
File Systems

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ File

• A named collection of related information that is recorded on persistent storage

• Each file has an associated inode number (internal file ID)

• Inodes are unique within a file system

▪ Directory

• A logical group of files

• Hierarchical directory tree: directories

can be placed within other directories

• A special file used to map a user-readable

file name to its inode number:

a list of <file name, inode number>

/

bin etc home lib usr

bill jack bin libls

a.txt t.mp3

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ File contents (data)

• A sequence of bytes

• File systems normally do not care what they are

▪ File attributes (metadata or inode)

• File size

• Block locations

• Owner & access control lists

• Timestamps, ...

▪ File name

• The full pathname from the root specifies a file

• e.g., open(“/home/jack/t.mp3”, O_RDONLY);

File name

Inode number

File metadata
(Inode)

File data

directory

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

User-level software

POSIX API (open, read, write, …)

HDD SSD

Virtual File System (VFS)

Ext4 XFS BTRFS F2FS…proc tmpfs isofs…

ODD

Generic Block Layer

Device Driver (SCSI, SATA, NVMe)

Disk interrupt handler

Library

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ POSIX operations

open Create a file or open an existing file

close Close a file

read Read data from a file

write Write data to a file

lseek Reposition read/write file offset

stat Get file status

fsync Synchronize a file’s in-core state with storage device

link Make a new name for a file

unlink Delete a name and possibly the file it refers to

rename Change the name or location of a file

chown Change ownership of a file

chmod Change permissions of a file

flock Apply or remove an advisory lock on an open file

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Inode number

▪ File type: regular, directory, char/block dev, fifo, symbolic link, …

▪ Device ID containing the file

▪ User ID and group ID of the owner

▪ Access permission: rwx for owner(u), group(g), and others(o)

▪ Number of hard links

▪ File size in bytes

▪ Number of 512B blocks allocated

▪ Timestamps: time of last ____ (atime), time of last modification (mtime),

time of last _______ (ctime)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ Block allocation

• Data blocks for each file or directory

• Metadata blocks for files and directories

• Free space management

▪ Block indexing

• <inode #, offset> → block #

▪ Directory indexing for fast lookup

• "/path/name/to/file" → inode #

▪ Metadata consistency on crash

• Journaling

✓ Performance

✓ __________

✓ __________

✓ ...

Goals

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

▪ File system buffers writes into memory (“page cache”)

• Write buffering improves performance

• Up to 30 seconds in Linux

• sync(): flushes all pending filesystem metadata and data

• fsync(): flushes all dirty data and metadata associated with the file

• fdatasync(): does not flush modified metadata unless it is needed in order to

allow a subsequent data retrieval to be correctly handled (e.g., change to file size)

int fd = open(“foo”, O_CREAT | O_WRONLY | O_TRUNC);
int rc = write(fd, buffer, size);
rc = fsync(fd);
close(fd);

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ File system may perform several disk writes to complete a single system

call

• e.g., creat(), write(), unlink(), rename(), …

• But, disk only guarantees atomicity of a single sector write

▪ If file system is interrupted between writes, the on-disk structure may

be left in an inconsistent state

• Power loss

• System crash (kernel panic)

• Transient hardware malfunctioning

▪ We want to move file system from one consistent state to another

atomically

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

▪ A well-known technique for database transactions

• Record a log, or journal, of changes made to on-disk data structures to a separate

location (“journaling area”)

• Write updates to their final locations (“checkpointing”) only after the journal is

safely written to disk

▪ If a crash occurs:

• Discard the journal if the journal write is not committed

• Otherwise, redo the updates based on the journal data

▪ Fast as it requires to scan only the journaling area

▪ Used in modern file systems:

Linux Ext3/4, ReiserFS, IBM JFS, SGI XFS, Windows NTFS, …

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ What if two processes write to the same file concurrently?

▪ What if a file is modified while the other process is reading it?

▪ What if a file is deleted while the other process still uses it?

▪ What if the permission of a file is changed while the other process still

uses it?

▪ What if a process tries to write data into the location beyond the file

size?

▪ What if the power is lost during rename("a", "b")?

A Fast File System for UNIX

(M. McKusick et al., ACM TOCS, 1984)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ First Unix file system developed by Ken Thompson

▪ Superblock

• Basic information of the file system

• Head of freelists of Inodes and data blocks

▪ Inode list

• Referenced by index into the inode list

• All inodes are the same size

▪ Data blocks

• A data block belongs to only one file

Super
Block

Inode
List

Data Blocks

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Files are fragmented as the file system “ages”

• Blocks are allocated randomly over the disk

▪ Inodes are allocated far from blocks

• Traversing pathnames or manipulating files and directories requires long seeks

between inodes and data blocks

▪ Files in a directory are typically not allocated in consecutive inode slots

▪ The small block size: 512 bytes

Super
Block

Inode
List

Data Blocks
A1

A2A3 B1

B2iA

iB

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ The original Unix file system (70’s) was very simple and

straightforwardly implemented

• But, achieved only 2% of the maximum disk bandwidth

▪ BSD Unix folks redesigned file system called FFS

• McKusick, Joy, Leffler, and Fabry (80’s)

• Keep the same interface, but change the internal implementation

▪ The basic idea is ____________

• Place related things on nearby cylinders to reduce seeks

• Improved disk utilization, decreased response time

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Use bitmaps instead of free lists

• Each bit represents whether the corresponding inode (or data block) is free or in

use

• What's good?

Super
Block

Data BlocksInodesIB DB

Data Bitmap

Inode Bitmap

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Divides the disk into a number of cylinder groups

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Put all the structures within each cylinder group

• Block size is increased to 4KB to improve throughput

• Superblock (S) is replicated for reliability reasons

• Modern drives do not export disk geometry information

• Modern file systems organize the drive into “block groups”

(e.g., Linux Ext2/3/4)

Cylinder group 0 Cylinder group 1 ... Cylinder group N-1

S Data BlocksInodesIB DB

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

▪ Keep related stuff together

▪ Balance directories across groups

• Allocate directory blocks and its inode in the cylinder group with a low number of

allocated directories and a high number of free inodes

▪ Files in a directory are often accessed together

• Place all files that are in the same directory in the cylinder group of the directory

• Allocate data blocks of a file in the same group as its inode

• Data blocks of a large file are partitioned into chunks and distributed over multiple

cylinder groups

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

▪ Fragments to reduce internal fragmentation

• Each block can be broken optionally into 2, 4, or 8 fragments

• The block map manages the space at the fragment level

▪ File system parameterization

• Make the next block come into position

under the disk head by skipping some blocks

▪ Free space reserve

▪ Long file names

▪ Atomic rename

▪ Symbolic links

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ First disk-aware file system

• Cylinder groups

• Bitmaps

• Replicated superblocks

• Large blocks

• Smart allocation policies

▪ FFS achieves 14% ~ 47% of the disk bandwidth

• The throughput deteriorates to about half when the file system is full

▪ FFS inspired modern file systems including Ext2/3/4

Ext4 File System

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Evolved from Minix filesystem

• Maximum file size: 64MB (16-bit block addresses)

• Directory: fixed-size entries, file name up to 14 chars

▪ Virtual file system (VFS) added

▪ Extended filesystem (Ext), Linux 0.96c, 1992

▪ Ext2, Linux 0.99.7, 1993

▪ Ext3, Linux 2.4.15, 2001

▪ Ext4, Linux 2.6.19, 2006

• Default file system for many Linux distributions and Android-based smartphones

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Scalability

• Support volume sizes up to 1EB

• Support file sizes up to 16TB

▪ Extents-based mapping

▪ Flex block group

▪ Delayed allocation

▪ Multi-block allocator

▪ Directory indexing with Htree (since Ext3)

▪ Journaling for file system consistency (since Ext3)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ File metadata (256 bytes/inode by default)

▪ Pointers for data blocks or extents

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Block group

• Similar to the cylinder group in FFS

• All the block groups have the same size and are stored sequentially

Block group 0 Block group n

Super
Block

Group
Descriptors

Data block
Bitmap

inode
Bitmap

inode
Table

Data Blocks

1 block k blocks 1 block 1 block m blocks n blocks

Boot
Block Block group 1

(3 + k + m + n = block size * 8)

128MB for 4KB block

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Superblock: file system metadata

• Total number of inodes

• File system size in blocks

• Free blocks / inodes counter

• Number of blocks / inodes per group

• Block size, ...

▪ Group descriptor

• Number of free blocks / inodes / directories

• Block number of block / inode bitmap, etc.

▪ Both superblock and group descriptor are duplicated in other block

groups

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Extent <offset, length, physical block>:

A single descriptor for a range of contiguous blocks

• 32-bit logical block number (offset): file size up to 16TB

• 48-bit physical block number: up to 1EB filesystem

• 15-bit length: Max 128MB contiguous blocks

▪ An efficient way to represent large files

▪ Prevent file fragmentation

▪ Less metadata information to change on file deletion

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ Up to four extents in the inode.

Otherwise, extents tree is used.

▪ Extent header

• # valid entries

• # entries / node

• Tree depth

• Magic number

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Why?

Block
Bitmap

Super
Block

Group Descriptor Table

1 block N blocks 1 block * (Def. 16)

Block
Bitmap

Block
Bitmap

Block Group #0 Group #1 Group #15

1 block * (Def. 16)

Inode
Bitmap

Inode
Bitmap

Inode
Bitmap

Group #0 Group #1 Group #15

Data Blocks

Multiple blocks

Group #0

Multiple blocks

Group #2

Backup
Super
Block

Backup GDT

1 block N blocks

Group #1

Multiple blocks

Inode Table

Multiple blocks

Group #15

Inode Table

Multiple blocks

Group #0

Inode Table

Multiple blocks

Group #1

Data Blocks Data Blocks

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 31

▪ Blocks allocations postponed to page flush time, rather than during the

write() operation

• What's good?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 32

▪ Ext3 allocates one block at a time

→ Inefficient for larger I/Os

▪ An entire extent, containing multiple contiguous blocks, is allocated at

once

• Reduce fragmentation

• Reduce extent metadata

• Eliminate multiple calls and reduce CPU utilization

▪ Stripe size aligned allocations

▪ Pack small files together and avoid fragmentation of free space (“per-cpu

locality group”)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 33

▪ Htree-based directory

• 32-bit hashes for keys

• Each key refers to a range of

entries in a leaf block

• High fanout factor

(over 500 for 4KB block)

• Constant depth

(one or two levels)

• Leaf blocks are identical to

old-style directory blocks

entry for .

entry for ..

header

hash block

hash block

…

hash block

hash block

16 o emh5 2 1 \0 \0 \053
28 s \0ru3 267
16 l fdo7 1 i l e \00
12 i \0nb3 234...

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 34

▪ Journaling modes

	슬라이드 1: File Systems
	슬라이드 2: File System Abstraction
	슬라이드 3: File System Components
	슬라이드 4: File System Layers
	슬라이드 5: File Interfaces
	슬라이드 6: POSIX Inode
	슬라이드 7: File System Issues
	슬라이드 8: Ensuring Persistence
	슬라이드 9: Crash Consistency
	슬라이드 10: Journaling (Write-ahead Logging)
	슬라이드 11: File System Semantics
	슬라이드 12: A Fast File System for UNIX
	슬라이드 13: The Original Unix FS
	슬라이드 14: Problems
	슬라이드 15: FFS
	슬라이드 16: Bitmaps
	슬라이드 17: Cylinder Groups
	슬라이드 18: On-Disk Layout
	슬라이드 19: Allocation Policies
	슬라이드 20: Other Features
	슬라이드 21: Summary
	슬라이드 22: Ext4 File System
	슬라이드 23: Ext2/3/4
	슬라이드 24: Ext4 Features
	슬라이드 25: Ext4 Inode
	슬라이드 26: Ext4 On-disk Layout
	슬라이드 27: Ext4 Block Group
	슬라이드 28: Ext4 Extents
	슬라이드 29: Ext4 Extents Tree
	슬라이드 30: Ext4 Flex Block Groups
	슬라이드 31: Ext4 Delayed Allocation
	슬라이드 32: Ext4 Multi-block Allocator
	슬라이드 33: Ext4 Directory Indexing
	슬라이드 34: Ext4 Journaling

