends
	슬라이드 4: FFS Example
	슬라이드 5: Problems
	슬라이드 6: Sprite LFS
	슬라이드 7: Inode
	슬라이드 8: Inode Map
	슬라이드 9: Segments
	슬라이드 10: Segment Summary Block
	슬라이드 11: Example
	슬라이드 12: Write Cost
	슬라이드 13: Utilization vs. Write Cost
	슬라이드 14: Greedy Policy
	슬라이드 15: Greedy Policy: Analysis
	슬라이드 16: Cost-Benefit Policy
	슬라이드 17: Cost-Benefit Policy: Goal
	슬라이드 18: Cost-Benefit Policy: Results
	슬라이드 19: Segment Usage Table
	슬라이드 20: Checkpoints
	슬라이드 21: Roll-forward
	슬라이드 22: Small-file Performance
	슬라이드 23: Large-file Performance
	슬라이드 24: Major Data Structures
	슬라이드 25: Summary: FFS vs. LFS
	슬라이드 26: Seltzer vs. Ousterhout Debate

