
SSDs

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

The Unwritten Contract

▪ Several assumptions are no longer valid

Assumptions Disks SSDs

Sequential accesses much faster than random

No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

Source: A. Rajimwale et al., "Block Management in Solid-State Devices," USENIX ATC, 2009.

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

FTL Architecture

▪ Sector Translation Layer

• Address mapping

• Garbage collection

• Wear leveling

▪ Block Management Layer

• Bad block management

• Error handling

▪ Low Level Driver

• Flash interface

NAND storage

Operating system

Flash Memory Chip

Controller

File system

Block Layer

Block Device Driver

Application

Flash Translation Layer
FTL (Flash Translation Layer)

STL (Sector Translation)

BML (Block Management)

LLD (Low Level Driver)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

File System vs. FTL

▪ What happens on file deletion?

1 2 3 4 5 6File: abc.txt

1 2 6 5 4 3

Raw NAND Flash Memory

0
1

0
0

1
0

..

0
0

1
0

1
1

…

1 2 6 5 3 4

Logical blocks

Su
p

er
b

lk

Datablock
bitmap

i-node
bitmap

i-node for “abc.txt”

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

TRIM

▪ ATA interface standard (T13 technical committee)

• "The data in the specified sectors is no longer needed"

• Originally proposed as a non-queued command, but SATA 3.1 introduces the

queued TRIM command

• UNMAP, WRITE SAME with unmap flag in SCSI, DEALLOCATE in NVMe

▪ Types

• Non-deterministic Trim: reads may return different data

• Deterministic Trim: reads return the same data

• Deterministic Read Zero after Trim: all reads shall return zero

▪ TRIM commands can be automatically issued on file deletion or format

▪ fstrim: discard unused blocks on a mounted file system

The Multi-streamed

Solid-State Drive

Some of slides are borrowed from the authors’ presentation.

(J.-U. Kang et al., HotStorage, 2014)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

Effects of Write Patterns

▪ Previous write patterns (= current state) matter

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Stream

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

The Multi-streamed SSD

▪ Mapping data with different lifetime to different streams

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

Working Example

▪ High GC efficiency → Performance improvement

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

Architecture

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

Case Study: Cassandra

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Cassandra’s Write Patterns

▪ Write operations when Cassandra runs

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

Mapping #1: Conventional

▪ Just one stream ID (= conventional SSD)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Separate application writes (ID 1) from system traffic

(ID 0)

Mapping #2: Multi-App

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

Mapping #3: Multi-Log

▪ Use three streams; further separate Commit Log

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Mapping #4: Multi-Data

▪ Give distinct streams to different tiers of SSTables

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

Results: Conventional

▪ Cassandra’s normalized update throughput

• Conventional “TRIM off”

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

Results: Conventional with TRIM

▪ Cassandra’s normalized update throughput

• Conventional “TRIM on”

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

Results: Multi-App

▪ Cassandra’s normalized update throughput

• “Multi-App” (System data vs. Cassandra data)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

Results: Multi-Log

▪ Cassandra’s normalized update throughput

• “Multi-Log” (System data vs. Commit-Log vs. Flushed data)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

Results: Multi-Data

▪ Cassandra’s normalized update throughput

• “Multi-Data” (System data vs. Commit-Log vs. Flushed data vs. Compaction Data)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

Results: GC Overheads

▪ Cassandra’s GC overheads

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Results: Latency

▪ Cassandra’s cumulated latency distribution

• Multi-streaming improves write latency

• At 99.9%, Multi-Data lowers the latency by 53% compared to Normal

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Summary

▪ Mapping application and system data with different lifetimes to SSD

streams

• Higher GC efficiency, lower latency

▪ Multi-streaming can be supported on a state-of-the-art SSD and co-

exist with the traditional block interface

▪ Standardized in T10 SCSI (SAS SSDs) in 2015

▪ Standardized in NVMe 1.3 in 2017

25

ZNS SSDs

Some of slides are borrowed from the authors’ presentation.

(Matias Bjørling et al., USENIX ATC, 2021)

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

The Block Interface Tax

▪ For flash-based SSDs, the block interface is a poor fit

• SSDs append pages to erase blocks, need to erase whole block before rewriting

▪ Data placement overhead

• Media over-provisioning (7 ~ 28%)

• Higher cost

• Write amplification

• Unpredictable latency

• No isolation

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

History

▪ Baidu's Software Defined Flash (SDF) [ASPLOS '14, EuroSys '14]

• Expose a channel as an independent device

▪ OCSSD 1.2

• Physical Page Addressing: Channel, LUN (die), Plane, Block, Page, Sector

• Exposes flash read/program/erase timings and MLC page pairing information

• Everything in the host

▪ OCSSD 2.0 [FAST '17]

• Physical Page Addressing: Group (channel), LUN (PU), Chunk, Logical block

• Read/write/reset commands

• Write sequentially within a chunk

• Media management in the drive

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

ZNS SSDs

▪ Sequential zone writes onto distinct erase blocks

• Random writes are disallowed

• Zones must be explicitly reset by the host

• Data placement occurs at the coarse-grained level of zones

▪ ZNS SSDs relinquish GC responsibilities

• GC of zones becomes the responsibility of the host

▪ Media reliability continues to be the full

responsibility of the SSD

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

Zoned Storage Model

▪ Zones are laid out sequentially in an

NVMe namespace

▪ The zone size is fixed and applies to all

zones in the namespace

• e.g., 512 MiB

▪ The command set inherits the NVMe

Command Set

• Built upon the conventional block interface

(Read, Write, Flush and other commands)

• Adds rules to collaborate on host and device

data placement

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

Writing to a Zone

▪ "Sequential Write Required"

• Must be written sequentially

• Must be reset if written to again

▪ Each zone has a set of associated

attributes:

• Write pointer

• Zone starting LBA

• Zone capacity

• Zone state

▪ Very similar to writing zones within

host-managed SMR HDDs

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

Reading from a Zone

▪ Writes are required to be sequential within a zone

▪ Reads may be issued to any LBA within a zone and in any order

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

SMR HDDs and ZNS SSDs

▪ Host-managed SMR HDDs

• Implements the SMR (ZAC/ZBC) specifications

• ZAC: Zoned Device ATA Command Set in T13/SATA

• ZBC: Zoned Block Commands in T10/SAS

▪ NVMe ZNS SSDs

• Implement the Zoned NameSpace Command Set specification

• Aligned with ZAC/ZBC to allow interoperability

▪ A single unified software stack support both storage types

• Utilizes the already mature Linux storage stack built for SMR HDDs

Image from https://blog.westerndigital.com/what-is-zoned-storage-initiative/

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

Linux Zoned Block Device Support

https://zonedstorage.io/linux/overview/

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

Use Cases

▪ Host-side FTL

• Exposes the ZNS SSD

as a conventional block

SSD

• High system overhead

(DRAM and CPU)

• For workloads with

random write

characteristics

▪ File systems

• ZNS SSD-aware file

systems

(e.g., f2fs + zones)

• Efficient use of

resources

• Some inefficient data

placement causes host

GC

▪ End-to-end data

placement

• Application-specific

data placement

(e.g., RocksDB + ZenFS)

• No indirection

overhead caused by

FTL nor file system

• Highest performance,

lowest write

amplification

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 36

RocksDB on ZNS SSD

▪ ZenFS

• A storage backed for RocksDB

• Extent-based

• No GC

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 37

RocksDB: Writes

▪ Double the throughput over 28% OP SSDs

▪ Write amplification: ZNS 1.0x, XFS 2.0x, vanilla F2FS 2.4x

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 38

Summary: ZNS SSD

▪ What's good?

▪ What's bad?

	슬라이드 1: SSDs
	슬라이드 2: The Unwritten Contract
	슬라이드 3: FTL Architecture
	슬라이드 4: File System vs. FTL
	슬라이드 5: TRIM
	슬라이드 6: The Multi-streamed Solid-State Drive
	슬라이드 7: Effects of Write Patterns
	슬라이드 8: Stream
	슬라이드 9: The Multi-streamed SSD
	슬라이드 10: Working Example
	슬라이드 11: Architecture
	슬라이드 12: Case Study: Cassandra
	슬라이드 13: Cassandra’s Write Patterns
	슬라이드 14: Mapping #1: Conventional
	슬라이드 15: Mapping #2: Multi-App
	슬라이드 16: Mapping #3: Multi-Log
	슬라이드 17: Mapping #4: Multi-Data
	슬라이드 18: Results: Conventional
	슬라이드 19: Results: Conventional with TRIM
	슬라이드 20: Results: Multi-App
	슬라이드 21: Results: Multi-Log
	슬라이드 22: Results: Multi-Data
	슬라이드 23: Results: GC Overheads
	슬라이드 24: Results: Latency
	슬라이드 25: Summary
	슬라이드 26: ZNS SSDs
	슬라이드 27: The Block Interface Tax
	슬라이드 28: History
	슬라이드 29: ZNS SSDs
	슬라이드 30: Zoned Storage Model
	슬라이드 31: Writing to a Zone
	슬라이드 32: Reading from a Zone
	슬라이드 33: SMR HDDs and ZNS SSDs
	슬라이드 34: Linux Zoned Block Device Support
	슬라이드 35: Use Cases
	슬라이드 36: RocksDB on ZNS SSD
	슬라이드 37: RocksDB: Writes
	슬라이드 38: Summary: ZNS SSD

