
Flash Memory

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

0 = Electrons present

▪ Two states based on the presence of electrons

▪ Challenges

• How to attract or expel electrons?

• How to find out whether there are

electrons or not?

• How to keep electrons without any power?

1 = No electrons

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Erase-before-write

• Read

• Write or Program: 1 → 0

• Erase: 0 → 1

▪ Bulk erase

• Read/program unit

– NOR: byte or word

– NAND: page

• Erase unit: block

1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0

1 1 1 1 1 1 1 1

write
(program)

erase

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ A collection of blocks

▪ Each block has a number of pages

▪ The size of a block or a page depends on the technology

(but, it’s getting larger)

Page 0

Block 1

Page 1

Page m-1

Block n-1Block 0

Data area Spare area

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Each plane has its own page register and cache register

▪ Pages can be programmed or read at once

▪ Optional feature: 1, 2, 4, 8, … planes

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Each chip has multiple dies (can be stacked)

▪ + extra circuits, chip enable signal, ready/busy signal

N. Agrawal, Design Tradeoffs for SSD Performance, USENIX ATC, 2008.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ SLC NAND

• Single Level Cell (1 bit/cell)

▪ MLC NAND

• Multi Level Cell (2 bits/cell)

▪ TLC NAND

• Triple Level Cell (3 bits/cell)

▪ QLC NAND

• Quad Level Cell (4 bits/cell)

▪ 3D NAND (or V-NAND)

Source: Micron Technology, Inc.

Characteristics of NAND Flash

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ In-place update (overwrite) is not allowed

▪ Pages must be erased before new data is programmed

▪ The erase unit is much larger than the read/write unit

• Read/write unit: page (4KB, 8KB, 16KB, …)

• Erase unit: block (64-512 pages)

▪ What if there are live pages in the block we wish to erase?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ The number of times NAND flash blocks can reliably be programmed

and erased (P/E cycle) is limited

• SLCs: 50,000 ~ 100,000

• MLCs: 1,500 ~ 5,000

• eMLCs (Enterprise MLCs): 10,000 ~ 30,000

• TLCs: < 1,000

• QLCs: ???

▪ High voltage applied to cell degrades oxide

• Electrons are trapped in oxide

• Break down of the oxide structure

▪ Requires ____________

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

E. Grochowski et al., Future Technology Challenges for NAND Flash and HDD Products, FMS, 2012.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Reading a page is faster than programming it

▪ Usually more than 10x

• e.g., 1ynm MLC1: Read 45µs, Program 1350µs, Erase 4ms

▪ Programming a page should go through multiple steps of Program &

Verify phases

▪ As the technology shrinks, read/write latency tends to increase

▪ MLC and TLC make it even worse

1 D. Sharma, System Design for Mainstream TLC SSD, FMS, 2014.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ LSB programmed first

• Cell cannot move to the lower voltage before erase

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ One cell represents two or three bits in paired pages

• LSB: low voltage, fast program, less error

• MSB: high voltage, slow program, more error

▪ Performance difference

▪ LSB page can be

corrupted when MSB

page programming

is interrupted

L. M. Grupp et al., The Harey Tortoise: Managing Heterogeneous Write Performance in SSDs, USENIX ATC, 2013.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

C. Gao et al., “Reprogramming 3D TLC Flash Memory based Solid State Drives”, ACM TOS 2022.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Bits are flipping frequently

▪ Error Correction Code (ECC) in spare area

Source: Micron Technology, Inc.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Endurance continues to deteriorate

▪ Stronger ECCs are required: RS, BCH, LDPC

Y. Cai et al., Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis, DATE, 2012.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Write disturbance

• When a page is programmed, adjacent

calls receive elevated voltage stress

▪ Read disturbance

• Repeated reading from one page can

alter the values stored in other unread

pages

▪ _________ error

• Threshold voltage shifts down due to

charge leakage from the floating gate

Write disturbance

Read disturbance

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Initial bad blocks

• Due to production yield constraints and the pressure to keep costs low

• SLCs: up to 2%

• MLCs: up to 5%

▪ Run-time bad blocks

• Read, write, or erase failure

• Permanent shift in the voltage levels of the cells due to trapped electrons

▪ Requires run-time bad block management

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ NOP

• The number of partial-page programming is limited

• 1 / sector for most SLCs (4 for 2KB page)

• 1 / page for most MLCs and TLCs

▪ Sequential page programming

• Pages should be programmed sequentially inside a block

• For large block SLCs, MLCs, and TLCs

▪ SLC mode

• Possible to use only LSB pages in MLCs and TLCs

• Faster and more reliable, higher P/E cycles

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ NAND Flash memory is a beauty

• Small, light-weight, robust, low-cost,

low-power non-volatile device

▪ NAND Flash memory is a beast

• Much slower program/erase operations

• No in-place-update

• Erase unit > write unit

• Limited lifetime

• Bit errors, bad blocks, …

▪ Software support is essential for

performance and reliability!

Page Mapping FTL

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ A software layer to make NAND flash fully emulate traditional block

devices (or disks)

+
Device Driver

Read Write Erase

File System

Read Sectors Write Sectors

Flash Memory

Mismatch!

+
Device Driver

Flash Memory

FTL

+

Read Sectors Write Sectors

File System

Read Sectors Write Sectors

Source: Zeen Info. Tech.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

… …

LBA address space
(As seen by the host)

write

Mapping table

data

NAND flash

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Required due to “no overwrite” characteristic

… …

LBA address space
(As seen by the host)

write

Mapping table

old data

NAND flash

new data

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

E. H. Nam, HIL: FTL Design Framework with Provably-correct Crash Recovery, NVRAMOS, 2013.

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Page mapping

• Fine-granularity page-level map table

• Hugh amount of memory space required for the map table

▪ Block mapping

• Coarse-granularity block-level map table

• Small amount of memory space required for the map table

▪ ________ mapping

• Use both page-level and block-level map tables

• Higher algorithm complexity

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Mapping in page-level

• Logical page number → physical page number

• Page mapping table (PMT) required

• # entries in PMT == # pages visible to OS

▪ Translation

• Step 1: logical sector number (LSN) → logical page number (LPN)

• Step 2: LPN → physical page number (PPN) via PMT

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ Reading page 8

Logical page #8 0000001000

0 0

1 1

2 2

3

0 0

1 1

2 2

8 3

4 4

5 5

6

7

8

9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 5

6

7

8 3

9

10

11

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5

0 0

1 1

2 2

3

0 0

1 1

2 2

8 3

4 4

5 5

6

7

8

9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 5

6

7

8 3

9

10

11

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5

0 0

1 1

2 2

3

0 0

1 1

2 2

8 3

4 4

5 5

9 6

7

8

9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 5

6

7

8 3

9 6

10

11

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5

0 0

1 1

2 2

3 7

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

8

9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 5

6

7

8 3

9 6

10

11

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5

0 0

1 1

2 2

3 7

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 5 8

6

7

8 3

9 6

10

11

Invalidate
old page

Updated
page write

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Pros

• Most flexible

• Efficient handling of small random writes

– A logical page can be located anywhere within the flash storage

– Updated page can be written to any free page

▪ Cons

• Large memory footprint

– One page mapping entry per page

– 32MB for 32GB (4KB page)

• Sensitive to the amount of reserved blocks

• Performance affected as the system ages

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 35

http://tfindelkind.com/2015/08/20/

4KB random writes

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 36

▪ Garbage collection (GC)

• Eventually, FTL will run out of blocks to write to

• GC must be performed to reclaim free space

• Actual GC procedure depends on the mapping scheme

▪ GC in page-mapping FTL

• Select victim block(s)

• Copy all valid pages of victim block(s) to free block

• Erase victim block(s)

• Note: At least one free block should be reserved for GC

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 37

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4

0 0

1 1

2 2

3 7

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 8

6

7

8 3

9 6

10

11

Spare block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 38

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4

0 0

1 1

2 2

3 7

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

8 9

10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 8

6

7

8 9

9 6

10

11

Spare block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 39

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4

0 0

1 1

2 2

3 7

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

8 9

9 10

11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 8

6

7

8 9

9 10

10

11

Spare block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 40

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4

0 0

1 1

2 2

3 11

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

8 9

9 10

3 11

12

13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 4

5 8

6

7

8 9

9 10

10

11

Spare block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 41

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4

0 0

1 13

2 2

3 11

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

8 9

9 10

3 11

4 12

1 13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 12

5 8

6

7

8 9

9 10

10

11

victim

Valid page copy

Updated page write

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 42

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4

0 0

1 13

2 2

3 11

0 0

1 1

2 2

8 3

4

5

6

7

5 8

8 9

9 10

3 11

4 12

1 13

4 14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 14

5 8

6

7

8 9

9 10

10

11

Spare block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 43

▪ Ratio of data written to flash to data written from host

▪ Write Amplification Factor (WAF)

= 𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑡𝑜 𝐹𝑙𝑎𝑠ℎ

𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑓𝑟𝑜𝑚 𝐻𝑜𝑠𝑡
=

𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑓𝑟𝑜𝑚 𝐻𝑜𝑠𝑡+𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝐺𝐶

𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑒𝑛 𝑓𝑟𝑜𝑚 𝐻𝑜𝑠𝑡

▪ Generally, WAF is greater than one in flash storage

• Due to valid page copies made from victim block to free block during GC

• WAF is one of metrics that shows the efficiency of GC

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 44

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8, 9, 3, 1

▪ WAF = 1.08

• Total host writes: 13

• Total flash writes: 14

0 0

1 13

2 2

3 11

0 0

1 1

2 2

8 3

4 4

5 5

9 6

3 7

5 8

8 9

9 10

3 11

4 12

1 13

14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 12

5 8

6

7

8 9

9 10

10

11

victim

Valid page copy

Updated page write

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 45

▪ Selects a block with the largest amount of invalid data

▪ A block with the _________ utilization u

𝑢 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑝𝑎𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑏𝑙𝑜𝑐𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑏𝑙𝑜𝑐𝑘

▪ Pros?

▪ Cons?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 46

▪ Selects a block with the __________

𝐵𝑒𝑛𝑒𝑓𝑖𝑡

𝐶𝑜𝑠𝑡
=

(1 − 𝑢)

2𝑢
× 𝑎𝑔𝑒

• u: utilization

• age: the time since the last modification

▪ Pros?

▪ Cons?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 47

▪ OP (Over-Provisioning) =
𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
− 1

• Extra media space on an SSD that does not contain user data

▪ Typical SSDs have more space than is advertised

• Consumer SSDs: ~ 7%

– 1 Gigabyte (GB) = 109 bytes = 1,000,000,000 bytes

– 1 Gibibyte (GiB) = 230 bytes = 1,073,741,824 bytes

• Enterprise SSDs: > 25%

– 100GB user space on 128GiB SSD: 37.4%

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 48

▪ OP = 33%

• Logical capacity: 3 blocks

• Physical capacity: 4 blocks

0 0

1 13

2 2

3 11

0 0

1 1

2 2

8 3

4

5

6

7

5 8

8 9

9 10

3 11

4 12

1 13

4 14

15

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Page Map Table Data Block PPN

4 14

5 8

6

7

8 9

9 10

10

11

Spare block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 49

▪ Over-Provisioning Space (OPS) is used for

• Write buffers

• _____________

• _____________

• _____________

▪ Garbage collection cost

• Affected by utilization of SSD space and Over-Provisioning

• ______ utilization → Better performance

• ______ OP → Better performance

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 50

▪ IOPS for random write workloads

• What about for sequential write workloads?

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

	슬라이드 1: Flash Memory
	슬라이드 2: Flash Memory Basics
	슬라이드 3: Flash Memory Characteristics
	슬라이드 4: Logical View of NAND Flash
	슬라이드 5: Plane
	슬라이드 6: Die / Chip
	슬라이드 7: NAND Flash Types
	슬라이드 8: Characteristics of NAND Flash
	슬라이드 9: Erase-Before-Write
	슬라이드 10: Limited Lifetime
	슬라이드 11: Flash Endurance
	슬라이드 12: Asymmetric Read/Write Latency
	슬라이드 13: MLC Programming
	슬라이드 14: Paired Pages in MLC
	슬라이드 15: TLC One-Shot Programming
	슬라이드 16: Bit Errors
	슬라이드 17: ECC Requirements
	슬라이드 18: Reliability
	슬라이드 19: Bad Blocks
	슬라이드 20: Page Programming Constraints
	슬라이드 21: Beauty and the Beast
	슬라이드 22: Page Mapping FTL
	슬라이드 23: What is FTL?
	슬라이드 24: Address Mapping
	슬라이드 25: Address Mapping
	슬라이드 26: Plethora of FTLs
	슬라이드 27: Mapping Schemes
	슬라이드 28: Page Mapping
	슬라이드 29: Example: Page Mapping
	슬라이드 30: Example: Page Mapping
	슬라이드 31: Example: Page Mapping
	슬라이드 32: Example: Page Mapping
	슬라이드 33: Example: Page Mapping
	슬라이드 34: Page Mapping
	슬라이드 35: Why?
	슬라이드 36: Garbage Collection
	슬라이드 37: Example: GC in Page Mapping
	슬라이드 38: Example: GC in Page Mapping
	슬라이드 39: Example: GC in Page Mapping
	슬라이드 40: Example: GC in Page Mapping
	슬라이드 41: Example: GC in Page Mapping
	슬라이드 42: Example: GC in Page Mapping
	슬라이드 43: Write Amplification
	슬라이드 44: Example: Write Amplification
	슬라이드 45: Victim Selection Policy: Greedy
	슬라이드 46: Victim Selection Policy: Cost-Benefit
	슬라이드 47: Over-Provisioning
	슬라이드 48: Example: Over-Provisioning
	슬라이드 49: Why Over-Provisioning?
	슬라이드 50: Over-Provisioning and GC

