
Virtual Machines

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Virtual Machine

▪ A fully protected and isolated copy of the underlying physical machine’s

hardware (definition by IBM)

▪ Virtual machine monitor (VMM)

• A thin software layer that sits between

hardware and the operating system

– virtualizing and managing all hardware

resources

• “Hypervisor”

IBM Mainframe

IBM VM/370

CMS MVS CMS CMS

App App App App

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

History: Old Idea from 1960s

▪ IBM VM/370 – A VMM for IBM mainframe

• Multiple OS environments on expensive hardware

• Desirable when few machines around

▪ Popular research idea in 1960s and 1970s

• Entire conferences on virtual machine monitors

• Hardware/VMM/OS designed together

• Robert Goldberg, Architectural Principles for Virtual Computer Systems, Ph.D.

Thesis, Harvard University, 1972.

▪ Interest died out in the 1980s and 1990s

• Hardware got cheap

• OS got more powerful (e.g., multi-user)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

A Return to Virtual Machines in 90's

▪ Disco: Stanford research project (SOSP ‘97)

• Run commodity OSes on scalable multiprocessors

• Focus on high-end: NUMA, MIPS, IRIX

▪ Commercial virtual machines for x86 architecture

• VMware Workstation (→ EMC/Dell → Broadcom) (1998 -)

• Connectix VirtualPC (now Microsoft)

▪ Research virtual machines for x86 architecture

• Xen (SOSP ‘03), plex86

▪ OS-level virtualization

• FreeBSD Jails, Linux Docker

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Why Virtual Machines?

▪ Create the illusion of multiple VMs

▪ Strong isolation between VM instances

▪ Software compatibility

▪ Logical partitioning and server consolidation

▪ Convenient environment for debugging OSes

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Type I VMM: Bare-Metal Hypervisors

▪ VMM is implemented directly on the physical hardware

▪ VMM performs the scheduling and allocation of the system’s resources

▪ IBM VM/370, Disco, VMware ESX Server, Xen, Hyper-V

Physical Machine

Virtual Machine Monitor

Guest Operating System

Application

Guest Operating System

Application

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Type II VMM: Hosted Hypervisors

▪ VMMs are built completely on top of a host OS

▪ A guest OS runs as a process on the host

▪ VMware Workstation/Player, Virtual Box, Parallels Desktop for Mac, KVM?

Physical Machine

Host Operating System

Virtual Machine Monitor

Guest Operating System
Host

Application

ApplicationApplication

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Related Technologies

▪ Complete machine simulators
• Bochs (x86), SimOS (MIPS R4000/R10000), SimICS (x86, Alpha, ARM, IA-64, MIPS, PowerPC, Sparc),

Qemu (Alpha, ARM, x86, MIPS, Sparc, RISC-V, PowerPC, ...)

• Portable: Runs instructions purely in software

• Slow (e.g., 100x slow down for Bochs)

• Portability vs. performance

▪ ABI/API emulators
• WINE (Windows Emulator or Wine Is Not an Emulator):

Port of Windows API to X-windows/Unix.

• Focuses on getting system call for a particular operating system’s interface.

▪ High-level language VMs: Java VM, etc.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Popek/Goldberg Theorem

▪ An instruction is control-sensitive if it can update the system state

▪ An instruction is behavior-sensitive if its semantics depend on the actual

values set in the system state

▪ An instruction is privileged if it can only be executed in supervisor

mode and causes a trap when attempted from user mode

For any conventional third-generation computer, a virtual machine monitor may be
constructed if the set of sensitive instructions for that computer is a subset of the
set of privileged instructions.

-- G. Popek and R. Goldberg, "Formal Requirements for Virtualizable Third-Generation Architectures," CACM, 1974.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Violations in IA-32

▪ 17 problematic instructions that are sensitive and yet unprivileged

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Intel Virtualization Technology (VT-x)

▪ Virtual machine extensions (VMX) introduced in 2005

▪ 13 new instructions are added

▪ Two new VT-x operating modes: VMX non-root and VMX root

▪ Two new transitions: VM entry and VM exit

▪ Extended Page Tables (EPT) added in 2008 for memory virtualization

A central design goal for Intel Virtualization Technology is to eliminate the need for
CPU paravirtualization and binary translation techniques, and thereby enable the
implementation of VMMs that can support a broad range of unmodified guest
operating systems while maintaining high levels of performance.

-- R. Uhlig et al., "Intel Virtualization Technology," IEEE Computer, 2005

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

VMX

▪ VMX root/non-root operations

• A VMM runs in VMX root operation

• Guest OSes run in VMX non-root operation

• Both support all four privilege levels

▪ Transitions

• VM entry: VMX root →VMX non-root

• VM exit: VMX non-root →VMX root

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

VMCS

▪ Virtual-Machine Control Structure

• A new data structure that manages VM entries / exits and processor behavior in

VMX non-root operations

• Guest-state area vs. host-state area

• VM entries load processor state from the guest-state area

• VM exits save processor state to the guest-state area and then load processor

state from the host-state area

▪ Processor behavior changes in VMX non-root operation

• Some instructions cannot be executed in VMX non-root operation because they

cause VM exits unconditionally

• Other instructions, interrupts and exceptions can be configured to cause VM exits

conditionally (using VM-execution control fields in VMCS)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Extended Page Tables (EPT)

▪ VMM maintains PPN→MPN mappings in “nested page tables”

• For every PPN (guest-physical) accessed during guest page table walk, the hardware

also walks nested page tables to determine the corresponding MPN (host-physical)

• TLB still maps guest-virtual pages to host-physical pages

Source: E. Bugnion et al., Hardware and Software Support for Virtualization, 2017.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

KVM

▪ Developed by Qumranet

• Has been part of the Linux kernel since

v2.6.20

• Later Qumranet was acquired by Red Hat

• Officially supported hypervisor of major

commercial Linux distributions

• Requires hardware virtualization capable

processors to operate

• KVM turns the standard Linux kernel into a

hypervisor

Source: H. D. Chirammal et al., Mastering KVM Virtualization, 2016

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

QEMU

▪ Open source machine emulator and

virtualizer

• Developed by Fabrice Bellard

• Runs OSes and programs for another CPU ISA using

dynamic binary translation or direct execution

• Emulates a set of devices:

disks, networks, VGA, PCIe, serial & parallel ports,

USB, ...

• Runs other management tasks:

creating and initializing a virtual machine, BIOS, VM

management, etc.

Source: H. D. Chirammal et al., Mastering KVM Virtualization, 2016

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

KVM Architecture

▪ KVM kernel module (kvm.ko)

• Handles the basic CPU platform emulation issues

• CPU / memory / interrupt virtualization

• Some chipset emulation (APIC, IOAPIC, etc.)

▪ QEMU-KVM

• For each and everyVM, there is a QEMU process running in the host system

• Virtual CPUs are executed in the host kernel as POSIX threads

• Guest RAM is assigned inside the QEMU process's virtual address space

• Worker threads (iothreads) for virtual network and disk devices

• QEMU talks to the KVM kernel module using ioctls on /dev/kvm

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Execution Flow

Source: Y. Goto, "Kernel-based Virtual Machine Technology", Fujitsu Sci. Tech. J., 2011

	슬라이드 1: Virtual Machines
	슬라이드 2: Virtual Machine
	슬라이드 3: History: Old Idea from 1960s
	슬라이드 4: A Return to Virtual Machines in 90's
	슬라이드 5: Why Virtual Machines?
	슬라이드 6: Type I VMM: Bare-Metal Hypervisors
	슬라이드 7: Type II VMM: Hosted Hypervisors
	슬라이드 8: Related Technologies
	슬라이드 9: Popek/Goldberg Theorem
	슬라이드 10: Violations in IA-32
	슬라이드 11: Intel Virtualization Technology (VT-x)
	슬라이드 12: VMX
	슬라이드 13: VMCS
	슬라이드 14: Extended Page Tables (EPT)
	슬라이드 15: KVM
	슬라이드 16: QEMU
	슬라이드 17: KVM Architecture
	슬라이드 18: Execution Flow

