Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University

Spring 2024

SSDs

The Unwritten Contract

Several assumptions are no longer valid

Assumptions	Disks	SSDs
Sequential accesses much faster than random	\bigcirc	\bigotimes
No write amplification	\bigcirc	\bigotimes
Little background activity	\bigcirc	\bigotimes
Media does not wear down	\odot	\bigotimes
Distant LBNs lead to longer access time	\bigcirc	\bigotimes

2

FTL Architecture

- Sector Translation Layer
 - Address mapping
 - Garbage collection
 - Wear leveling
- Block Management Layer
 - Bad block management
 - Error handling
- Low Level Driver
 - Flash interface

File System vs. FTL

What happens on file deletion?

TRIM

- ATA interface standard (TI3 technical committee)
 - "The data in the specified sectors is no longer needed"
 - Originally proposed as a non-queued command, but SATA 3.1 introduces the queued TRIM command
 - UNMAP, WRITE SAME with unmap flag in SCSI, DEALLOCATE in NVMe
- Types
 - Non-deterministic Trim: reads may return different data
 - Deterministic Trim: reads return the same data
 - Deterministic Read Zero after Trim: all reads shall return zero
- TRIM commands can be automatically issued on file deletion or format
- fstrim: discard unused blocks on a mounted file system

The Multi-streamed Solid-State Drive

(J.-U. Kang et al., HotStorage, 2014)

Some of slides are borrowed from the authors' presentation.

Effects of Write Patterns

Previous write patterns (= current state) matter

Stream

The Multi-streamed SSD

Mapping data with different lifetime to different streams

Working Example

• High GC efficiency \rightarrow Performance improvement

For effective multi-streaming, proper mapping of data to streams is essential!

Architecture

Case Study: Cassandra

Cassandra's Write Patterns

Write operations when Cassandra runs

Mapping #1: Conventional

Just one stream ID (= conventional SSD)

Mapping #2: Multi-App

Separate application writes (ID I) from system traffic (ID 0)

Mapping #3: Multi-Log

Use three streams; further separate Commit Log

Mapping #4: Multi-Data

Give distinct streams to different tiers of SSTables

Results: Conventional

- Cassandra's normalized update throughput
 - Conventional "TRIM off"

Results: Conventional with TRIM

- Cassandra's normalized update throughput
 - Conventional "TRIM on"

Results: Multi-App

- Cassandra's normalized update throughput
 - "Multi-App" (System data vs. Cassandra data)

Results: Multi-Log

- Cassandra's normalized update throughput
 - "Multi-Log" (System data vs. Commit-Log vs. Flushed data)

Results: Multi-Data

- Cassandra's normalized update throughput
 - "Multi-Data" (System data vs. Commit-Log vs. Flushed data vs. Compaction Data)

Results: GC Overheads

Cassandra's GC overheads

Results: Latency

- Cassandra's cumulated latency distribution
 - Multi-streaming improves write latency
 - At 99.9%, Multi-Data lowers the latency by 53% compared to Normal

- Mapping application and system data with different lifetimes to SSD streams
 - Higher GC efficiency, lower latency
- Multi-streaming can be supported on a state-of-the-art SSD and coexist with the traditional block interface
- Standardized in TIO SCSI (SAS SSDs) in 2015
- Standardized in NVMe 1.3 in 2017

ZNS SSDs

(Matias Bjørling et al., USENIX ATC, 2021)

Some of slides are borrowed from the authors' presentation.

The Block Interface Tax

- For flash-based SSDs, the block interface is a poor fit
 - SSDs append pages to erase blocks, need to erase whole block before rewriting

History

- Baidu's Software Defined Flash (SDF) [ASPLOS '14, EuroSys '14]
 - Expose a channel as an independent device
- OCSSD 1.2
 - Physical Page Addressing: Channel, LUN (die), Plane, Block, Page, Sector
 - Exposes flash read/program/erase timings and MLC page pairing information
 - Everything in the host
- OCSSD 2.0 [FAST '17]
 - Physical Page Addressing: Group (channel), LUN (PU), Chunk, Logical block
 - Read/write/reset commands
 - Write sequentially within a chunk
 - Media management in the drive

ZNS SSDs

- Sequential zone writes onto distinct erase blocks
 - Random writes are disallowed
 - Zones must be explicitly reset by the host
 - Data placement occurs at the coarse-grained level of zones
- ZNS SSDs relinquish GC responsibilities
 - GC of zones becomes the responsibility of the host
- Media reliability continues to be the full responsibility of the SSD

Zoned Storage Model

- Zones are laid out sequentially in an NVMe namespace
- The zone size is fixed and applies to all zones in the namespace
 - e.g., 512 MiB
- The command set inherits the NVMe Command Set
 - Built upon the conventional block interface (Read, Write, Flush and other commands)
 - Adds rules to collaborate on host and device data placement

Writing to a Zone

- "Sequential Write Required"
 - Must be written sequentially
 - Must be reset if written to again
- Each zone has a set of associated attributes:
 - Write pointer
 - Zone starting LBA
 - Zone capacity
 - Zone state
- Very similar to writing zones with host-managed SMR HDDs

Empty Zone

Partially Written Zone

Reading from a Zone

- Writes are required to be sequential within a zone
- Reads may be issued to any LBA within a zone and in any order

SMR HDDs and ZNS SSDs

- Host-managed SMR HDDs
 - Implements the SMR (ZAC/ZBC) specifications
 - ZAC: Zoned Device ATA Command Set in T13/SATA
 - ZBC: Zoned Block Commands in T10/SAS

NVMe ZNS SSDs

- Implement the Zoned NameSpace Command Set specification
- Aligned with ZAC/ZBC to allow interoperability
- A single unified software stack support both storage types
 - Utilizes the already mature Linux storage stack built for SMR HDDs

Linux Zoned Block Device Support

Use Cases

- Host-side FTL
 - Exposes the ZNS SSD as a conventional block SSD
 - High system overhead (DRAM and CPU)
 - For workloads with random write characteristics

File systems

- ZNS SSD-aware file systems (e.g., f2fs + zones)
- Efficient use of resources
- Some inefficient data placement causes host GC

- End-to-end data placement
 - Application-specific data placement (e.g., RocksDB + ZenFS)
 - No indirection overhead caused by FTL nor file system
 - Highest performance, lowest write amplification

RocksDB on ZNS SSD

- ZenFS
 - A storage backed for RocksDB
 - Extent-based
 - No GC

RocksDB:Writes

- Double the throughput over 28% OP SSDs
- Write amplification: ZNS 1.0x, XFS 2.0x, vanilla F2FS 2.4x

What's good?

What's bad?