Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

Flash Memory

Flash Memory Basics

= Two states based on the presence of electrons

0 = Electrons present 1 = No electrons

" Challenges
* How to attract or expel electrons!?

e How to find out whether there are
electrons or not!

* How to keep electrons without any power?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

Flash Memory Characteristics

= Erase-before-write

* Read

* Write or Program: | 2 0 MEIEIEIEIEIEE

* Erase: 0 2 | write
(program)

11001 1/ 1|0] 1|0

" Bulk erase

* Read/program unit 1 erase
— NOR: byte or word
— NAND: page

* Erase unit: block

111]11(1{1]11]1]1

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Logical View of NAND Flash

= A collection of blocks

* Each block has a number of pages

* The size of a block or a page depends on the technology
(but, it’s getting larger)

B I

Data area Spare area

Plane

* Each plane has its own page register and cache register
" Pages can be programmed or read at once

= Optional feature: |,2,4,8, ... planes

+2,112 bytes—«— 2,112 bytes —»

- L e 107
Cache Register 2,048 164 2,048 64 IIO’('}
1 |
Data Register 2,048 64l 2,048 64
(_ 1 page = (2K + 64 bytes)
2,048 blocks } 1block - O o es x 64 pages
per plane 1 block 1 block
4,096 blocks 2 1 plane = (128K + 4K) bytes x 2,048 blocks
- = 2,112Mb
per device
1 device = 2,112Mb x 2 planes
_ = 4,224Mb
L A J
v v
Plane of Plane of
even-numbered blocks odd-numbered blocks

(0,2,4,6, .., 4,092 4,094) (1,3,5,7, .., 4,093, 4,095)

Die / Chip

" Each chip has multiple dies (can be stacked)

" + extra circuits, chip enable signal, ready/busy signal

! | Serial Connection | !
1 1
1 1
1 Plane 0 Plane 1 Plane 2 Plane 3 Plane 0 Plane 1 Plane 2 Plane 3 1
1 Block 0 Block 1 Block 4096 Block 4097 Block 0 Block 1 Block 4096 Block 4097 1
1 1
1 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 1
1 Page 1 Page 1 Pagel Pagel Page 1 Pagel Pagel Page 1 1
o o o o o o o o
1 o o o o o 0 o o 1
1 Page 63 ‘ | Page 63 | | Page 63 ‘ | Page 63 Page 63 | ‘ Page 63 ‘ ‘ Page 63 | ‘ Page 63 1
1 1
1 1
o o o o o o o o
1 1
o o (4] o o o o o
I o o (4] o o o o o I
1 o o o o o o 0 ° 1
1 1
1 Block 4094 Block 4095 Block 8190 Block 8191 Block 4094 Block 4095 Block 8190 Block 8191 1
! Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 Page 0 !
1 1
I Page 1 Page 1 Page 1 Page 1 Page 1 Page 1l Pagel Page 1 I
o o o o o o o o
1 o o o o o o o o 1
1 ‘ Page 63 ‘ | Page 63 ‘ Page 63 Page 63 | Page 63 | | Page 63 | Page 63 Page 63 1
1 1
1 | 4K Register | [[4K Register | 3K Register || | [4K Register | | 4K Regist | | 4K Register | [[4K Register | | 4K Register | 1
1 1
1 . 1
Die 0
1 Flash Package (4 GB) Die 1 1

N. Agrawal, Design Tradeoffs for SSD Performance, USENIX ATC, 2008.
6

NAND Flash Types

= SLC NAND
* Single Level Cell (I bit/cell)

= MLC NAND
* Multi Level Cell (2 bits/cell)

= TLC NAND
* Triple Level Cell (3 bits/cell)

= QLC NAND
* Quad Level Cell (4 bits/cell)

= 3D NAND (or V-NAND)

Distribution of Cells

Distribution of Celb

What is the Difference

» SLC NAND stores 2 states per memory cell and allows 1 bit

programmedfread per memory cell.

Reference Polnt

SLC: One Bit Per Cell Vi

* MLC stands for multi-level cell NAND
» MLC MAMND stores 4 states per memory cell and allows 2 bits

programmed/read per memory cell

Reference Poirts

MLC: Two Bits Per Cell Vi

Source: Micron Technology, Inc.

7

Characteristics of NAND Flash

Erase-Before-VWrite

" |n-place update (overwrite) is not allowed
" Pages must be erased before new data is programmed

* The erase unit is much larger than the read/write unit
* Read/write unit: page (4KB, 8KB, |6KB, ...)
* Erase unit: block (64-512 pages)

* What if there are live pages in the block we wish to erase!

Limited Lifetime

* The number of times NAND flash blocks can reliably be programmed
and erased (P/E cycle) is limited
* SLCs: 50,000 ~ 100,000
MLGCs: 1,500 ~ 5,000
eMLCs (Enterprise MLCs): 10,000 ~ 30,000
TLCs: < 1,000
e QLGCs:

= High voltage applied to cell degrades oxide

* Electrons are trapped in oxide

* Break down of the oxide structure

= Requires

Flash Endurance

Program/Erase Cycles

100000

10000

1000

100

NAND Flash Memory Endurance Properties

E * SLC \
i * MLC a—
i * TLC
[Lithography nm
10 90 64 51 40 32 20 18 16 14
| | | | l | | | | | | | | | |
2000 2005 2010 2015

E. Grochowski et al., Future Technology Challenges for NAND Flash and HDD Products, FMS, 2012.
11

Asymmetric Read/VVrite Latency

* Reading a page is faster than programming it
" Usually more than |0x
 e.g., lynm MLC': Read 45us, Program 1350us, Erase 4ms

* Programming a page should go through multiple steps of Program &
Verify phases

" As the technology shrinks, read/write latency tends to increase
* MLC and TLC make it even worse

1D. Sharma, System Design for Mainstream TLC SSD, FMS, 2014.

MLC Programming

= | SB programmed first

* Cell cannot move to the lower voltage before erase

ERASE PROGRAM Erased ﬁ
MSE Program LSB Program MSE Program VR, V‘"‘
LSB programing
MSB 1 ENBEEE == 0 : p.
LsB { 1 0 \ 1 m
VR, [} Vin

MSB programing

—|
0
<
w
v

|
1L |

RD1 RD2 RD3 N b R
Vread 11 @ @
VR, VR

Program : “1”(Erase) - “0”(Program)

LSB Program : 1) Erase > Erase, 2) Erase > LSB
MSB Program: 1) Erase > Erase, 2) Erase = PV1, 3) LSB > PV2, 4) LSB > PV3

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

2
R, V

3 v

o
-

th

Paired Pages in MLC

" One cell represents two or three bits in paired pages

* LSB:low voltage, fast program, less error

* MSB: high voltage, slow program, more error

® Performance difference

26
Es
= | SB page can be z 4
corrupted when MSB = 2
page programming :'% g

is interrupted 3

o

First Bit
. Second Bit
B Thid Bit

A

@
NI
N 6‘ 7\ ,—zv_,\ 6‘0\ 67\ S?’ 7\ <5 96‘\ 76’
®%%%%%%%®

L. M. Grupp et al., The Harey Tortoise: Managing Heterogeneous Write Performance

e in SSDs, USENIX ATC, 201

TLC One-Shot Programming

Vrefs Vrefs

Vref3

Vreft Vref2

Vrefo

pIoysaiyJ, 33ej[0A
Jo Aqeqoid

ry based Solid State Drives”

Bit Errors

= Bits are flipping frequently

* Error Correction Code (ECC) in spare area

Spare Area
Page 4KB (128 byte)
A A

Data #2

Data #3

Data #4

512 bytes | 512 bytes 512 bytes

Data #8 ECC ECC

Data #6 Data #7
512 bytes | 512bytes 512 bytes # | a3

ECC
#4

ECC
#6

ECC
#7

ECC
#3

Mapping info

Bits Required in the NAND Flash Spare Area
Error Correction

Level Hamming Reed-Sclomon BCH

1 13 18 13

2 N/A 36 26

3 N/A 54 39

4 N/A 72 52

5 N/A 90 65

6 N/A 108 78

7 N/A 126 91
8 N/A 144 104
9 N/A 162 117
10 N/A 180 130

Source: Micron Technology, Inc.

16

ECC Requirements

= Endurance continues to deteriorate
= Stronger ECCs are required: RS, BCH, LDPC

ECC Requirements 4

100000 - /
90000 - /
80000 / / 24-bit ECC
70000 -
& oo L 5-bitEceZ -
o /
=>
O 50000 -/— //
W 40000 - /
o o~
30000 - / 4-bitECCT
20000 - |
/ 3k .
10000 -/ P =
D T T T T T
SLC 5Xnm MLC 3xnm MLC 2xnm MLC 3-bit-per-Cell

Y. Cai et al., Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis, DATE, 2012.
4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

Reliability

= Write disturbance

* When a page is programmed, adjacent
calls receive elevated voltage stress

= Read disturbance

* Repeated reading from one page can
alter the values stored in other unread

pages

" error

* Threshold voltage shifts down due to
charge leakage from the floating gate

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Write disturbance

cco

Read disturbance

o 5

18

Bad Blocks

= |nitial bad blocks
* Due to production yield constraints and the pressure to keep costs low
* SLCs: up to 2%
* MLGCs: up to 5%

= Run-time bad blocks

* Read, write, or erase failure
* Permanent shift in the voltage levels of the cells due to trapped electrons

= Requires run-time bad block management

19

Page Programming Constraints

= NOP

* The number of partial-page programming is limited
* | / sector for most SLCs (4 for 2KB page)
* | / page for most MLCs and TLCs

" Sequential page programming
* Pages should be programmed sequentially inside a block
* For large block SLCs, MLCs,and TLCs

= SLC mode
* Possible to use only LSB pages in MLCs and TLCs

* Faster and more reliable, higher P/E cycles

4190.568 Advance d Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

20

Beauty and the Beast

* NAND Flash memory is a beauty
* Small, light-weight, robust, low-cost,
low-power non-volatile device
* NAND Flash memory is a beast
* Much slower program/erase operations
* No in-place-update
* Erase unit > write unit

Limited lifetime

Bit errors, bad blocks, ...

" Software support is essential for
performance and reliability!

Page Mapping FTL

What is FTL?

" A software layer to make NAND flash fully emulate traditional block

devices (or disks)

P

Read Sectors Write Sectors

Read Write Erase

T 9 9

Device Driver

P

Read Sectors Write Sectors

Read Sectors Write Sectors

O

O

FTL

+

+

IasII1IM‘em

Device Driver

o

i

Source: Zeen Info. Tech.

23

Address Mapping

write LBA address space
(As seen by the host)

Mapping table

_——

NAND flash

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

Address Mapping

* Required due to “no overwrite” characteristic

write

LBA address space
(As seen by the host)

-

Mapping table
NAND flash

-
B oo

25

Plethora of FTLs

HFTL
SAST SFTL MS FTL BPLRU

BFTL AFTL FAST LazyFTL
KAST
Chameleon GINFLE DFTL
LAST MNFTL

-block schem CFTL
super-block scheme Log block scheme

GFTL p-FTL JFTL LFTL
Replacement block scheme
Hydra FTL \anilla FTL P
YanusFTL

Reconfigurable FTL
WAFTL LIFTL

........... and so on

E. H. Nam, HIL: FTL Design Framework with Provably-correct Crash Recovery, NVRAMOS, 2013.
4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

Mapping Schemes

* Page mapping
* Fine-granularity page-level map table
* Hugh amount of memory space required for the map table

= Block mapping
* Coarse-granularity block-level map table
* Small amount of memory space required for the map table

. mapping

* Use both page-level and block-level map tables

* Higher algorithm complexity

4190.568 Advance d Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

27

Page Mapping

* Mapping in page-level
* Logical page number = physical page number
* Page mapping table (PMT) required
* # entries in PMT == # pages visible to OS

» Translation

* Step |:logical sector number (LSN) = logical page number (LPN)
* Step 2: LPN - physical page number (PPN) via PMT

4190.568 Advance d Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

28

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

Page Map Table

= Current state
* Written to page 0, 1,2,8,4,5

* Reading page 8

Logical page #8 }

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

PBN: 0

PBN: 1

~ PBN:2

PBN: 3

Data Block

vui A OON = O

)
QDN\IQMDUJNHOE

[N
= O

R R R R
u b WN

29

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, 1,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

o

=

O 0 NoOu»u A WN

[y
= O

=

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

vui A OON = O

)
QDN\IQMDUJNHOE

[N
= O

R R R R
u b WN

30

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, 1,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

Page Map Table
0 0

O 00 NOU»n & WN PR
v

==
= O

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

o un A ON R O

)
m\lmmthHQE

=
m o ¥

R R R R
i & W N

31

Example: Page Mapping

* Flash configuration
* Page size: 4KB
* # of pages / block = 4

= Current state
* Written to page 0, 1,2,8,4,5

* New requests (in order)
* Write to page 9
* Write to page 3
* Write to page 5

Page Map Table

0

O 00 NOU»n & WN PR

==
= O

0

g & NN =

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

w o un Ao ON R O

)
m\lmmthHQE

=
m o ¥

R R R R
i & W N

32

Example: Page Mapping

* Flash configuration

.
LD'-h ©® N B O

O 00 NoO LU & WIN R O

] Page Map Table Data Block
* Page size: 4KB o G PBN:O
* # of pages / block = 4 , =
371
= Current state : = PBN: 1 o
* Written to page 0, |,2,8,4,5 6 I 1nvaidate
Pag 7 I old poge 3
880 gy
u ' ol 6
New requests (in order) o Updated//
* Write to page 9 11 N page write
* Write to page 3 PBN: 3
* Write to page 5

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

)
2

[N
= O

R R R R
u b WN

Page Mapping

= Pros
e Most flexible

* Efficient handling of small random writes
— A logical page can be located anywhere within the flash storage
— Updated page can be written to any free page

= Cons

* Large memory footprint
— One page mapping entry per page
— 32MB for 32GB (4KB page)

e Sensitive to the amount of reserved blocks

* Performance affected as the system ages

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

34

Why!

1.2

Normalized IOPS
40
o

SSD Performance States - Normalized IOPS

—=D1MLC =———D2MLC ~=D3IMLC =—D4MLC ~=D5MLC =—D6MLC ‘D7SLC ~~~D8SLC

0.2 |

FOB

4KB random writes

Transition

I

Steady State
(desirable test range)

,"h"w!!ﬂﬂ“ﬂ

100

Time (Minutes)

700

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

http://tfindelkind.com/2015/08/20/
35

Garbage Collection

* Garbage collection (GC)
* Eventually, FTL will run out of blocks to write to
* GC must be performed to reclaim free space
* Actual GC procedure depends on the mapping scheme

= GC in page-mapping FTL
* Select victim block(s)

* Copy all valid pages of victim block(s) to free block
* Erase victim block(s)

* Note: At least one free block should be reserved for GC

4190.568 Advance d Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

36

Example: GC in Page Mapping

* Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block

H OO N B O

B X 350

Spare block

)
LD&\IO’AMDUJNHO;

[N
= O

37

Example: GC in Page Mapping

* Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 2

PBN: 3

Data Block
0

w ©

Spare block

)
LDN\IO’AMDUJNHO;

[N
= O

38

Example: GC in Page Mapping

* Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 2

PBN: 3

Data Block

Spare block

)
LDN\IO’AMDUJNHO;

[N
= O

39

Example: GC in Page Mapping

* Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

PBN: 0

PBN: 1

PBN: 2

PBN: 3

Data Block
0
1
2

:‘ ':-
A,
A\

4

=
Xl

RSN

W W 0 un

Spare block

)
LDN\IO\MDUJNHO;

[N
= O

40

Example: GC in Page Mapping

* Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

Page Map Table Data Block

)
2

H W N =R O

* New requests (in order)
* Write to page 8

* Write to page 9
* Write to page 3

R
P8 wvwo|Nouwun

* Write to page | Valid page copy

= B W W o un

12

: PBN: 3
* Write to page 4 Updated page write ———» 13
14

Y
(03}

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

41

Example: GC in Page Mapping

* Current state
* Written to page 0, [,2,8,4,5
* Written to page 9, 3,5

* New requests (in order)
* Write to page 8
* Write to page 9
* Write to page 3

Write to page |

Write to page 4

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Page Map Table

Data Block
PBN: O 0

Lexdaan
2

PBN: 1

Spare block

PBN: 2

W W 0 un

PBN: 3 -’51-

4

)
LDN\IO’AMDUJNHO;

[N
= O

R R R R
u b WN

42

Write Amplification

= Ratio of data written to flash to data written from host

" Write Amplification Factor (WAF)

Bytes written to Flash _ Bytes written from Host+Bytes written during GC

Bytes written from Host B Bytes writen from Host

* Generally, WAF is greater than one in flash storage
* Due to valid page copies made from victim block to free block during GC
* WAF is one of metrics that shows the efficiency of GC

43

Example: Write Amplification

= Current state
Page Map Table Data Block

. PPN
* Written to page 0, [,2,8,4,5 o o 0
* Written t 93,5 1 [1
ritten to page 9, 3, > X
3 3
n i 4 12 4
New requests (in order) - :
* Write to page §,9, 3, | 6 6
Pes 7 P ;
‘N .
? 8 9
= WAF = 1.08 0. 9 10
11-
* Total host writes: |3 Valid page copy - 11
. PBN: 3 12
e Total flash writes: 14 Updated page write — 1 13
14
15

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

44

Victim Selection Policy: Greedy

= Selects a block with the largest amount of invalid data

= A block with the utilization u

Number of valid pages in a block
u =

Number of Pages in a block

= Pros?

= Cons?

4190.568 Advance d Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

45

Victim Selection Policy: Cost-Benefit

= Selects a block with the

Benefit (1—u)
Cost 2u

X age
e y:utilization

* age: the time since the last modification

= Pros?

= Cons?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

46

Over-Provisioning

Physical Capacity

= OP (Over-Provisioning) = 1

Logical Capacity

* Extra media space on an SSD that does not contain user data

= Typical SSDs have more space than is advertised

* Consumer SSDs: ~ 7%
— | Gigabyte (GB) = 107 bytes = 1,000,000,000 bytes
— | Gibibyte (GiB) = 23° bytes = 1,073,741,824 bytes

* Enterprise SSDs: > 25%
— |00GB user space on 128GiB SSD: 37.4%

128GB——*

128GB /
100GB /

7.37% Inherent OP

289% Factory-set OP

47

Example: Over-Provisioning

= OP=33%

Page Map Table
* Logical capacity: 3 blocks

* Physical capacity: 4 blocks

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Data Block

\J

)
LDN\IO\LHDUJNHOE

[N
= O

R R R R
U b W N

48

Why Over-Provisioning?

* Over-Provisioning Space (OPS) is used for
* Write buffers

* Garbage collection cost
* Affected by utilization of SSD space and Over-Provisioning

. utilization - Better performance

. OP - Better performance

4190.568 Advance d Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

49

Over-Provisioning and GC

|OPS for random write workloads

* What about for sequential write workloads!?

4KB Random Write IOPS Normalized to FOB

7% Effective Over-Provisioning

-

=

1.10 ?
"gg —— 7.4% Effective OP == 19.3% Effective OP 34.2% Effective OP [—
-80 e 53.4% Effective OP e 79.0% Effective OP o 114.8% Effective OP |
-?0 Valid data to move: 12
: S —
gg i N\ N - . — 25% Effective Over-Provisioning
40 \ e e e
.30
.20 ~
.10 ———
00 I I | | I I I L] 1 1
0 50 100 150 200 250 300 350 400 450 500
Minutes

H

I
™

Valid data to move: 9

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.

50

	슬라이드 1: Flash Memory
	슬라이드 2: Flash Memory Basics
	슬라이드 3: Flash Memory Characteristics
	슬라이드 4: Logical View of NAND Flash
	슬라이드 5: Plane
	슬라이드 6: Die / Chip
	슬라이드 7: NAND Flash Types
	슬라이드 8: Characteristics of NAND Flash
	슬라이드 9: Erase-Before-Write
	슬라이드 10: Limited Lifetime
	슬라이드 11: Flash Endurance
	슬라이드 12: Asymmetric Read/Write Latency
	슬라이드 13: MLC Programming
	슬라이드 14: Paired Pages in MLC
	슬라이드 15: TLC One-Shot Programming
	슬라이드 16: Bit Errors
	슬라이드 17: ECC Requirements
	슬라이드 18: Reliability
	슬라이드 19: Bad Blocks
	슬라이드 20: Page Programming Constraints
	슬라이드 21: Beauty and the Beast
	슬라이드 22: Page Mapping FTL
	슬라이드 23: What is FTL?
	슬라이드 24: Address Mapping
	슬라이드 25: Address Mapping
	슬라이드 26: Plethora of FTLs
	슬라이드 27: Mapping Schemes
	슬라이드 28: Page Mapping
	슬라이드 29: Example: Page Mapping
	슬라이드 30: Example: Page Mapping
	슬라이드 31: Example: Page Mapping
	슬라이드 32: Example: Page Mapping
	슬라이드 33: Example: Page Mapping
	슬라이드 34: Page Mapping
	슬라이드 35: Why?
	슬라이드 36: Garbage Collection
	슬라이드 37: Example: GC in Page Mapping
	슬라이드 38: Example: GC in Page Mapping
	슬라이드 39: Example: GC in Page Mapping
	슬라이드 40: Example: GC in Page Mapping
	슬라이드 41: Example: GC in Page Mapping
	슬라이드 42: Example: GC in Page Mapping
	슬라이드 43: Write Amplification
	슬라이드 44: Example: Write Amplification
	슬라이드 45: Victim Selection Policy: Greedy
	슬라이드 46: Victim Selection Policy: Cost-Benefit
	슬라이드 47: Over-Provisioning
	슬라이드 48: Example: Over-Provisioning
	슬라이드 49: Why Over-Provisioning?
	슬라이드 50: Over-Provisioning and GC

