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The Unwritten Contract

▪ Several assumptions are no longer valid

Assumptions Disks SSDs

Sequential accesses much faster than random

No write amplification

Little background activity

Media does not wear down

Distant LBNs lead to longer access time

Source: A. Rajimwale et al., "Block Management in Solid-State Devices," USENIX ATC, 2009.
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FTL Architecture

▪ Sector Translation Layer

• Address mapping

• Garbage collection

• Wear leveling

▪ Block Management Layer

• Bad block management

• Error handling

▪ Low Level Driver

• Flash interface

NAND storage
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Flash Memory Chip

Controller

File system

Block Layer

Block Device Driver
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File System vs. FTL

▪ What happens on file deletion?
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TRIM

▪ ATA interface standard (T13 technical committee)

• "The data in the specified sectors is no longer needed"

• Originally proposed as a non-queued command, but SATA 3.1 introduces the 

queued TRIM command

• UNMAP, WRITE SAME with unmap flag in SCSI, DEALLOCATE in NVMe

▪ Types

• Non-deterministic Trim: reads may return different data

• Deterministic Trim: reads return the same data

• Deterministic Read Zero after Trim: all reads shall return zero

▪ TRIM commands can be automatically issued on file deletion or format 

▪ fstrim: discard unused blocks on a mounted file system



The Multi-streamed 

Solid-State Drive

Some of slides are borrowed from the authors’ presentation.

(J.-U. Kang et al., HotStorage, 2014)
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Effects of Write Patterns

▪ Previous write patterns (= current state) matter
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Stream
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The Multi-streamed SSD

▪ Mapping data with different lifetime to different streams
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Working Example

▪ High GC efficiency → Performance improvement
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Architecture
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Case Study: Cassandra
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Cassandra’s Write Patterns

▪ Write operations when Cassandra runs
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Mapping #1: Conventional

▪ Just one stream ID (= conventional SSD)
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▪ Separate application writes (ID 1) from system traffic 

(ID 0)

Mapping #2: Multi-App
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Mapping #3: Multi-Log

▪ Use three streams; further separate Commit Log
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Mapping #4: Multi-Data

▪ Give distinct streams to different tiers of SSTables
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Results: Conventional

▪ Cassandra’s normalized update throughput

• Conventional “TRIM off”
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Results: Conventional with TRIM

▪ Cassandra’s normalized update throughput

• Conventional “TRIM on”
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Results: Multi-App

▪ Cassandra’s normalized update throughput

• “Multi-App” (System data vs. Cassandra data)
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Results: Multi-Log

▪ Cassandra’s normalized update throughput

• “Multi-Log” (System data vs. Commit-Log vs. Flushed data)
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Results: Multi-Data

▪ Cassandra’s normalized update throughput

• “Multi-Data” (System data vs. Commit-Log vs. Flushed data vs. Compaction Data)
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Results: GC Overheads

▪ Cassandra’s GC overheads
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Results: Latency

▪ Cassandra’s cumulated latency distribution

• Multi-streaming improves write latency

• At 99.9%, Multi-Data lowers the latency by 53% compared to Normal



4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

Summary

▪ Mapping application and system data with different lifetimes to SSD 

streams

• Higher GC efficiency, lower latency

▪ Multi-streaming can be supported on a state-of-the-art SSD and co-

exist with the traditional block interface

▪ Standardized in T10 SCSI (SAS SSDs) in 2015

▪ Standardized in NVMe 1.3 in 2017

25



ZNS SSDs

Some of slides are borrowed from the authors’ presentation.

(Matias Bjørling et al., USENIX ATC, 2021)
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The Block Interface Tax

▪ For flash-based SSDs, the block interface is a poor fit

• SSDs append pages to erase blocks, need to erase whole block before rewriting

▪ Data placement overhead

• Media over-provisioning (7 ~ 28%)

• Higher cost

• Write amplification 

• Unpredictable latency

• No isolation
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History

▪ Baidu's Software Defined Flash (SDF) [ASPLOS '14, EuroSys '14]

• Expose a channel as an independent device

▪ OCSSD 1.2

• Physical Page Addressing: Channel, LUN (die), Plane, Block, Page, Sector

• Exposes flash read/program/erase timings and MLC page pairing information

• Everything in the host

▪ OCSSD 2.0 [FAST '17]

• Physical Page Addressing: Group (channel), LUN (PU), Chunk, Logical block

• Read/write/reset commands

• Write sequentially within a chunk

• Media management in the drive
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ZNS SSDs

▪ Sequential zone writes onto distinct erase blocks

• Random writes are disallowed

• Zones must be explicitly reset by the host

• Data placement occurs at the coarse-grained level of zones

▪ ZNS SSDs relinquish GC responsibilities

• GC of zones becomes the responsibility of the host

▪ Media reliability continues to be the full 

responsibility of the SSD
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Zoned Storage Model

▪ Zones are laid out sequentially in an 

NVMe namespace

▪ The zone size is fixed and applies to all 

zones in the namespace

• e.g., 512 MiB

▪ The command set inherits the NVMe

Command Set

• Built upon the conventional block interface

(Read, Write, Flush and other commands)

• Adds rules to collaborate on host and device 

data placement
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Writing to a Zone

▪ "Sequential Write Required"

• Must be written sequentially

• Must be reset if written to again

▪ Each zone has a set of associated 

attributes:

• Write pointer 

• Zone starting LBA

• Zone capacity

• Zone state

▪ Very similar to writing zones within 

host-managed SMR HDDs
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Reading from a Zone

▪ Writes are required to be sequential within a zone

▪ Reads may be issued to any LBA within a zone and in any order
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SMR HDDs and ZNS SSDs

▪ Host-managed SMR HDDs

• Implements the SMR (ZAC/ZBC) specifications

• ZAC: Zoned Device ATA Command Set in T13/SATA

• ZBC: Zoned Block Commands in T10/SAS

▪ NVMe ZNS SSDs

• Implement the Zoned NameSpace Command Set specification

• Aligned with ZAC/ZBC to allow interoperability

▪ A single unified software stack support both storage types

• Utilizes the already mature Linux storage stack built for SMR HDDs

Image from https://blog.westerndigital.com/what-is-zoned-storage-initiative/
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Linux Zoned Block Device Support

https://zonedstorage.io/linux/overview/
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Use Cases

▪ Host-side FTL

• Exposes the ZNS SSD 

as a conventional block 

SSD

• High system overhead 

(DRAM and CPU)

• For workloads with 

random write 

characteristics

▪ File systems

• ZNS SSD-aware file 

systems

(e.g., f2fs + zones)

• Efficient use of 

resources

• Some inefficient data 

placement causes host 

GC

▪ End-to-end data 

placement

• Application-specific 

data placement

(e.g., RocksDB + ZenFS)

• No indirection 

overhead caused by 

FTL nor file system

• Highest performance, 

lowest write 

amplification
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RocksDB on ZNS SSD

▪ ZenFS

• A storage backed for RocksDB

• Extent-based

• No GC
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RocksDB: Writes

▪ Double the throughput over 28% OP SSDs

▪ Write amplification: ZNS 1.0x, XFS 2.0x, vanilla F2FS 2.4x
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Summary: ZNS SSD

▪ What's good?

▪ What's bad?
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