
Virtual Memory

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Virtual Memory: Goals

▪ Transparency

• Processes should not be aware that memory is shared

• Provides a convenient abstraction for programming (a large, contiguous space)

▪ __________

• Minimizes fragmentation due to variable-sized requests (space)

• Gets some hardware support (time)

▪ Protection

• Protect processes and the OS from another process

• Isolation: a process can fail without affecting other processes

• Cooperating processes can share portions of memory

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

(Virtual) Address Space

▪ Process’ abstract view of memory

• OS provides illusion of private address space

to each process

• Contains all of the memory state of the process

▪ Static area

• Allocated on exec()

• Code & Data

▪ Dynamic area

• Allocated at runtime

• Can grow or shrink

• Heap & Stack

kernel virtual memory
(code, data, heap, stack)

run-time heap
(managed by malloc)

user stack
(created at runtime)

unused
0

memory
invisible to
user code

brk

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

N-1

stack
pointer

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Paging

▪ Allows the physical address space of a process to be noncontiguous

• Divide virtual memory into blocks of same size (pages)

• Divide physical memory into fixed-size blocks (frames)

• Page (or frame) size is power of 2 (typically 512B – 8KB)

▪ Eases memory management

• OS keeps track of all free frames

• To run a program of size n pages, need to find n free frames and load the program

• Set up a page table to translate virtual to physical addresses

• No _________ fragmentation

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

Paging Overview

Frame 11

Frame 10

Frame 9

Frame 8

Frame 7

Frame 6

Frame 5Page 5

Frame 4Page 4

Frame 3

Frame 2

Frame 1

Frame 0

Page 3

Page 2

Page 1

Page 0

Process
A

Process
B

Virtual memory

Physical memory

Page 3

Page 2

Page 1

Page 0

9

Page
tables

7

11

4

6

5

10

2

0

3

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Address Translation (1)

▪ Translating virtual addresses

• A virtual address has two parts:

<Virtual Page Number (VPN), Offset>

• VPN is an index into the page table

• Page table determines Page Frame Number (PFN)

• Physical address is <PFN, Offset>

• Usually, |VPN| >= |PFN|

▪ Page tables

• Managed by _______

• Map VPN to PFN

• One Page Table Entry (PTE) per page in virtual address space

VPN Offset

PFN Offset

Page Table

VA

PA

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Address Translation (2)

CPU

p

frame f
f | 0000…00

f | 1111…11

…

frame 1

frame 0

…

Physical memory

p d

virtual
address

f d

physical
address

f

page table

V

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Protection

▪ Separate page table for each process

• No way to access the physical memory of other processes

• On context switch, an MMU register is set to point to the base address of the

current page table (e.g., CR3 in x86, satp in RISC-V)

▪ Page-level protection

• Memory protection is implemented by associating protection bits with each PTE

• Valid / invalid bit

– “Valid”: the page is in the process’ address space and in use

– “Invalid”: the page is not allocated

• Finer level of protection is possible for valid pages

– Read-only, Read-write, or execute-only protections

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

PTE

▪ Page Table Entry

• V (Valid) bit says whether or not the PTE can be used

– It is checked each time a virtual address is used

• R (Reference) bit says whether the page has been accessed

– It is set when a read or write to the page occurs

• M (Modify) bit says whether the page is dirty

– It is set when a write to the page occurs

• Prot (Protection) bits control which operations are allowed

– Read, Write, Execute, User/Kernel, etc.

• PFN (Page Frame Number) determines the physical frame

V R M Prot Page Frame Number (PFN)

1 1 1 2 20

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Demand Paging

▪ OS uses main memory as a (page) cache of all the data allocated by

processes in the system

• Bring a page into memory only when it is needed

• Pages can be evicted from their physical memory frames

• Evicted pages go to disk (only dirty pages are written)

• Movement of pages is transparent to processes

▪ Benefits

• ________________

• Less memory needed

• Faster response

• More processes

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Page Fault

▪ An exception raised by CPU when accessing invalid PTE

▪ ______ page faults

• The page is valid but not loaded into memory

• OS maintains information on where to find the contents

• Require disk I/Os

▪ ______ page faults

• Page faults can be resolved without disk I/O

• Used for lazy allocation (e.g., accesses to stack & heap pages)

• Accesses to prefetched pages, etc.

▪ Invalid page faults

• Segmentation violation: the page is not in use

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Handling Page Faults

CPU I

free frame

page table

kernel

physical memory

swap disk

ld t0, 0(s0)

❶ issue memory
reference

❷ trap (page fault)

❸ page is on backing store

❹ bring in
the page

❻ restart
instruction

❺ update PTE

V

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Multi-level Page Table: IA-32

▪ 32-bit paging

• 32-bit address space, 4KB pages, 4 bytes/PTE

• Want every page table fit into a page

Directory Table Page offset

1210 10

PDE

PTE

Page frame Page offset

Page frame N

….

Page frame 6

Page frame 5

Page frame 4

Page frame 3

Page frame 2

Page frame 1

Page frame 0
Page directory

Page table

Physical memory

Physical address
CR3

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Four-level Page Table

▪ IA-32e paging mode in Intel 64

• 48-bit “linear” address → _______ physical address (4KB page)

Page Map

Level 4

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Five-level Page Table

▪ 57-bit virtual address space

▪ For Intel Xeon Scalable

"Ice Lake" server

processors and beyond

▪ Supported by Linux

since 4.14

▪ Enabled by default

since 5.5

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

TLB

▪ Translation __________ Buffer

• A hardware cache of popular virtual-to-physical address translations

• Essential component which makes virtual memory possible

▪ TLB exploits locality

• Temporal locality: an instruction or data item that has been recently accessed will

likely be re-accessed soon

– Instructions and data accesses in loops, …

• _________ locality: if a program accesses memory at address x, it will likely soon

access memory near x

– Code execution, array traversal, stack accesses, …

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

TLB Organization

▪ TLB is implemented in hardware

• Processes only use a handful of pages at a time

– 16~256 entries in TLB is typical

• Usually fully associative

– All entries looked up in parallel

– But may be set associative to reduce latency

• Replacement policy: LRU (Least Recently Used)

• TLB actually caches the whole PTEs, not just PFNs

Valid Tag (VPN) Value (PTE)

1 0x1000

1 0x2400

0 - -

V R M Prot PFN 0x1234

V R M Prot PFN 0x8800

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Handling TLB Misses

▪ Software-managed TLB

▪ Hardware-managed TLB

• CPU knows where page tables are in memory
– e.g., CR3 (or PDBR) register in IA-32 / Intel 64, satp in RISC-V

• _______ maintains page tables

• CPU “walks” the page table and fills TLB

• Page tables have to be in hardware-defined format

?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

TLB on Context Switch

▪ Flush TLB on each context switch

• TLB is flushed automatically when PTBR is changed in a hardware-managed TLB

• Some architectures support the pinning of pages into TLB

– For pages that are globally-shared among processes (e.g., kernel pages)

– MIPS, Intel, etc.

▪ Track which entries are for which process

• Tag each TLB entry with an ASID (Address Space ID)

• A privileged register holds the ASID of the current process

• MIPS / ARMv7-A support 8-bit ASID

• ARMv8-A supports 8-bit/16-bit ASID

• Intel 64 supports 12-bit PCID (Process Context ID) – Since Westmere (2010)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

TLB on Multi-core

▪ TLB coherence

• Page-table changes may leave stale entries in the TLBs

• Flushing the local TLB is not enough

• Unlike memory caches, TLBs of different cores are not maintained coherent by

hardware

• TLB coherence should be restored by the OS

▪ TLB ____________

• The initiating core sends an IPI (Inter-Processor Interrupt) to the remote cores

• The remote cores invalidate their TLBs (may need to flush the entire TLB)

• The IPI may take several hundreds of cycles

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

TLB Performance

▪ TLB is the source of many performance problems

• Performance metric: hit rate, lookup latency, …

▪ Increase TLB ______ (= # TLB entries * Page size)

• Use superpages: e.g., 2MB, 1GB page support in x86_64

• Increase the TLB size

▪ Use multi-level TLBs

• e.g., Intel Haswell (4KB pages): L1 ITLB 128 entries (4-way),

L1 DTLB 64-entries (4-way), L2 STLB 1024 entries (8-way)

▪ Change your algorithms and data structures to be TLB-friendly

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Paging: Pros

▪ No external fragmentation

▪ Fast to allocate and free

• A list or bitmap for free page frames

• Allocation: no need to find contiguous free space

• Free: no need to coalesce with adjacent free space

▪ Easy to “page out” portions of memory to disk

• Page size is chosen to be a multiple of disk block sizes

• Use valid bit to detect reference to “paged-out” pages

• Can run process when some pages are on disk

▪ Easy to protect and share pages

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Paging: Cons

▪ Internal fragmentation

• Wasted memory grows with larger pages

▪ Memory reference overhead

• Page table stored in memory

• Address translation increases latency

• Solution: get hardware support (TLBs)

▪ Storage needed for page tables

• Needs one PTE for each page in virtual address space

• 32-bit virtual address space with 4KB pages: 4MB per page table

• Page table for each process

• Solution: use multi-level page table

Memory Mapping

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Virtual Memory Area

▪ Virtual address space is a resource

• Every memory area should be allocated in the

virtual address space

• If you run out of the virtual address space, you can

not access any more memory

(even if you have space in the physical memory)

▪ Some of memory areas are backed by files

and some aren’t

heap

stack

unused0

data

code

brk

stack
pointer

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Memory Mapping

▪ A dynamically allocated virtual memory area that has a backing store

• File

• Shared memory

• ____________

• None

(Anonymous mapping)
heap

stack

unused0

data

code

filemmap

offset

length

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

File vs. Anonymous Mapping

▪ File mapping (memory-mapped file)

• Backing store: regular file

• Maps a memory region to a file region

• The content of the file can be read from or written to using load/store instructions

▪ Anonymous mapping

• Virtual address space not backed by a file

• Maps a memory region to a memory area filled with 0

• Zero-page mapping

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

Shared vs. Private Mapping

▪ Several processes can map the same backing store in their own virtual

address space

▪ Shared mapping

• Modifications to shared pages are

visible to all involved processes

▪ Private mapping

• Modifications are not visible to

other processes

• Copy-on-write

File
mapping

Anonymous
mapping

Private
Private

file mapping
Private

anonymous mapping

Shared
Shared

file mapping
Shared

anonymous mapping

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

mmap()

▪ Creates a new mapping in the virtual address space of the calling process

• addr: the starting address for the new mapping (should be aligned to page boundary)

– If NULL, the kernel chooses the address

– Otherwise, the kernel takes it as a hint about where to place the mapping

• length: the length of the mapping

• prot: protection info. (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE)

• flags: mapping flags (MAP_PRIVATE, MAP_SHARED, MAP_ANONYMOUS, …)

• fd, offset: file descriptor & file offset (used for file mapping)

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

Memory-Mapped File: Example

▪ Allows processes to perform file I/O using memory references

• Instead of open(), read(), write(), close(), etc.

• Map a file to a virtual memory region

#include <sys/mman.h>

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int fd = open(“/bin/ls”, O_RDONLY);

char *p = (char *) mmap(0, 4096, PROT_READ, MAP_SHARED, fd, 0);

printf(“0x%02x 0x%02x 0x%02x 0x%02x\n”, *p, *(p+1), *(p+2), *(p+3));

close(fd);

}

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

Memory-Mapped File

▪ Implementation

• Initially, all pages in mapped region are marked as invalid

• OS reads a page from file whenever invalid page is accessed

• PTEs map virtual addresses to page frames holding file data

• <Virtual address base + n> refers to offset + n in file

▪ Writes to the memory-mapped area

• If MAP_SHARED,

OS writes to a page and it is written to the file when evicted from physical memory

• If MAP_PRIVATE,

OS creates a private copy and then write data to the page (a.k.a. Copy-On-Write).

File is not modified.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

File I/O Comparisons

int fd = open(“a”,...);

char *p = mmap(0,.., fd, 0);



mmap

char buf[1024];

int fd = open(“a”,...);

read(fd, buf, 1024);



memcpy

buf

char buf[1024];

FILE *fp = fopen(“a”,“r”);

fgets(buf, 1024, fp);



C library

memcpy

memcpy
buf

char buf[4096];

int fd = open(“a”,...,

O_DIRECT);

read(fd, buf, 4096);



buf

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

Summary: Memory-Mapped File

▪ Pros

• Uniform access for files and memory (just use pointers)

• _____________________

• Several processes can map the same file allowing the pages in memory to be shared

▪ Cons

• Process has less control over data movement

• Does not generalize to streamed I/O (pipes, sockets, etc.)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

Shared Memory: Example

▪ Allows (unrelated) processes to share data using direct memory

reference

#include <sys/mman.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

int main(int argc, char *argv[]) {

int fd = shm_open(“/shm1”, O_CREAT | O_EXCL | O_RDWR, 0600);

ftruncate(fd, 4096); // set shmem size

int *p = (int *) mmap(0, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

for (int i = 0; i < 1024; i++) p[i] = i;

close(fd);

}

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

Shared Memory

▪ Implementation

• Have PTEs in both tables map to the same physical frame

• Each PTE can have different protection values

• Must update both PTEs when page becomes invalid

▪ Mapping shared memory in the virtual address space

• At the different address: flexible (no address space conflicts), but pointers inside the

shared memory are invalid

• At the same address: less flexible, but shared pointers are valid

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 36

Copy-on-Write

▪ Defers memory copies as long as possible, hoping to avoid them

altogether

▪ Implementation

• Instead of copying pages, create shared mappings to the same page frames in

physical memory

• Shared pages are protected as read-only

• When data is written to these pages, OS allocates new space in physical memory

and directs the write to it

▪ Usage

• fork()

• Allocating data and heap pages, etc.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 37

Copy-on-Write during fork()

▪ COW ensures that both processes do
not see each other’s changes

• Instead of copying all pages, create shared
mappings of parent pages in the child address
space

• Shared pages are protected as read-only

• Reads happen as usual

• Writes generate a protection fault and OS
copies the page, changes page mapping, and
restarts write instruction

▪ Efficient when the child process calls
exec() immediately after fork()

Process

Page
table

Physical
memory

RO

RO

fork()

child process

copied

write

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 38

Summary

code

data

heap

stack

heap

code

data

heap

stack

data

/bin/ls

code

code
code

code

data

heap

heap

stack

File-backed, Read only (Shared)

File-backed (unmapped)

File-backed, Private, Read only

File-backed, COW’d, R/W

Anonymous, R/W

File-backed, Read only (Shared)

File-backed, Read only

Anonymous, R/W

Anonymous, R/W

Process 1

Process 2

code

code

data

heap

stack

Physical memory

File system

Anonymous, R/W (unmapped)

Swapping

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 40

Swapping

▪ Support processes when not enough physical memory

• User program should be independent of the amount of physical memory

• Single process with very large address space

• Multiple processes with combined address spaces

▪ Consider physical memory as a _______ for disks

• Leverage locality of reference within processes

• Process only uses small amount of address space at a moment

• Only small amount of address space must be resident in physical memory

• Store the rest of them to disk

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 41

Memory Hierarchy

▪ Each layer acts as “backing store” for layer above

Cache

Main memory

Disk storage

size
speed

cost

Registers

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 42

Numbers Everyone Show Know
L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 100 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 10,000 ns

Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250, 000 ns

Round trip within same datacenter 500,000 ns

Disk seek 10,000,000 ns

Read 1 MB sequentially from network 10,000,000 ns

Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA → Netherlands → CA 150,000,000 ns
Source: Jeff Dean, "Designs, Lessons and Advice from Building Large Distributed Systems", LADIS Keynote, 2009

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 43

How to Swap

▪ _________

• Programmers manually move pieces of code or data in and out of memory as they

were needed

• No special support needed from OS

▪ Process-level swapping

• A process is swapped temporarily out of memory to a backing store

• It’s brought back into memory later for continued execution

▪ Page-level swapping

• Swap pages out of memory to a backing store (swap-out or page-out)

• Swap pages into memory from the backing store (swap-in or page-in)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 44

Where to Swap

▪ Swap space

• Disk space reserved for moving pages back and forth

• The size of the swap space determines the maximum number of memory pages

that can be in use

• Block size is same as the page size

• Can be a dedicated partition or a file in the file system

PID 0
(VPN 0)

PID 1
(VPN 1)

PID 1
(VPN 2)

PID 2
(VPN 0)

PID 0
(VPN 1)

PID 0
(VPN 2)

Free
PID 1

(VPN 0)
PID 1

(VPN 1)
PID 3

(VPN 0)
PID 2

(VPN 1)
PID 3

(VPN 1)

PFN 0 PFN 1 PFN 2 PFN 3

Blk 0 Blk 1 Blk 2 Blk 3 Blk 4 Blk 5 Blk 6 Blk 7

Physical
Memory

Swap
Space

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 45

When to Swap

▪ Proactively based on thresholds

• OS wants to keep a small portion of memory free

• Two threshold values: HW (high watermark) and LW (low watermark)

• A background thread called swap daemon (or page daemon) is responsible for

freeing memory (e.g., kswapd in Linux)

• If (# free pages < LW), the swap daemon starts to evict pages from physical

memory

• If (# free pages > HW), the swap daemon goes to sleep

• What if the allocation speed is faster than reclamation speed?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 46

What to Swap

▪ What happens to each type of page frame on low mem?

• Kernel code

• Kernel data

• Page tables for user processes

• Kernel stack for user processes

• User code pages

• User data pages

• User heap/stack pages

• Files mmap’ed to user processes

• Page cache pages

▪ Page replacement policy chooses the pages to evict

Dropped or go to file system

Not swapped

??

Not swapped

??

Dropped

??

Swapped

??

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 47

Page Replacement

▪ Which page in physical memory should be selected as a victim?

• Write out the victim page to disk if modified (dirty bit set)

• If the victim page is clean, just discard

– The original version is either in the file system or in the swap space

• Why not use direct-mapped or set-associative design similar to CPU caches?

▪ Goal: minimize the page fault rate (miss rate)

• The miss penalty (cost of disk access) is so high (> x100,000)

• A tiny miss rate quickly dominates the overall AMAT (Average Memory Access

Time)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 48

OPT (or MIN)

▪ Belady’s optimal replacement policy (1966)

• Replace the page that will not be used for the longest time in the future

• Shows the lowest fault rate for any page reference stream

• Problem: have to predict the future

• Not practical, but good for comparison

1

2

Miss

3

4

5

Hit

1

2

3

Miss

1

2

4

Miss

1

2

4

Hit

1

2

4

Hit

1

2

5

Miss

1

2

5

Hit

1

2

5

Hit

3

2

5

Miss

3

4

5

Miss

PF rate
= 7 / 12

2 53 4 1 2 5 1 2 3 4Reference: 1

1

Miss

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 49

FIFO

▪ First-In First-Out

• Replace the page that has been in memory the longest

• Why might this be good?

– Maybe, the one brought in the longest ago is not being used

• Why might this be bad?

– Maybe, it’s not the case

– Some pages may always be needed

• Obvious and simple to implement

• Fair: all pages receive equal residency

• FIFO suffers from “Belady’s anomaly”

– The fault rate might increase when the algorithm is given more memory

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 50

FIFO: Belady’s Anomaly

1

2

Miss

5

3

4

Hit

1

2

3

Miss

4

2

3

Miss

4

1

3

Miss

4

1

2

Miss

5

1

2

Miss

5

1

2

Hit

5

1

2

Hit

5

3

2

Miss

5

3

4

Miss

PF rate
= 9 / 12

2 3 4 1 2 5 1 2 3 4 5Reference: 1

1

Miss

PF rate
= 10 / 12

2 3 4 1 2 5 1 2 3 4 5Reference: 1

1

2

Miss

1

2

3

Miss Miss

1

2

3

4

1

2

3

Hit

4

1

2

3

Hit

4

5

2

3

Miss

4

Miss

5

1

3

4

5

1

2

Miss

4

5

1

2

Miss

3

4

1

2

Miss

3

4

5

2

Miss

3

1

Miss

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 51

LRU

▪ Least Recently Used

• Replace the page that has not been used for the longest time in the past

• Use past to predict the future

– cf. OPT wants to look at the future

• With locality, LRU approximates OPT

• “Stack” algorithm: does not suffer from Belady’s anomaly

• Harder to implement: must track which pages have been accessed

• Does not consider the frequency of page accesses

• Does not handle all workloads well

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 52

Stack Property

▪ Stack algorithms

• Policies that guarantee increasing memory size does not increase the number of

page faults (e.g., OPT, LRU, etc.)

• Any page in memory with m frames is also in memory with m+1 frames

PF rate
= 10 / 12

2 3 4 1 2 5 1 2 3 4 5Reference: 1

2

1

Miss

5

4

3

2

1

Miss

3

2

1

Miss

4

3

2

1

Miss

1

4

3

2

Miss

2

1

4

3

Miss

5

2

1

4

3

Miss

1

5

2

4

3

Hit

2

1

5

4

3

Hit

3

2

1

5

4

Miss

4

3

2

1

5

Miss

1

Miss

∞ ∞ ∞ 4 4 ∞ 3 3 5 5 5∞Stack distance:

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 53

RANDOM

▪ Another simple policy

• Simply picks a random page to replace under memory pressure

• Simple to implement: no bookkeeping needed

• Performance depends on the luck of the draw

• Outperforms FIFO and LRU for certain workloads

1

2

Miss

5

3

4

Miss

1

2

3

Miss

1

2

4

Miss

1

2

4

Hit

1

2

4

Hit

1

2

5

Miss

1

2

5

Hit

1

2

5

Hit

1

3

5

Miss

1

3

4

Miss

PF rate
= 8 / 12

2 3 4 1 2 5 1 2 3 4 5Reference: 1

1

Miss

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 54

Comparisons

The 80-20 Workload
The Looping Workload

(50 blocks)
The Random Workload

?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 55

Implementing LRU

▪ Software approach

• OS maintains ordered list of page frames by reference time

• When page is referenced: move page to the front of the list

• When need victim: pick the page in the back of the list

• Slow on memory reference, fast on replacement

▪ Hardware approach

?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 56

Replacement Algorithms

▪ I/O buffer cache replacement

• "Page hit" is known to OS

• Uses block I/O traces

• LRU, LRU-2, 2Q, SEQ, LRFU, EELRU, MQ, LIRS, ARC, …

▪ VM page replacement

• "Page hit" is only known to hardware, not to OS

• Hardware sets the Reference / Dirty bits in the PTE

• LRU approximation

• Uses memory reference traces

• CLOCK, WSClock, GCLOCK, CAR, CLOCK-Pro, …

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 57

Thrashing

▪ What happens when physical memory is not enough to hold all the

“working sets” of processes

• Working set: a set of pages that a process is using actively

• Most of the time is spent by an OS paging data back and forth from disk

• Possible solutions:

– Kill processes

– Buy more memory

▪ Android’s LMK

(Low Memory Killer)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 58

Summary

▪ VM mechanisms

• Physical and virtual addressing

• Partitioning, segmentation, paging

• Page table management, TLBs, etc.

▪ VM policies

• Page replacement policy, page allocation policy

▪ VM optimizations

• Demand paging, copy-on-write (space)

• Multi-level page tables (space)

• Efficient translation using TLBs (time)

• Page replacement policy (time)

	슬라이드 1: Virtual Memory
	슬라이드 2: Virtual Memory: Goals
	슬라이드 3: (Virtual) Address Space
	슬라이드 4: Paging
	슬라이드 5: Paging Overview
	슬라이드 6: Address Translation (1)
	슬라이드 7: Address Translation (2)
	슬라이드 8: Protection
	슬라이드 9: PTE
	슬라이드 10: Demand Paging
	슬라이드 11: Page Fault
	슬라이드 12: Handling Page Faults
	슬라이드 13: Multi-level Page Table: IA-32
	슬라이드 14: Four-level Page Table
	슬라이드 15: Five-level Page Table
	슬라이드 16: TLB
	슬라이드 17: TLB Organization
	슬라이드 18: Handling TLB Misses
	슬라이드 19: TLB on Context Switch
	슬라이드 20: TLB on Multi-core
	슬라이드 21: TLB Performance
	슬라이드 22: Paging: Pros
	슬라이드 23: Paging: Cons
	슬라이드 24: Memory Mapping
	슬라이드 25: Virtual Memory Area
	슬라이드 26: Memory Mapping
	슬라이드 27: File vs. Anonymous Mapping
	슬라이드 28: Shared vs. Private Mapping
	슬라이드 29: mmap()
	슬라이드 30: Memory-Mapped File: Example
	슬라이드 31: Memory-Mapped File
	슬라이드 32: File I/O Comparisons
	슬라이드 33: Summary: Memory-Mapped File
	슬라이드 34: Shared Memory: Example
	슬라이드 35: Shared Memory
	슬라이드 36: Copy-on-Write
	슬라이드 37: Copy-on-Write during fork()
	슬라이드 38: Summary
	슬라이드 39: Swapping
	슬라이드 40: Swapping
	슬라이드 41: Memory Hierarchy
	슬라이드 42: Numbers Everyone Show Know
	슬라이드 43: How to Swap
	슬라이드 44: Where to Swap
	슬라이드 45: When to Swap
	슬라이드 46: What to Swap
	슬라이드 47: Page Replacement
	슬라이드 48: OPT (or MIN)
	슬라이드 49: FIFO
	슬라이드 50: FIFO: Belady’s Anomaly
	슬라이드 51: LRU
	슬라이드 52: Stack Property
	슬라이드 53: RANDOM
	슬라이드 54: Comparisons
	슬라이드 55: Implementing LRU
	슬라이드 56: Replacement Algorithms
	슬라이드 57: Thrashing
	슬라이드 58: Summary

