
CPU Scheduling

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Spring 2023

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ A policy deciding which process to run next, given a set of runnable

tasks (processes or threads)

• Happens frequently, hence should be fast

▪ Mechanism

• ___________________

▪ Policy

• ___________________

• ___________________

RunningReady

Scheduled

Time slice exhausted

I/O or
event wait

Blocked

I/O or event
completion

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ Non-preemptive scheduler

• The scheduler waits for the running task to voluntarily yield the CPU

– cf.) yield()

• Tasks should be __________

▪ Preemptive scheduler

• The scheduler can interrupt a task and force a context switch

• Implemented using periodic timer interrupts

• What if a task is preempted in the midst of updating the shared data?

• What if a process in a system call is preempted?

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Work-conserving scheduler

• Never leave a resource idle when someone wants it

• e.g., Linux CPU scheduler (ideally)

▪ Non-work-conserving scheduler

• May leave the resource idle despite the presence of jobs

• e.g., Server waits for short job before starting on a big job

• e.g., Anticipatory I/O scheduler: waits for a short time after a read operation in

anticipation of another close-by read requests to overcome “deceptive idleness”

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ Each task has a (static) priority

• cf.) nice(), renice(), setpriority(), getpriority()

▪ Choose the task with the highest priority to run next

▪ Round-robin or FIFO within the same priority

▪ Can be either preemptive or non-preemptive

▪ Starvation problem

• If there is an endless supply of high priority tasks, no low priority task will ever run

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

▪ Priority is dynamically adjusted at run time

▪ Modeled as a Multi-level Feedback Queue (MLFQ)

• A number of distinct queues

for each priority level

• Priority scheduling between queues,

round-robin in the same queue

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

▪ MLFQ

• Preemptive priority scheduling

• Time-shared based on time slice

• Tasks dynamically change priority

▪ Aging for avoiding starvation

• Increase priority as a function of wait time

• Decrease priority as a function of CPU time

▪ Favor interactive tasks over CPU-bound tasks

▪ Priority vs. time slice?

▪ Many ugly heuristics have been explored in this area

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 8

Kernel version CPU Scheduler

Linux 2.4
• Epoch-based priority scheduling
• O(n) scheduler

Linux 2.6 ~
2.6.22

• Active / expired arrays with bitmaps
• Per-core run queue
• O(1) scheduler

Linux 2.6.23 ~ • CFS (Completely Fair Scheduler) by Ingo Molnar

Linux 3.14 ~
• Sporadic task model deadline scheduling

(SCHED_DEADLINE)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

Class Description Policy

DL
• For real-time tasks with deadline
• Highest priority

SCHED_DEADLINE

RT • For real-time tasks
SCHED_FIFO
SCHED_RR

Fair • For time-sharing tasks
SCHED_NORMAL
SCHED_BATCH

Idle • For per-CPU idle tasks SCHED_IDLE

Linux CFS

(Completely Fair Scheduler)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ Total 140 levels (0 ~ 139)

• A smaller value means higher priority

▪ Setting priority for non-real-time tasks

• nice(), setpriority()

• -20 ≤ nice value ≤ 19

• Default nice value = 0 (priority value 120)

▪ Setting priority for real-time tasks

• sched_setattr()

• Static priority for SCHED_FIFO & SCHED_RR

• Runtime, deadline, period for SCHED_DEADLINE

139 (nice 19)

100 (nice -20)
99

0

Non-real-time
task priority

(SCHED_NORMAL,
SCHED_BATCH)

Real-time
task priority

(SCHED_FIFO,
SCHED_RR)

high

low

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Basic concept

• A weight value is associated with each task

• The CPU is allocated to task in proportion to its weight

Time

Task A (weight 2)

Task B (weight 1)

Task C (weight 4)

Task D (weight 1)

Task A’s share =
𝒘𝒆𝒊𝒈𝒉𝒕𝑨
σ𝒘𝒆𝒊𝒈𝒉𝒕𝒊

=
𝟐

𝟖
= 𝟐𝟓. 𝟎%

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ How to map nice values to weights?

• Wants a task to get ~10% less CPU time when it goes from nice i to nice i+1

• This will make another task remained on nice i have ~10% more CPU time

• weight(i)/weight(i+1) = 0.55/0.45 = 1.22 (or ≃ 25% increase)

▪ Examples

• T1 (nice 0), T2 (nice 1)

– T1: 1024/(1024+820) = 55.5%

– T2: 820/(1024+820) = 44.5%

• + T3 (nice 1)

– T1: 1024/(1024+820*2) = 38.4%

– T2: 820/(1024+820*2) = 30.8%

– T3: 820/(1024+820*2) = 30.8%

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ Approximate the “ideal multitasking” that CFS is modeling

▪ Normalize the actual runtime to the case with nice value 0

• Weight0: the weight of nice value 0

• Weight(T): the weight of the task T

• PR(T): the actual runtime of the task T

• VR(T): the virtual runtime (vruntime) of the task T

▪ For a high-priority task, its vruntime increases slowly

𝑽𝑹 𝑻 =
𝑾𝒆𝒊𝒈𝒉𝒕𝟎
𝑾𝒆𝒊𝒈𝒉𝒕(𝑻)

× 𝑷𝑹 𝑻 = 𝑾𝒆𝒊𝒈𝒉𝒕𝟎 ×
𝟐𝟑𝟐

𝑾𝒆𝒊𝒈𝒉𝒕(𝑻)
× 𝑷𝑹(𝑻) ≫ 𝟑𝟐

precomputed:
sched_prio_to_wmult[]

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ CFS maintains a red-black tree where

all runnable tasks are sorted by vruntime

• Self-balancing binary search tree

• The path from the root to the farthest leaf is

no more than twice as long as the path to the

nearest leaf

• Tree operations in O(log N) time

• The leftmost node indicates the smallest vruntime

▪ Choose the task with the smallest virtual runtime (vruntime)

• Small virtual runtime means that the task has received less CPU time than what it

should have received

rb_leftmost

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ The time a task runs before it is preempted

• It gives each runnable task a slice of the CPU’s time

• The length of timeslice of a task is proportional to its weight

• TS(T): Ideal runtime for the task T

• P: Scheduling period

𝑻𝑺 𝑻 =
𝑾𝒆𝒊𝒈𝒉𝒕(𝑻)

σ𝑻𝒊 𝒊𝒏 𝑹𝑸𝑾𝒆𝒊𝒈𝒉𝒕(𝑻𝒊)
× 𝑷

𝑷 = ቊ
sysctl_sched_latency, if n < sched_nr_latency

sysctl_sched_min_granularity * n, otherwise

sysctl_sched_latency:
Targeted preemption latency for
CPU-bound tasks
(6ms*(1+log #cores) by default)

sysctl_sched_min_granularity:
Minimal preemption granularity
for CPU-bound tasks
(0.75ms*(1+log #cores) by default)

sched_nr_latency =
sysctl_sched_latency /
sysctl_sched_min_granularity
(8 by default)

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ Timer interrupt handler calls the CFS scheduler

▪ Updates the vruntime of the current task

▪ If preemption is needed, mark the NEED_RESCHED flag

• When the current task has run beyond its timeslice

• If the current task’s vruntime exceeds the vruntime of the leftmost task in RB tree

▪ On exit, schedule() is called when NEED_RESCHED flag is set

• Clear the NEED_RESCHED flag and enqueue the previous task

• Pick the next task to run

• Context switch to the next task

▪ The current task can be also preempted when a higher-priority task is

inserted into the runqueue

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

0

▪ Initially choose the leftmost task, T2, in this case

▪ But how long?
Runnable BlockedT1

nice: 0
w:1024

0 0
T2

nice: -5
w: 3121

T3
nice: 5
w: 335

𝑻𝑺 𝑻𝟐

=
3121

1024 + 3121 + 335
× 𝑃

= 4.18 𝑚𝑠

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

T2

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 19

0

▪ Update T2's vruntime

Runnable BlockedT3
nice: 5
w: 335

0
T1

nice: 0
w:1024

T2
nice: -5
w: 3121

𝑽𝑹 𝑻𝟐

=
1024

3121
× 4.18

= 1.37

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

1.37

T2

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 20

0

▪ Now choose T1

Runnable BlockedT3
nice: 5
w: 335

0
T1

nice: 0
w:1024

T2
nice: -5
w: 3121

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

1.37

T2

𝑻𝑺 𝑻𝟏

=
1024

1024 + 3121 + 335
× 𝑃

= 1.37 𝑚𝑠

T1

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 21

▪ Update T1's runtime

Runnable BlockedT1
nice: 0
w:1024

0
T3

nice: 5
w: 335

T2
nice: -5
w: 3121

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

1.37

𝑽𝑹 𝑻𝟏

=
1024

1024
× 1.37

= 1.37

1.37

T2 T1

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 22

▪ Choose T3

Runnable BlockedT1
nice: 0
w:1024

0
T3

nice: 5
w: 335

T2
nice: -5
w: 3121

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

1.37

1.37𝑻𝑺 𝑻𝟑

=
335

1024 + 3121 + 335
× 𝑃

= 0.45 𝑚𝑠

T
3

T2 T1

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 23

▪ Update T3's vruntime

Runnable BlockedT2
nice: -5
w: 3121

T1
nice: 0
w:1024

T3
nice: 5
w: 335

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

1.38

1.37𝑽𝑹 𝑻𝟑

=
1024

335
× 0.45

= 1.38
1.37

T
3

T2 T1

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 24

▪ Choose T1

Runnable BlockedT2
nice: -5
w: 3121

T1
nice: 0
w:1024

T3
nice: 5
w: 335

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

1.38

1.37

1.37

𝑻𝑺 𝑻𝟏

=
1024

1024 + 3121 + 335
× 𝑃

= 1.37 𝑚𝑠

T
3

T2 T1 T1

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 25

▪ Update T1's vruntime

Runnable BlockedT3
nice: 5
w: 335

T2
nice: -5
w: 3121

T1
nice: 0
w:1024

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

2.74

1.38

1.37

T
3

T2 T1 T1

𝑽𝑹 𝑻𝟏

= 1.37 +
1024

1024
× 1.37

= 2.74

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 26

▪ Update T2 for 4.18ms and T3 for 0.45ms

Runnable BlockedT1
nice: 0
w:1024

T2
nice: -5
w: 3121

T3
nice: 5
w: 335

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

2.76

2.74

2.74

T
3

T2 T1 T1 T2
T
3

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 27

▪ Now T2 is scheduled, but it is blocked after running 1ms

Runnable BlockedT3
nice: 5
w: 335

T1
nice: 0
w:1024

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

2.76

2.76

2.74

T
3

T2 T1 T1 T2
T
3

T2

𝑽𝑹 𝑻𝟐

= 2.74 +
1024

3121
× 1.00

= 3.07
3.07

T2
nice: -5
w: 3121

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 28

▪ Now T1 runs

Runnable BlockedT1
nice: 0
w:1024

T3
nice: 5
w: 335

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

2.76

7.26

2.76

T
3

T2 T1 T1 T2
T
3

T2

3.07

T2
nice: -5
w: 3121

𝑻𝑺 𝑻𝟏

=
1024

1024 + 335
× 𝑃

= 4.52 𝑚𝑠

T1

𝑽𝑹 𝑻𝟏

= 2.74 +
1024

1024
× 4.52

= 7.26

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 29

▪ T3 runs

Runnable BlockedT3
nice: 5
w: 335

T1
nice: 0
w:1024

0 1 2 3 4 5 6 7 8 9 10 181711 12 13 14 15 16 19 (ms)

2.76

7.28

7.26

T
3

T2 T1 T1 T2
T
3

T2

3.07

T2
nice: -5
w: 3121

𝑻𝑺 𝑻𝟑

=
335

1024 + 335
× 𝑃

= 1.48 𝑚𝑠

T1

𝑽𝑹 𝑻𝟑

= 2.76 +
1024

335
× 1.48

= 7.28

T3

4190.568 Advanced Operating Systems | Spring 2023 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 30

▪ Full tickless operation introduced in Linux 3.10

• No need for a periodic tick in the system, particularly when the system is idle

• Idle CPUs save power

▪ CONFIG_HZ_PERIODIC

• Old-style mode where the timer tick runs at all times

▪ CONFIG_NO_HZ_IDLE (formerly CONFIG_NO_HZ) – default

• Disable the tick at idle, with re-programming it for the next pending timer

▪ CONFIG_NO_HZ_FULL

• The CPUs without a timer tick must be designated at boot time

• At least one CPU needs to receive interrupts and do the necessary housekeeping

• The timer tick is disabled if there is only a single runnable process on that CPU

	슬라이드 1: CPU Scheduling
	슬라이드 2: CPU Scheduling
	슬라이드 3: Preemptive (or not)
	슬라이드 4: Work-Conserving (or not)
	슬라이드 5: (Static) Priority Scheduling
	슬라이드 6: Priority Scheduling
	슬라이드 7: UNIX Scheduler
	슬라이드 8: Linux Scheduler Evolution
	슬라이드 9: Linux Scheduling Classes
	슬라이드 10: Linux CFS (Completely Fair Scheduler)
	슬라이드 11: Linux Task Priority
	슬라이드 12: Proportional Share Scheduling
	슬라이드 13: Nice to Weight
	슬라이드 14: Virtual Runtime
	슬라이드 15: Runqueue
	슬라이드 16: Timeslice
	슬라이드 17: Scheduling Flow
	슬라이드 18: Example:
	슬라이드 19: Example:
	슬라이드 20: Example:
	슬라이드 21: Example:
	슬라이드 22: Example:
	슬라이드 23: Example:
	슬라이드 24: Example:
	슬라이드 25: Example:
	슬라이드 26: Example:
	슬라이드 27: Example:
	슬라이드 28: Example:
	슬라이드 29: Example:
	슬라이드 30: Tickless (or DynTick) Kernel

