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0 = Electrons present

▪ Two states based on the presence of electrons

▪ Challenges

• How to attract or expel electrons?

• How to find out whether there are 

electrons or not?

• How to keep electrons without any power?

1 = No electrons
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▪ Erase-before-write

• Read

• Write or Program: 1 → 0

• Erase:  0 → 1

▪ Bulk erase

• Read/program unit

– NOR: byte or word

– NAND: page

• Erase unit: block

1 1 1 1 1 1 1 1

1 1 0 1 1 0 1 0

1 1 1 1 1 1 1 1

write
(program)

erase
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▪ A collection of blocks

▪ Each block has a number of pages

▪ The size of a block or a page depends on the technology 

(but, it’s getting larger)

Page 0

Block 1

Page 1

Page m-1

Block n-1Block 0

Data area Spare area
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▪ Each plane has its own page register and cache register

▪ Pages can be programmed or read at once

▪ Optional feature: 1, 2, 4, 8, … planes
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▪ Each chip has multiple dies (can be stacked)

▪ + extra circuits, chip enable signal, ready/busy signal

N. Agrawal, Design Tradeoffs for SSD Performance, USENIX ATC, 2008.
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▪ SLC NAND

• Single Level Cell (1 bit/cell)

▪ MLC NAND

• Multi Level Cell (2 bits/cell)

▪ TLC NAND

• Triple Level Cell (3 bits/cell)

▪ QLC NAND

• Quad Level Cell (4 bits/cell)

▪ 3D NAND (or V-NAND)

Source: Micron Technology, Inc.



Characteristics of NAND Flash
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▪ In-place update (overwrite) is not allowed

▪ Pages must be erased before new data is programmed

▪ The erase unit is much larger than the read/write unit

• Read/write unit: page (4KB, 8KB, 16KB, …)

• Erase unit: block (64-512 pages)

▪ What if there are live pages in the block we wish to erase?
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▪ The number of times NAND flash blocks can reliably be programmed 

and erased (P/E cycle) is limited

• SLCs: 50,000 ~ 100,000

• MLCs: 1,500 ~ 5,000

• eMLCs (Enterprise MLCs): 10,000 ~ 30,000

• TLCs: < 1,000

• QLCs: ???

▪ High voltage applied to cell degrades oxide

• Electrons are trapped in oxide

• Break down of the oxide structure

▪ Requires ____________
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E. Grochowski et al., Future Technology Challenges for NAND Flash and HDD Products, FMS, 2012.
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▪ Reading a page is faster than programming it

▪ Usually more than 10x

• e.g., 1ynm MLC1: Read 45µs, Program 1350µs, Erase 4ms

▪ Programming a page should go through multiple steps of Program & 

Verify phases

▪ As the technology shrinks, read/write latency tends to increase

▪ MLC and TLC make it even worse

1 D. Sharma, System Design for Mainstream TLC SSD, FMS, 2014.
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▪ LSB programmed first

• Cell cannot move to the lower voltage before erase
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▪ One cell represents two or three bits in paired pages

• LSB: low voltage, fast program, less error

• MSB: high voltage, slow program, more error

▪ Performance difference

▪ LSB page can be

corrupted when MSB

page programming

is interrupted

L. M. Grupp et al., The Harey Tortoise: Managing Heterogeneous Write Performance in SSDs, USENIX ATC, 2013.
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C. Gao et al., “Reprogramming 3D TLC Flash Memory based Solid State Drives”, ACM TOS 2022.
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▪ Bits are flipping frequently

▪ Error Correction Code (ECC) in spare area

Source: Micron Technology, Inc.
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▪ Endurance continues to deteriorate

▪ Stronger ECCs are required: RS, BCH, LDPC

Y. Cai et al., Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis, DATE, 2012.
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▪ Write disturbance

• When a page is programmed, adjacent 

calls receive elevated voltage stress

▪ Read disturbance

• Repeated reading from one page can 

alter the values stored in other unread 

pages

▪ _________ error

• Threshold voltage shifts down due to

charge leakage from the floating gate

Write disturbance

Read disturbance
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▪ Initial bad blocks

• Due to production yield constraints and the pressure to keep costs low

• SLCs: up to 2%

• MLCs: up to 5%

▪ Run-time bad blocks

• Read, write, or erase failure 

• Permanent shift in the voltage levels of the cells due to trapped electrons

▪ Requires run-time bad block management
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▪ NOP

• The number of partial-page programming is limited

• 1 / sector for most SLCs (4 for 2KB page)

• 1 / page for most MLCs and TLCs

▪ Sequential page programming

• Pages should be programmed sequentially inside a block

• For large block SLCs, MLCs, and TLCs

▪ SLC mode

• Possible to use only LSB pages in MLCs and TLCs

• Faster and more reliable, higher P/E cycles
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▪ NAND Flash memory is a beauty

• Small, light-weight, robust, low-cost, 

low-power non-volatile device

▪ NAND Flash memory is a beast

• Much slower program/erase operations

• No in-place-update

• Erase unit > write unit

• Limited lifetime 

• Bit errors, bad blocks, …

▪ Software support is essential for

performance and reliability!



Page Mapping FTL
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▪ A software layer to make NAND flash fully emulate traditional block 

devices (or disks)

+
Device Driver

Read Write Erase

File System

Read Sectors Write Sectors

Flash Memory

Mismatch!

+
Device Driver

Flash Memory

FTL

+

Read Sectors Write Sectors

File System

Read Sectors Write Sectors

Source: Zeen Info. Tech.
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… …

LBA address space 
(As seen by the host)

write

Mapping table

data

NAND flash
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▪ Required due to “no overwrite” characteristic

… …

LBA address space 
(As seen by the host)

write

Mapping table

old data

NAND flash

new data
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E. H. Nam, HIL: FTL Design Framework with Provably-correct Crash Recovery, NVRAMOS, 2013.
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▪ Page mapping

• Fine-granularity page-level map table

• Hugh amount of memory space required for the map table

▪ Block mapping

• Coarse-granularity block-level map table

• Small amount of memory space required for the map table

▪ ________ mapping

• Use both page-level and block-level map tables

• Higher algorithm complexity
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▪ Mapping in page-level

• Logical page number → physical page number

• Page mapping table (PMT) required

• # entries in PMT == # pages visible to OS

▪ Translation

• Step 1: logical sector number (LSN) → logical page number (LPN)

• Step 2: LPN → physical page number (PPN) via PMT
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▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ Reading page 8

Logical page #8 0000001000
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▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5 
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▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5 
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▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5 
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▪ Flash configuration

• Page size: 4KB

• # of pages / block = 4

▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

▪ New requests (in order)

• Write to page 9

• Write to page 3

• Write to page 5 
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▪ Pros

• Most flexible

• Efficient handling of small random writes

– A logical page can be located anywhere within the flash storage

– Updated page can be written to any free page

▪ Cons

• Large memory footprint

– One page mapping entry per page

– 32MB for 32GB (4KB page)

• Sensitive to the amount of reserved blocks

• Performance affected as the system ages
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http://tfindelkind.com/2015/08/20/

4KB random writes
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▪ Garbage collection (GC)

• Eventually, FTL will run out of blocks to write to

• GC must be performed to reclaim free space

• Actual GC procedure depends on the mapping scheme

▪ GC in page-mapping FTL

• Select victim block(s)

• Copy all valid pages of victim block(s) to free block

• Erase victim block(s)

• Note:  At least one free block should be reserved for GC
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8

• Write to page 9

• Write to page 3

• Write to page 1

• Write to page 4
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▪ Ratio of data written to flash to data written from host

▪ Write Amplification Factor (WAF) 

= 𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑡𝑜 𝐹𝑙𝑎𝑠ℎ

𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑓𝑟𝑜𝑚 𝐻𝑜𝑠𝑡
= 

𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑓𝑟𝑜𝑚 𝐻𝑜𝑠𝑡+𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑑𝑢𝑟𝑖𝑛𝑔 𝐺𝐶

𝐵𝑦𝑡𝑒𝑠 𝑤𝑟𝑖𝑡𝑒𝑛 𝑓𝑟𝑜𝑚 𝐻𝑜𝑠𝑡

▪ Generally, WAF is greater than one in flash storage

• Due to valid page copies made from victim block to free block during GC

• WAF is one of metrics that shows the efficiency of GC
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▪ Current state

• Written to page 0, 1, 2, 8, 4, 5

• Written to page 9, 3, 5

▪ New requests (in order)

• Write to page 8, 9, 3, 1

▪ WAF = 1.08

• Total host writes: 13

• Total flash writes: 14
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▪ Selects a block with the largest amount of invalid data

▪ A block with the _________ utilization u

𝑢 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑 𝑝𝑎𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑏𝑙𝑜𝑐𝑘

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑔𝑒𝑠 𝑖𝑛 𝑎 𝑏𝑙𝑜𝑐𝑘

▪ Pros?

▪ Cons?
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▪ Selects a block with the __________

𝐵𝑒𝑛𝑒𝑓𝑖𝑡

𝐶𝑜𝑠𝑡
=

(1 − 𝑢)

2𝑢
× 𝑎𝑔𝑒

• u: utilization

• age: the time since the last modification

▪ Pros?

▪ Cons?
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▪ OP (Over-Provisioning) = 
𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐿𝑜𝑔𝑖𝑐𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
− 1

• Extra media space on an SSD that does not contain user data

▪ Typical SSDs have more space than is advertised

• Consumer SSDs: ~ 7%

– 1 Gigabyte (GB) = 109 bytes = 1,000,000,000 bytes

– 1 Gibibyte (GiB) = 230 bytes = 1,073,741,824 bytes

• Enterprise SSDs:  > 25%

– 100GB user space on 128GiB SSD:  37.4%
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▪ OP = 33%

• Logical capacity: 3 blocks

• Physical capacity: 4 blocks
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▪ Over-Provisioning Space (OPS) is used for

• Write buffers

• _____________

• _____________

• _____________

▪ Garbage collection cost

• Affected by utilization of SSD space and Over-Provisioning

• ______ utilization → Better performance

• ______ OP → Better performance
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▪ IOPS for random write workloads

• What about for sequential write workloads?

D. Glen, Differences in Personal vs. Enterprise SSD Performance, Micron Technology, Inc.
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