Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University

Fall 2022

Introduction to Operating Systems

Operating System Internals

OS: Application View

- OS provides an execution environment for running programs

OS provides a(an) ______ view of the underlying computer system

- What are the correct abstractions?
- How much of hardware should be exposed?
- Typical OS abstractions
 - Processors \rightarrow Processes, Threads
 - Memory \rightarrow Address space (virtual memory)
 - Storage \rightarrow Volumes, Directories, Files
 - I/O Devices \rightarrow Files (+ ioctls)
 - Networks \rightarrow Files (sockets, pipes, ...)

OS: System View

- OS manages various resources of a computer system
- Sharing

- Fairness
- Efficiency

CPU
Memory
I/O devices
Queues
Energy
...

Resources

OS: Implementation View

OS is highly-concurrent, software Two kinds of events trap • System calls • Interrupts System call Interrupts Hardware

Unix Features

- Process control
 - fork(), exec(), wait(), exit()
 - Pipes for inter-process communication (IPC)
- Hierarchical file systems
 - Special files: uniform I/O, naming, and protection
 - Removable file systems via mount/umount
 - i-node
- Signals
- Shells
 - Standard I/O and I/O redirection, filters
 - Shell scripts

Architectural Support for OS (1)

- CPU modes of operation: kernel vs. user
 - 4 levels in x86: Ring 0 > 1 > 2 > 3
 - 3 levels in RISC-V: Machine > Supervisor > User
- Protected or ______ instructions
 - Direct I/O access (e.g., in/out instructions in x86)
 - Accessing system registers
 - Memory state management

•

Architectural Support for OS (2)

- Interrupts
 - Generated by hardware devices
 - External interrupts vs. IPIs
 - Asynchronous
- Exceptions
 - Generated by software executing instructions
 - Faults (unintentional, but possibly recoverable): page faults, protection faults, ...
 - Traps (intentional): syscall instruction in x86_64 or ecall instruction in RISC-V
 - Aborts (unintentional and unrecoverable): parity error, machine error, ...
 - Synchronous
 - Exception handling is logically same as interrupt handling

Architectural Support for OS (3)

- Memory protection
 - Segmentation
 - Paging
- Timer

. . .

- DMA (Direct Memory Access)
- Atomic instructions
 - Atomic inc/dec
 - Test-and-Set
 - Compare-and-Swap
 - LL (Load Locked) & SC (Store Conditional)

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)