
Superpages

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

(Juan Navarro et al., OSDI 2002)
Some slides are borrowed from the authors'

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Motivation

▪ TLB coverage

• The amount of memory

accessible through cached

mappings in the TLB

• Factor of 1000 decrease

in 15 years

TLB miss overhead:
 5%

5-10%

 30%

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Superpages

▪ Memory pages of larger sizes than base pages

• Supported by most modern CPUs

▪ Otherwise, same as normal pages

• Power-of-2 size

• Use only one TLB entry

• Contiguous (physically and virtually)

• Aligned on superpage boundary

• Uniform protection attributes

• One reference bit, one dirty bit

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

TLB with Superpages

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual
address

TLB

physical
address

Alpha:
8/64/512KB, 4MB

i386:
4KB, 4MB

x86_64:
2MB, 1GB

Itanium:
4/8/16/64/256KB,
1/4/16/64/256MB

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Using Superpages for Base Pages

▪ Why?

• Increased TLB coverage without enlarging the TLB size

▪ Why not?

• Enlarged application footprint

• Increased internal fragmentation due to partly used pages

• Premature onset of memory pressure

• Higher I/O demands due to increased paging granularity

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Issue 1: Superpage Allocation

▪ How / when / what size to allocate?

▪ Relocation-based: requires memory copy

▪ Reservation-based: superpage size to reserve?

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Issue 2: Promotion

▪ Create a superpage out of a set of smaller pages

▪ Promotion can be performed incrementally

▪ When to promote?

Create small superpage?
May incur overhead

Wait for app to touch pages? May lose
opportunity to increase TLB coverage

Forcibly populate pages?
May incur I/O cost or increase
internal fragmentation

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Issue 3: Demotion

▪ Convert a superpage into smaller pages

▪ When page attributes of base pages of a superpage become non-

uniform

▪ During partial pageouts

• All portions of a superpage not actively used

▪ Problem:

• Hardware only maintains a single reference bit for the superpage

• Which portions of a superpage are actively used?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Issue 4: Eviction

▪ Inactive superpages evicted from physical memory on memory pressure

▪ Problem: dirty pages

• Hardware maintains a single dirty bit for the superpage

• Which base pages should be flushed?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Issue 5: Fragmentation

▪ Memory becomes fragmented due to

• Use of multiple page sizes

• Scattered wired (non-pageable) pages

▪ Contiguity: contended resource

▪ OS must

• Use contiguity restoration techniques

• Trade off impact of contiguity restoration against superpage benefits

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Overall Design

▪ Observation: Once an application touches the first page of a memory

object then it is likely that it will quickly touch every page of that object

• Superpages as large and as soon as possible

• As long as no penalty if wrong decision

▪ Reservation-based superpage management

▪ Support for multiple superpage sizes

▪ Scalability to very large superpages

▪ Demotion of sparsely referenced superpages

▪ Effective preservation of contiguity without the need for compaction

▪ Efficient disk I/O for partially modified superpages

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Superpage Allocation

▪ Reservation-based (preemptible) allocation

• On a page fault, determine a preferred superpage size

• Only the mapping for the faulting page is inserted into the page table

• The rest of frames are tentatively reserved for potential future use

virtual memory

physical memory

superpage boundaries

B

B

reserved
frames

D

D

A

A

C

C

preferred superpage size

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Preferred Superpage Size

▪ Observation

• Too large superpage → Can be preempted later

• Too small superpage → Need relocation

▪ Opportunistic policy

• The largest, aligned superpage that contains the faulting page, not overlapped with

existing reservations or allocated pages

• For fixed size memory objects (e.g., code, data, memory-mapped files):

No larger than the memory object

• For dynamically sized memory objects (e.g., stack, heap):

The superpage size is limited to the current object size

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Preempting Reservations

▪ When free physical memory

becomes scarce or

excessively fragmented

▪ Victim selection:

Reservation that the most

recent population was done

least recently

largest unused (and aligned) chunk

→ most recently allocatedleast recently allocated → …

1

2

4

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Incremental Promotions

2

4

4+2

8

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Speculative Demotions

▪ Incremental demotion

• When a base page is selected for eviction

• When the protection attributes are changed on part of a superpage

• Demoted incrementally to the smaller superpage sizes

▪ Speculative demotion

• How to detect portions of a superpage not referenced anymore?

• On memory pressure, demote superpages when resetting reference bit

• Re-promote (incrementally) as pages are referenced

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Evicting Dirty Superpages

▪ One dirty bit per superpage

• What’s dirty and what’s not?

▪ Demote on first write to clean superpage

▪ Re-promote (incrementally) as other pages are dirtied

▪ Inferring dirty pages using hash digests?

write

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Population Map

▪ Use hash table + radix tree

▪ Each level corresponds to

a page size

▪ Reserved frame lookup

▪ Overlap avoidance

▪ Promotion decision

▪ Preemption assistance

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

FreeBSD Implementation

▪ FreeBSD lists of pages

• Active: access recently (reference bit can be either 0 or 1)

• Inactive: mapped, not referenced for a long time

• Cache: clean and unmapped

▪ Contiguity-aware page daemon

• Use cache pages for reservations

– If a cache page is referenced, the associated reservation is preempted

• On low contiguity, move clean, inactive pages to the cache list

– Prefer pages that contribute the most to contiguity

• Clean file pages moved to the inactive list when the file is closed

▪ Cluster wired pages

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Experimental Setup

▪ FreeBSD 4.3

▪ Alpha 21264 @ 500MHz, 512MB RAM

▪ 8KB, 64KB, 512KB, 4MB pages

▪ 128-entry DTLB, 128-entry ITLB

▪ Unmodified applications from SPEC CPU2000 benchmark and others

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Best-case Performance

▪ 30%+ in 8 out of 35 benchmarks

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Multiple Superpage Sizes

Speedups

TLB miss
reduction (%)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Fragmentation Control

▪ Web server to create memory fragmentation + four runs of FFTW

• Cache: all cached pages are

used for superpages

• Daemon: contiguity-aware

page replacement daemon

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Summary

▪ Superpages: 30%+ improvement

• Transparently realized, low overhead

▪ Contiguity restoration is necessary

• Sustains benefits, low impact

▪ Multiple page sizes are important

• Scales to very large superpages

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Follow-ups

▪ Ingens

• "Coordinated and Efficient Huge Page Management with Ingens", OSDI, 2016

• For modern Intel CPU-based servers with hypervisors

• Linux's transparent huge page support is greedy and aggressive

▪ Quicksilver

• "A Comprehensive Analysis of Superpage Management Mechanisms and Policies",

USENIX ATC, 2020

• A framework proposed to understand various superpage management schemes:

FreeBSD, Linux, Ingens, HawkEye

• Sync vs. async allocation, incremental vs. full preparation, in-place vs. out-of-place

promotion, etc.

	슬라이드 1: Superpages
	슬라이드 2: Motivation
	슬라이드 3: Superpages
	슬라이드 4: TLB with Superpages
	슬라이드 5: Using Superpages for Base Pages
	슬라이드 6: Issue 1: Superpage Allocation
	슬라이드 7: Issue 2: Promotion
	슬라이드 8: Issue 3: Demotion
	슬라이드 9: Issue 4: Eviction
	슬라이드 10: Issue 5: Fragmentation
	슬라이드 11: Overall Design
	슬라이드 12: Superpage Allocation
	슬라이드 13: Preferred Superpage Size
	슬라이드 14: Preempting Reservations
	슬라이드 15: Incremental Promotions
	슬라이드 16: Speculative Demotions
	슬라이드 17: Evicting Dirty Superpages
	슬라이드 18: Population Map
	슬라이드 19: FreeBSD Implementation
	슬라이드 20: Experimental Setup
	슬라이드 21: Best-case Performance
	슬라이드 22: Multiple Superpage Sizes
	슬라이드 23: Fragmentation Control
	슬라이드 24: Summary
	슬라이드 25: Follow-ups

