
Processes and Threads

Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2022

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 2

▪ A(An) ________ of a program in execution

▪ Program vs. Process?

▪ The basic unit of protection

▪ A process is identified using is process ID (PID)

▪ A process includes

• CPU context (registers)

• OS resources (address space, open files, etc.)

• Other information (PID, state, owner, etc.)

▪ Process control block

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 3

▪ A thread of control:

A sequence of instructions being executed

in a program

▪ A thread has its own

• Thread ID

• Set of registers including PC & SP

• Stack

▪ Threads share an address space

• Code, Data, and Heap

▪ Separate the concept of a process from its

execution state

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 4

▪ Concurrency

▪ Program structure

• Divide large task across several cooperative threads

▪ Throughput

• By overlapping computation with I/O operations

▪ Responsiveness

• Can handle concurrent events (e.g., web servers)

▪ Resource sharing

▪ Utilization of multi-core architectures

• Allows building parallel programs

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 5

▪ A thread is bound to a single process

▪ A process, however, can have multiple

threads

▪ Sharing data between threads is cheap;

all see the same address space

▪ Threads are the unit of scheduling

▪ Processes are containers in which threads execute

• PID, address space, user and group ID,

open file descriptors, current working directory, etc.

▪ Processes are static, while threads are dynamic entities
Image source: https://dribbble.com/shots/1395795-factory-cross-section-progress-4

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 6

Heap

Stack

Data

Code

program

code

data

PC (T1)

SP (T1)

PC (T2)

PC (T3)

Stack

Stack
SP (T2)

SP (T3)

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 7

One Many

One

Embedded Systems
without OS

MS/DOS
Early Macintosh

Traditional UNIX

Many

Many Embedded
OSes

(VxWorks, QNX,
μClinux, μC/OS-II, ...)

Modern OSes
(Mach, Windows, Linux,

Mac OS X, HP-UX,
Solaris, AIX, …)

o

f
ad

d
r

sp
ac

es
:

threads per
addr space:

Processes and Threads in Linux

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 9

▪ Tasks

• In Linux, tasks represent both processes and threads

• Each task is described using a task structure

▪ struct task_struct
• @ include/linux/sched.h

• Everything the kernel has to know about a task

• About 3.5KB in size (Kernel 5.15.65 on x86_64)

• Allocated by the slab allocator (cf. /proc/slabinfo)

• Task list (t->tasks): the list of task structures in a

circular linked list

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 10

thread_info

state

stack

tasks

...

mm

...

fs

...

files

...

signal

sighand

...

Kernel
stack

mm_struct

fs_struct

files_struct

signal_struct

thread flags and state

task state

task list

8KB for IA-32
16KB for x86_64

task_struct

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 11

▪ get_current()
• Per-cpu variable called current_task

is maintained

▪ The old way

• When CONFIG_THREAD_INFO_IN_TASK=n

• Put the thread_info at the top of

the kernel stack

• Get current thread_info from the

stack pointer

• thread_info has a pointer to the

task_struct

Kernel
Stack

thread_info

task_struct

0x015fbfff

0x015fb000

0x015fa878

0x015fa034

0x015fa000

sp

current_thread_info()

current

task

thread_info

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 12

▪ Process context

• Process enters kernel space by a system call or an exception

• The kernel is executing on behalf of the process

• The current variable is valid

▪ Interrupt context

• The system is executing an interrupt handler

• There is no task tied to interrupt handlers

• The current variable should not be used (except for the scheduler)

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

▪ sys_fork()→ _do_fork() (@ kernel/fork.c)

▪ copy_process()

• Check parameters

• Invoke dup_task_struct() to create a new kernel stack and task_struct for

the new process

• Make sure the child will not exceed the resource limit

• Invoke sched_fork() to initialize the scheduler-related data structure

• Invoke copy_files(), copy_fs(), copy_sighand(), copy_signal(),

copy_mm(), etc. to copy those data structures

• Invoke copy_thread_tls() to initialize user registers of the child

• Allocate a new PID by calling alloc_pid()

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 14

▪ copy_process() (cont'd)

• Initialize the fields for parenthood relationship and thread group

• Invoke attach_pid() to insert the child PID to the PID hash table

▪ wake_up_new_task()
• Invoke activate_task() to insert the child into the runqueue

▪ Returns the PID of the child

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 15

▪ Linux implements all threads using standard tasks

• There is no concept of a thread

• A thread is merely a task that shares certain resources with other tasks

▪ One-to-one model

• Linux creates a task for each application thread using clone() system call

▪ Sharing resources

• Resources to be shared can be specified in the flags argument in clone()

• CLONE_VM: parent and child share address space

• CLONE_FILES: parent and child share open files

• CLONE_FS: parent and child share filesystem information

• CLONE_SIGHAND, … (cf.) $ man 2 clone

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 16

▪ Basic difference in multithreading model

• POSIX: a single process that contains one or more threads

• Linux: separate tasks that may share one or more resources

▪ Resources

• POSIX: the following resources are specific to a thread, all other resources are

global to a process

– CPU registers, user stack, blocked signal mask

• Linux: the following resources may be shared between tasks via clone(), while all

other resources are local to each task

– Address space, signal handlers, open files, working directory, …

▪ getpid(), fork(), exec(), exit(), signals, suspend/resume, …?

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 17

▪ A set of threads that act as a whole with regards to some system calls

▪ The first thread (task) in a process becomes the thread group leader

• A new thread created with CLONE_THREAD is placed in the same thread group

as the calling thread

▪ Handling process-based system calls:

• getpid() returns the PID of the thread group leader (t->tgid)

• On exec(), all threads other than the thread group leader are terminated, and the

new program is executed in the thread group leader

• After all of the threads in a thread group terminate, a SIGCHLD signal is sent to

the parent process

• Signals may be sent to a thread group as a whole

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

▪ Standard tasks that exist solely in the kernel space

• Kernel threads share the kernel's address space

• They operate only in the kernel space and do not context switch into the user

space

• Kernel threads are, however, schedulable and preemptable as normal tasks

• Used to perform certain tasks in background (e.g., kswapd)

▪ Creating a kernel thread

• pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)

• kthread API @ include/linux/kthread.h (e.g., kthread_create(), ...)

