Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2024

4190.568:
Advanced

Operating Systems

Course Information

" Schedule
* [5:30 — 16:45 (Tuesday & Thursday)
* Engineering Bldg. #301-203
* 3 credits
* Official language: Korean

* Course homepage:
http://csl.snu.ac.kr/courses/4190.568/2024-1/

" |ecture slides will be uploaded in the course homepage before the class

http://csl.snu.ac.kr/courses/4190.568/2024-1/

About Me

. . L
" Jin-S00 Kim (?:I;ﬂ_'—) SW STOR LAB
* Professor @ CSE Dept. T = o=

o Qunmmzs [HusaNz 7P oo o

| S " @ YouTube

ME| AL

@openssds - 54 6362 - 534 14474
X2 XEMIS| ot >
openssd-project.org 2| &3 174

* Operating systems, storage systems, parallel and distributed computing, embedded
systems, ...

* Systems Software & Architecture Laboratory

* E-mail: jinsoo.kim@snu.ac.kr
= Tel:02-880-7302
= Office: Engineering Bldg. #301-504

" The best way to contact me is by email

mailto:jinsoo.kim@snu.ac.kr
https://youtube.com/@openssds

Prerequisites

" Prerequisites
* M1522.000800 Undergraduate Systems Programming or equivalent
* 4190.307 Undergraduate Operating Systems or equivalent
* 4190.308 Undergraduate Computer Architecture or equivalent

= We will review some of fundamental
operating system concepts to awaken
the force within you

Image from https://pngimg.com/download/28396
4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

Course Plan

" Lectures
* Advanced topics on operating systems

* Linux case study
" |nvited talks

= Reading assignments
* One paper per week

* You need to fill out Google forms
=_Paper-presentation
* Term project

» Final exam

Topics Planned

" |ntroduction to computer " Processes and threads
systems research = CPU scheduling

* |ntroduction to operating systems =_Synchronization{2)

= Storage " Virtual memory

= File systems * Linux memory management

= SSDs = Virtual machines

" OS structure and design

Class Materials

" Quality research papers from major conferences will be used:

SOSP (ACM Symposium on Operating Systems Principles)
OSDI (USENIX Symposium on Operating Systems Design and Implementation)

ASPLOS (ACM Conference on Architectural Support for Programming Languages
and Operating Systems)

USENIX ATC (USENIX Annual Technical Conference)

FAST (USENIX Conference on File and Storage Technologies)

EuroSys (ACM European Systems Conference)

NSDI (USENIX Symposium on Networked Systems Design and Implementation)

Association for f u S e n I x

Computing Machinery HEAOVANCED e
ASSOCIATION

4190.568 Advance d Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

References

: , . Operating
= Operating Systems: Three Easy Pieces Systems
* By Remzi & Andrea Arpaci-Dusseau o
* Freely available at http://ostep.org S
/ Operating
. . - S =t
* Operating Systems: Principles and Practice i, R
* By Tom Anderson & Michael Dahlin
MODERN . o0t
* 2nd Edition, Recursive Books, 204 VI

* Modern Operating Systems
* By Andrew Tanenbaum & Herbert Bos
 5th Edition, Pearson Education, 2022

http://ostep.org/

Reading Assignments

* Critical reading of technical papers is a must skill to have for your
research

* The reading list will be posted in the course home page

Reading List Historical Perspective

e (H1) D. Ritchie and K. Thompson, “The UNIX Time-Sharing System,” CACM, 1974. (The
SIGOPS Hall of Fame Award ‘05)

e (H2) D. Ritchie, “The Evolution of the Unix Time-sharing System,” AT&T Bell
Laboratories Technical Journal 63, No. 6, October 1984, pp.1577-93.

Computer Systems Research

e (I1) Butler W. Lampson, “Hints for Computer System Design,” SOSP, 1983. (The
SIGOPS Hall of Fame Award ‘05)

e (12) Roy Levin and David D. Redell, “An Evaluation of the Ninth SOSP Submissions or
How (and How Not) to Write a Good Systems Paper,” ACM Operating Systems Review,
1983.

Projects

* Term projects should be done in teams of three students

* Each project should be completed within this semester with some
tangible results

* New ideas without any evaluation will not be considered for grading, no matter
how novel they are

' o - - - aAavravav¥Ya -V eV a - avea - eaidnvaea alfa alaa - -
"o LI A\l W LJ é - \ud AW

U
1
A J
1
q
q
J
U
M
0
4

" Project topics should be related to NVMeVirt!

10

NVMeVirt [FAST 23]

= A versatile software-defined virtual
NVMe device

= Source code available at
https://github.com/snu-csl/nvmevirt

NVMeVirt: A Versatile Software-defined Virtual NVMe Device

Sang-Hoon Kim Jaehoon Shim Euidong Lee
Ajou University Seoul National University Seoul National University
Seongyeop Jeong Ilkueon Kang Jin-Soo Kim
Seoul National University Seoul National University Seoul National University
Abstract SSD (ZNS SSD) [4, 12], key-value SSD (KVSSD) [14, 19,23,

There have been drastic changes in the storage device land-
scape recently. At the center of the diverse storage landscape
lies the NVMe interface, which allows high-performance
and flexible communication models required by these next-
generation device types. However, its hardware-oriented def-
inition and specification are bottlenecking the development
and evaluation cycle for new revolutionary storage devices.

In this paper, we present NVMeVirt, a novel approach to
facilitate software-defined NVMe devices. A user can define
any NVMe device type with custom features, and NVMeVirt
allows it to bridge the gap between the host I/O stack and
the virtual NVMe device in software. We demonstrate the
advantages and features of NVMeVirt by realizing various
storage types and configurations, such as conventional SSDs,
low-latency high-bandwidth NVM SSDs, zoned namespace
SSDs, and key-value SSDs with the support of PCI peer-to-
peer DMA and NVMe-oF target offloading. We also make
cases for storage research with NVMeVirt, such as studying
the performance characteristics of database engines and ex-
tending the NVMe specification for the improved key-value
SSD performance.

1 Introduction

NAND flash memory gains significant popularity for con-
sumer devices and enterprise servers, and the fast advance-
ment of semiconductor technologies fosters the non-volatile
memory (NVM) to build storage devices, enlightening high-
density low-latency storage devices. Nowadays, we can pur-
chase off-the-shelf storage devices, which feature tens of mi-
crosecond latency and several GiB/s of bandwidth [16,47].
Along with the performance and data density improvement,
there has been an active trend toward making storage de-
vices smarter and more capable. For efficient and effective
data processing and management, many innovative device
concepts have been proposed, including but not limited to
Open-Channel SSD (OCSSD) [5,34,41], zoned namespace

45], and computational storage [8,11,20,29,31,33,52]. These
new types of devices are significantly diversifying the storage
device landscape. In this trend, software-based storage emu-
lators are becoming more important than ever. For instance,
when academia and/or industry propose an innovative storage
device concept, fully developing an actual product from the
conceptual idea takes a while. Meanwhile, we can implement
a new concept in an emulator and see its benefits and pitfalls
while running real workloads. This can provide us invaluable
insights, facilitating rapid design space exploration. Moreover,
by collecting various performance metrics from the emulator,
we can understand the I/O characteristics of operating sys-
tems and the applications. This information can be used to
optimize both the software and hardware of the target system.
Finally, each emulator has a sophisticated performance model
along with many knobs that can control a certain performance
characteristic of the emulated device. This can help us predict
the application performance on future storage devices that
exhibit different performance characteristics.

However, to the authors’ best knowledge, none of the pre-
viously proposed emulators fully satisfy the requirements to
be used in the modern storage environment. Many emerging
device types are often optimized to their primary targeting
workloads and require a customized communication model be-
tween the host and device. This requirement makes the NVMe
interface the most preferred interface for the emerging device
types due to its flexibility and extendibility. This implies that
a proper storage emulator should provide a comprehensive
method to customize at the NVMe interface level. However,
emulating the full NVMe interface in software is challeng-
ing as the NVMe interface inherently involves the protocol
defined at the hardware level. Previous work proposes to cir-
cumvent the difficulty of emulating the NVMe interface by in-
terposing hooks in the host NVMe device driver or leveraging
virtualization technologies [12,32,35,55]. However, these ap-
proaches fail to present a suitable NVMe device instance that
is fully functional in the diverse modern storage environments
such as when the kernel is being bypassed [24,54] or when a

USENIX Association 21st USENIX Conference on File and Storage Technologies 379

11

https://github.com/snu-csl/nvmevirt

Some Project Topics

* Port NVMeVirt to other platforms (e.g.,Apple MI/M2)

* Tune the performance model for real SSDs

* Currently, NVMeVirt has performance models for Intel P4800X Optane SSD,
Samsung 970 Pro SSD, Samsung KVSSD, and WD ZN640 ZNS SSD

* Propose a new NVMe interface and show its benefit
= Study application's storage access pattern
= Study applications' behavior when the storage gets faster/slower

* Propose a new storage stack for high-performance storage device

12

Past Project Topics

Spring 2023
Fall 2022
Fall 2021
Fall 2020

Spring 2019

http://csl.snu.ac.kr/courses/4190.568/2023- | /#conf

http://csl.snu.ac.kr/courses/4190.568/2022-2/#conf

http://csl.snu.ac.kr/courses/4190.568/202 | -2/#projects

http://csl.snu.ac.kr/courses/4190.568/2020-2/#projects

http://csl.snu.ac.kr/courses/4190.568/2019- | /#conf

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

13

http://csl.snu.ac.kr/courses/4190.568/2023-1/#conf
http://csl.snu.ac.kr/courses/4190.568/2022-2/#conf
http://csl.snu.ac.kr/courses/4190.568/2021-2/#projects
http://csl.snu.ac.kr/courses/4190.568/2020-2/#projects
http://csl.snu.ac.kr/courses/4190.568/2019-1/#conf

Get Some |ldea Here, Too!

Originals

‘'ouTube Music

]

N

Downloads

Running Filesystem Services in User Space -

> Premium

XFUSE

An Infrastructure for

PLAY ALL

A AE2|X| T 7 5

64 videos * 102 views * Updated today

=+

|

>

A4
A

2

Ejai

SUBSCRIBED

il

XFUSE

Running Filesysts

arc201 22:26

Efficient Memory Disaggregation with

Infiniswap
nsoi2017 27:22

Max

AMulticore-Accelerated File System
for Flash Storage

ac2021 23:46

Wodernizing File System through

In-Storage
Indexing

ospi2021 32:50

Rearchitecting
Linux Storage Stack

for s Latency and High Throughput

0sDI 2021 22:57

ZNS+

Advanced Zoned Namespace Interface
for Supporting In-Storage Zone Compaction

ospi2021 25:15

$ F Q

[HA A2/ 2 47 5
Space (ATC "21)

M| A

2f] XFUSE: An Infrastructure for Running Filesystem Services in User

[EHM 2EE[X] SH A 5

ARE| O

2f] Efficient Memory Disaggregation with INFINISWAP (NSDI '17)

[£ A AE2|X] 23 S5l 53] Max: A Multicore-Accelerated File System for Flash Storage (ATC '21)

7 52 Modernizing File System through In-Storage Indexing (OSDI '21)

[£ M A~E2|X| 23 S5 53] Rearchitecting Linux Storage Stack for ps Latency and High Throughput
(0SDI '21)

M| A

[EM AE2|X] #E S5 5T ZNS+ (0SDI 21)

Projects: Proposal

* Due: April 26th (tentative)
* Format: | page, free writing

" Project proposal should include the following:

* The motivation and the goal of your work

The problem you would like to solve (define clearly)

Brief summary of related work

Your ideas to solve the problem

Research plan for the project

" Project proposals will be reviewed by the instructor

15

Projects: Mini-Conference & Term Paper

= Mini-Conference
* Each project team should give a formal presentation
* On June |8th (tentative)

= Term paper
* Due:June |19th (tentative)
* In ACM/IEEE conference proceedings format (two columns)

* Up to 6-page long in English

4190.568 Advanced Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Projects: Evaluation

" Your term paper will be evaluated using the following criteria:

|. Brightness: on your motivation and idea

2. Comprehensiveness: on the survey of existing work
3. Soundness: on your methodology

4. Impressiveness: on your results

5.Your time and efforts spent on this project

Grading Policy

* Paper reading: 20%
* Final exam: 40%

* Term project: 40%

" |f your final exam score is below the threshold (i.e., 30/100), you won’t
get the A or B grade

= Subject to change

Reading Assignment #|

Computer Systems Research

e (I1) Butler W. Lampson, “Hints for Computer System Design,” SOSP,
1983. (The SIGOPS Hall of Fame Award ‘05)

= Due: Before the next class on March |2th

4190.568 Advance d Operating Systems | Spring 2024 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

	슬라이드 1: 4190.568: Advanced Operating Systems
	슬라이드 2: Course Information
	슬라이드 3: About Me
	슬라이드 4: Prerequisites
	슬라이드 5: Course Plan
	슬라이드 6: Topics Planned
	슬라이드 7: Class Materials
	슬라이드 8: References
	슬라이드 9: Reading Assignments
	슬라이드 10: Projects
	슬라이드 11: NVMeVirt [FAST '23]
	슬라이드 12: Some Project Topics
	슬라이드 13: Past Project Topics
	슬라이드 14: Get Some Idea Here, Too!
	슬라이드 15: Projects: Proposal
	슬라이드 16: Projects: Mini-Conference & Term Paper
	슬라이드 17: Projects: Evaluation
	슬라이드 18: Grading Policy
	슬라이드 19: Reading Assignment #1

