
Scheduler Activations

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

(Thomas Anderson et al., TOCS 1992)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Kernel-level Threads

▪ OS-managed threads

• OS manages threads and processes

• All thread operations are implemented in

the kernel

• Thread creation and management requires

system calls

• OS schedules all the threads

• Creating threads are cheaper than creating

processes

▪ Windows XP/7/10/11, Linux, Solaris

9+, Mac OS X, AIX, HP-UX, …

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

Kernel-Level Threads – 1:1 Model

▪ Each user-level thread maps to a kernel thread

▪ Most popular

PCB

TCB

k

user thread

kernel thread

k kk

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Kernel-Level Threads

▪ Pros

• Cheaper than __________

• Scheduling/management done by the _________

– Possible to overlap I/O with the computation

– Multiple CPUs can be exploited

▪ Cons

• Still too expensive (compared to _____________)

• Thread state in the ________

• Need to be general to support the needs of all programmers, languages, runtimes,

etc.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

User-level Threads

▪ Threads are implemented at the user level

• A library linked into the program

manages the threads

• Threads are invisible to the OS

• All the thread operations are

done via procedure calls

(no kernel intervention)

▪ Solaris Green Threads,

GNU Portable Threads,

Windows Fibers

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

User-Level Threads – N : 1 Model

▪ Many user-level threads mapped to a single kernel thread

▪ Managed by ____________

▪ Views each _________ as a

"virtual processor"

k

user thread

kernel thread

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

User-Level Threads

▪ Pros

• Small and fast

• Portable

• Flexible

▪ Cons

• Invisible to OS; OS can make poor decisions

• Cannot exploit multiple CPUs

Operation
FastThreads
(User-level)

Topaz threads
(Kernel-level)

Ultrix
processes

Null Fork 34μs 948μs 11300μs

Signal-Wait 37μs 441μs 1840μs

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Goals

▪ The performance and flexibility of user-level threads

• The performance of user-level thread systems in the common case

• Simplify application-specific customization:

e.g., scheduling policy, concurrency models, etc.

▪ The functionality of kernel threads

• No processor idles in the presence of ready threads

• No high-priority thread waits for a processor while a low-priority thread runs

• When a thread traps to the kernel to block, the processor can be used to run

another thread from the same or from a different address space

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

A Simple Solution – M : N Model

▪ How about to provide multiple kernel threads to a user-level thread

system?

▪ What's bad?

k

user threads

kernel threads

k k

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Observations

▪ Kernel threads are the wrong abstraction for supporting user-level

thread management

▪ The kernel needs access to user-level scheduling information

▪ The user-level thread system needs to be aware of kernel events

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Scheduler Activation

▪ Serves as a vessel, or execution context, for running user-level threads

(an extension of a kernel thread)

▪ Notifies the user-level thread system of a kernel event via _______

▪ Requires two stacks:

• A kernel-level stack: used during __________

• A user-level stack: used during _________

• Note: Each user-level thread has its own stack

▪ Activation control block

• For saving the processor context of the activation's current user-level thread, when

the thread is stopped by the kernel

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Scheduler Activation: Overview

VP VP VP

User-level Thread System
Control the number of threads to

run on its allocated processors

Kernel

Control the number of processors
given to each address space

Notifies the user-level
thread system whenever
the kernel changes the
number of processors
assigned to it

Notifies the kernel when
the application needs
more or fewer processors

CPU CPU CPUCPU

upcall

system call

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Example:

▪ T1: The kernel allocates two processors

(4)(3)
(2)(1)

User
Program

User-Level
Runtime
System

Processors

Add
Processor

Add
Processor

(A) (B)
Operating
System
Kernel

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Example:

▪ T2: Thread 1 blocks in the kernel for I/O

(3)

B

A’s thread has blocked

(C)

(2)(1)
(4)(3)

(A) (B)

User
Program

User-Level
Runtime
System

Processors

Operating
System
Kernel C1

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

Example:

▪ T3: Thread 1 completes the I/O

User
Program

User-Level
Runtime
System

Processors

Operating
System
Kernel

A’s thread and
B’s thread can
continue

(C)

(3)(2)(1)
(4)

(D)(A) (B)

C1 C2
C1

C2

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Example:

▪ T4: Thread 1 resumes

(C)

(3) (4)

(D)

(1) (2)

User
Program

User-Level
Runtime
System

Processors

Operating
System
Kernel

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Example:

▪ T5: Kernel wants to take a processor away from address space A

(C)

(3) (4)

(D)

(1) (2)

User
Program

User-Level
Runtime
System

Processors

Operating
System
Kernel

(X)

Address Space A Address Space B

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Example:

▪ T6: Thread 3 is preempted and the processor is allocated to B

(C)

(3) (4)

(D)

(1) (2)

User
Program

User-Level
Runtime
System

Processors

Operating
System
Kernel

(X)

Address Space A Address Space B

C3

(Y)

Add
Processor

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Example:

▪ T7: Thread 1 is preempted and kernel notifies to A

(C)

(3) (4)

(D)

(1) (2)

User
Program

User-Level
Runtime
System

Processors

Operating
System
Kernel

(X)

Address Space A Address Space B

C3

(Y)

Add
ProcessorC1

C’s thread and
D’s thread can
continue

C1

C3

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Upcall Points: Kernel → User

▪ Add this processor (processor #)

• Execute a runnable user-level thread

▪ Processor has been preempted (preempted SA# and its machine state)

• Return to the ready list the user-level thread that was executing in the context of

the preempted SA

▪ Scheduler activation has blocked (blocked SA#)

• The blocked SA is no longer using its processor

▪ Scheduler activation has unblocked (unblocked SA# and its machine

state)

• Return to the ready list the user-level thread that was executing in the context of

the blocked SA

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Processor Allocation/Release

▪ An address space gives hints

• It has more runnable threads than processors, or

• It has more processors than runnable thread

• Only hints: processor allocation is not guaranteed

▪ Idle processors may be left in the address space to avoid the overhead

of processor reallocation

▪ Dishonest or misbehaved programs?

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

System Call Points: User → Kernel

▪ Add more processors (additional # of processors)

• Allocate more processors to this address space and start them running SAs

▪ This processor is idle ()

• Preempt this processor if another address space needs it

▪ The user-level thread system need not tell the kernel about every

thread operation

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Critical Sections

▪ What if the preempted or blocked thread is in the critical section?

• Poor performance or deadlock

▪ Solution based on “recovery”:

• Check whether the preempted thread was in the critical section (How?)

• If so, it is continued temporarily via a user-level context switch

▪ Performance enhancements

• Make a copy of each critical section

• Runtime checks using the section begin/end addresses

• Normal execution uses the original version

• The copy returns to the scheduler at the end of the critical section

• Imposes no overhead in the common case!

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Basic Performance

▪ Thread operation latencies

▪ Upcall performance: Signal-Wait through the kernel

• 5x slower than Topaz threads!

• Quick modification

• Modular-2+ vs. assembly

Operation
FastThreads on
Topaz threads

FastThreads on
Scheduler Activations

Topaz threads
(Kernel-level)

Ultrix
processes

Null Fork 34μs 37μs 948μs 11300μs

Signal-Wait 37μs 42μs 441μs 1840μs

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Application Performance

▪ N-Body (memory-intensive) on 6-processor CVAX Firefly

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Conclusion

▪ Implementations

• Topaz (original implementation)

• Taos, Mach 3.0, BSD/OS, NetBSD [Usenix ’02]

• Digital Unix (Compaq Tru64 Unix), Solaris

▪ Lessons

• Make the common case fast

• Separating policy from mechanisms

• Export your functionality out of the kernel for improved performance and flexibility

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

Solaris 2 Threads Architecture

▪ Scheduler activations implemented since Solaris 2.6 (prior to version 9)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

Solaris 2 Threads

▪ LWPs (Lightweight Processes) sit in between the user-level and kernel-

level threads.

• User-level threads may be scheduled and switched among kernel supported LWPs

without kernel intervention (no context switching)

▪ There is a one-to-one mapping between kernel-level threads and LWPs.

• Operations within the kernel is maintained by kernel-level threads.

• Kernel-level threads are scheduled by the CPUs.

▪ If a kernel thread blocks, it blocks the LWP and using the chain the user

thread also blocks.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

Solaris 9 Threads

▪ Things change: Going back to one-to-one model

▪ M:N model is too complex

– Signal handling

– Automatic concurrency management

– Poor scalability due to an internal lock in user-level thread scheduler

– Advances in kernel thread scalability

▪ The quality of an implementation is often more important.

– Code paths were generally more efficient than those of the old implementation

– More robust and intuitive

– Simpler to develop and easier to maintain

▪ Binary compatibility is preserved

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

Linux

▪ LinuxThreads

• A library implementing the POSIX 1003.1c standard for threads (introduced in 1996)

• Standard thread library in Linux distributions from 1998 to 2004

▪ NGPT (Next Generation POSIX Threading) by IBM

• M:N model based on scheduler activations

• Extends GNU Pth library (M:1) by using multiple Linux tasks

• https://akkadia.org/drepper/glibcthreads.html

▪ NPTL (Native POSIX Threading Library) by RedHat

• 1:1 model

• Adopted for Linux kernel 2.6

• https://akkadia.org/drepper/nptl-design.pdf

https://akkadia.org/drepper/glibcthreads.html
https://akkadia.org/drepper/nptl-design.pdf

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

	슬라이드 1: Scheduler Activations
	슬라이드 2: Kernel-level Threads
	슬라이드 3: Kernel-Level Threads – 1:1 Model
	슬라이드 4: Kernel-Level Threads
	슬라이드 5: User-level Threads
	슬라이드 6: User-Level Threads – N : 1 Model
	슬라이드 7: User-Level Threads
	슬라이드 8: Goals
	슬라이드 9: A Simple Solution – M : N Model
	슬라이드 10: Observations
	슬라이드 11: Scheduler Activation
	슬라이드 12: Scheduler Activation: Overview
	슬라이드 13: Example:
	슬라이드 14: Example:
	슬라이드 15: Example:
	슬라이드 16: Example:
	슬라이드 17: Example:
	슬라이드 18: Example:
	슬라이드 19: Example:
	슬라이드 20: Upcall Points: Kernel User
	슬라이드 21: Processor Allocation/Release
	슬라이드 22: System Call Points: User Kernel
	슬라이드 23: Critical Sections
	슬라이드 24: Basic Performance
	슬라이드 25: Application Performance
	슬라이드 26: Conclusion
	슬라이드 27: Solaris 2 Threads Architecture
	슬라이드 28: Solaris 2 Threads
	슬라이드 29: Solaris 9 Threads
	슬라이드 30: Linux
	슬라이드 31

