Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

Virtual Machines

Virtual Machine

= A fully protected and isolated copy of the underlying physical machine’s
hardware (definition by IBM)

" Virtual machine monitor (VMM)

* A thin software layer that sits between
hardware and the operating system
— virtualizing and managing all hardware WS SNE
resources

App App

IBM VM/370
* “Hypervisor”

IBM Mainframe

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

History: Old lIdea from 1960s

= IBMVM/370 —AVMM for IBM mainframe

* Multiple OS environments on expensive hardware

* Desirable when few machines around

* Popular research idea in 1960s and 1970s

* Entire conferences on virtual machine monitors

* Hardware/VMM/OS designed together

* Robert Goldberg, Architectural Principles for Virtual Computer Systems, Ph.D.
Thesis, Harvard University, 1972.

= |nterest died out in the 1980s and 1990s

* Hardware got cheap
* OS got more powerful (e.g., multi-user)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

A Return to Virtual Machines in 90's

* Disco: Stanford research project (SOSP ‘97)

* Run commodity OSes on scalable multiprocessors
* Focus on high-end: NUMA, MIPS, IRIX

= Commercial virtual machines for x86 architecture
* VMware Workstation (= EMC/Dell = Broadcom) (1998 -)
* Connectix VirtualPC (now Microsoft)

= Research virtual machines for x86 architecture
« Xen (SOSP ‘03), plex86

= OS-level virtualization

* FreeBSD |ails, Linux Docker

Why Virtual Machines!?

* Create the illusion of multiple VMs

= Strong isolation between VM instances

= Software compatibility

" |ogical partitioning and server consolidation

= Convenient environment for debugging OSes

Type | VMM: Bare-Metal Hypervisors

* VMM is implemented directly on the physical hardware

* VMM performs the scheduling and allocation of the system’s resources
= IBMVM/370, Disco,VMware ESX Server, Xen, Hyper-V

Application Application

Guest Operating System Guest Operating System

Physical Machine

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Type I VMM: Hosted Hypervisors

" VMMs are built completely on top of a host OS
= A guest OS runs as a process on the host

= VMware Workstation/Player, Virtual Box, Parallels Desktop for Mac, KVM?

Application Application

Host
Application

Guest Operating System

Host Operating System

Physical Machine

Related Technologies

* Complete machine simulators

 Bochs (X86), SimOS (M|PS R4000/R|0000), SimICS (X86,A|pha,ARM, |A-64, MIPS, PowerPC, Sparc),
Qemu (Alpha, ARM, x86, MIPS, Sparc, RISC-V, PowerPC, ...)

* Portable: Runs instructions purely in software
* Slow (e.g., 100x slow down for Bochs)
* Portability vs. performance

= ABI/API emulators

* WINE (Windows Emulator or Wine Is Not an Emulator):
Port of Windows API to X-windows/Unix.

* Focuses on getting system call for a particular operating system’s interface.

* High-level language VMs: Java VM, etc.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Popek/Goldberg Theorem

For any conventional third-generation computer, a virtual machine monitor may be
constructed if the set of sensitive instructions for that computer is a subset of the
set of privileged instructions.

-- G. Popek and R. Goldberg, "Formal Requirements for Virtualizable Third-Generation Architectures," CACM, 1974.

* An instruction is control-sensitive if it can update the system state

* An instruction is behavior-sensitive if its semantics depend on the actual
values set in the system state

= An instruction is privileged if it can only be executed in supervisor
mode and causes a trap when attempted from user mode

{control-sensitive} U {behavior-sensitive} C {privileged}.

Violations in |A-32

= |7 problematic instructions that are sensitive and yet unprivileged

Group Instructions

Access to interrupt flag pushf, popf, iret

Visibility into segment descriptors lar, verr, verw, 1lsl

Segment manipulation instructions | pop <seg>, push <seg>, mov <seg>

Read-only access to privileged state | sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

Intel Virtualization Technology (VT-x)

A central design goal for Intel Virtualization Technology is to eliminate the need for
CPU paravirtualization and binary translation techniques, and thereby enable the
implementation of VMMs that can support a broad range of unmodified guest
operating systems while maintaining high levels of performance.

-- R. Uhlig et al., "Intel Virtualization Technology," IEEE Computer, 2005

" Virtual machine extensions (VMX) introduced in 2005

" |3 new instructions are added

* Two new VI-x operating modes: VMX non-root and VMX root
* Two new transitions: VM entry and VM exit

* Extended Page Tables (EPT) added in 2008 for memory virtualization

11

VMX

* VMX root/non-root operations
* AVMM runs in VMX root operation
* Guest OSes run in VMX non-root operation

* Both support all four privilege levels

= Transitions
* VM entry: VMX root = VMX non-root
e VM exit: VMX non-root =2 VMX root

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Guest applications

Guest operating system

I_..N m

opouw J00J-UON

ex1t enter

apouw J00Yy I

12

VMCS

®* Virtual-Machine Control Structure

* A new data structure that manages VM entries / exits and processor behavior in
VMX non-root operations

* Guest-state area vs. host-state area
* VM entries load processor state from the guest-state area

* VM exits save processor state to the guest-state area and then load processor
state from the host-state area

* Processor behavior changes in VMX non-root operation

* Some instructions cannot be executed in VMX non-root operation because they
cause VM exits unconditionally

* Other instructions, interrupts and exceptions can be configured to cause VM exits
conditionally (using VM-execution control fields in VMCY)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

13

Extended Page Tables (EPT)

= VMM maintains PPN->MPN mappings in “nested page tables”

* For every PPN (guest-physical) accessed during guest page table walk, the hardware
also walks nested page tables to determine the corresponding MPN (host-physical)

* TLB still maps guest-virtual pages to host-physical pages

VA—PA mappin _EPT | I I I I !
o L NS A N &
i §(0) (o) @) (i) @-(an)
J Y Y Y Y Y O = guest PTE
TLB ’ L NG (" A
VA > (2/ \D \@ 67/ \22
Y Y Y Y Y
guest GG (o Ge () (e
VMM NN s NN
ORRORRCORRORNC)
! ! ! e B
->Qf) [?»? 10_»5){) 15 »(ai) \20J ntry
PA_>MA mapplng idx 4 idx 3 1dx 2 dx 1 offset

Source: E. Bugnion et al., Hardware and Software Support for Virtualization, 2017.
4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

KVM

* Developed by Qumranet

Has been part of the Linux kernel since
v2.6.20

Later Qumranet was acquired by Red Hat

Officially supported hypervisor of major
commercial Linux distributions

Requires hardware virtualization capable
processors to operate

KVM turns the standard Linux kernel into a
hypervisor

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

gemu-kvm
(user mode code)

~~ioctl() |interface -

kvm.ko (‘/dev/kvm’)
(kernel mode code)

kvm-amd.ko kvm-intel.ko

vendor-/technology-specific (AMD SVM, Intel VMX)

Source: H. D. Chirammal et al., Mastering KVM Virtualization, 2016
15

QEMU

= Open source machine emulator and

virtualizer (o —
* Developed by Fabrice Bellard x|

Drivers in guest Kernel

* Runs OSes and programs for another CPU ISA using
dynamic binary translation or direct execution

* Emulates a set of devices: p
. . [KVM Kernel Module
disks, networks,VGA, PCle, serial & parallel ports,
Filesystem and Block Devices
USB’ e v Do LINUX KERNEL
N

* Runs other management tasks: i
creating and initializing a virtual machine, BIOS,VM

\ HARDWARE \

(cruo)
Mmanagement, etc. o

Source: H. D. Chirammal et al., Mastering KVM Virtualization, 2016
4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

KVM Architecture

= KVM kernel module (kvm.ko)

* Handles the basic CPU platform emulation issues

* CPU / memory / interrupt virtualization
* Some chipset emulation (APIC, IOAPIC, etc.)

= QEMU-KVM

* For each and every VM, there is a QEMU process running in the host system
Virtual CPUs are executed in the host kernel as POSIX threads
Guest RAM is assigned inside the QEMU process's virtual address space
Worker threads (iothreads) for virtual network and disk devices
QEMU talks to the KVM kernel module using ioctls on /dev/kvm

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

17

Execution Flow

User space
QEMU
VM
(quest system)
1) ioctl() 4) Return
\ /\ — /
L N
0) /dev/kvm 2) VM Entry 3) VM Exit
\ Z
Y
L KVM kernel module]
Linux kernel (hypervisor)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Source: Y. Goto, "Kernel-based Virtual Machine Technology", Fujitsu Sci. Tech. J., 2011

18

	슬라이드 1: Virtual Machines
	슬라이드 2: Virtual Machine
	슬라이드 3: History: Old Idea from 1960s
	슬라이드 4: A Return to Virtual Machines in 90's
	슬라이드 5: Why Virtual Machines?
	슬라이드 6: Type I VMM: Bare-Metal Hypervisors
	슬라이드 7: Type II VMM: Hosted Hypervisors
	슬라이드 8: Related Technologies
	슬라이드 9: Popek/Goldberg Theorem
	슬라이드 10: Violations in IA-32
	슬라이드 11: Intel Virtualization Technology (VT-x)
	슬라이드 12: VMX
	슬라이드 13: VMCS
	슬라이드 14: Extended Page Tables (EPT)
	슬라이드 15: KVM
	슬라이드 16: QEMU
	슬라이드 17: KVM Architecture
	슬라이드 18: Execution Flow

