Jin-Soo Kim
(jinsoo.kim@snu.ac.kr)

Systems Software &
Architecture Lab.

Seoul National University

Fall 2022

Processes and Threads

What is a Process!?

= A(An) of a program in execution

" Program vs. Process?
* The basic unit of protection

= A process is identified using is process ID (PID)

= A process includes
* CPU context (registers)
* OS resources (address space, open files, etc.)
* Other information (PID, state, owner, etc.)

" Process control block

What is a Thread!?

Process 1 Process 1 Process 1

\ | |

= A thread of control:

A sequence of instructions being executed
In 2 program @

= A thread has its own Thread
* Thread ID Iarme
* Set of registers including PC & SP Process
¢ Stack 1
" Threads share an address space
* Code, Data,and Heap @

Thread

" Separate the concept of a process from its
execution state

Kernel

Why Threads!?

= Concurrency
* Program structure
* Divide large task across several cooperative threads
* Throughput
* By overlapping computation with I/O operations
= Responsiveness
* Can handle concurrent events (e.g., web servers)
= Resource sharing
= Utilization of multi-core architectures

* Allows building parallel programs

Processes vs. [hreads

" A thread is bound to a single process

= A process, however, can have multiple
threads

= Sharing data between threads is cheap;
all see the same address space

* Threads are the unit of scheduling

" Processes are containers in which threads execute

* PID, address space, user and group ID,
open file descriptors, current working directory, etc.

" Processes are static, while threads are dynamic entities

Image source: https://dribbble.com/shots/1395795-factory-cross-section-progress-4

5

Address Space with Threads

PC (T2)—>
PC (T1)—> Code
PC(T3)—
Data
Heap
SP (T2)
Stack
SP (T3
(T3) Stack
SP (T1)

Stack

>

~, code

program

threads per Many
addr space:

Embedded Systems

without OS -
MS/DOS Traditional UNIX
Early Macintosh
Many Embedded Modern OSes
OSes (Mach, Windows, Linux,
(VxWorks, QNX, Mac OS X, HP-UX,

uClinux, pC/0S-lI, ...) Solaris, AlX, ...)

Processes and Threads in Linux

Linux Tasks

» Tasks

In Linux, tasks represent both processes and threads

Each task is described using a task structure

" struct task struct

@ include/linux/sched.h

Everything the kernel has to know about a task
About 3.5KB in size (Kernel 5.15.65 on x86 64)
Allocated by the slab allocator (cf. /proc/slabinfo)

Task list (t->tasks): the list of task structures in a
circular linked list

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
/*
* For reasons of header soup (see current_thread_info()), this
* must be the first element of task_struct.
Sy
struct thread_info thread_info;
#endif
/* -1 unrunnable, @ runnable, >@ stopped: */
volatile long state;

/*
* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.
S

randomized_struct_fields_start

void *stack;

refcount_t usage;

/* Per task flags (PF_*), defined further below: */
unsigned int flags;

unsigned int ptrace;

#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;

#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */

unsigned int cpu;
#endif

Task Structure

task_struct
thread info

thread flags and state
task state state
stack

’ tasks

task list <«

A 4

Kernel
stack

8KB for IA-32
16KB for x86_64

fs

files_struct

signal

sighand

>

mm_struct
g —
fs_struct —
—>
—>

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

—_—
—> R
signal_struct
- —>
—>
—

10

Finding the Current Task

» get current()

* Per-cpu variable called current_task
is maintained

Ox015fbfff
* The old way
* When CONFIG_THREAD_INFO_IN TASK=n

* Put the thread info at the top of
the kernel stack

* Get current thread info from the #1788
stack pointer

* thread _info has a pointer to the
task struct

0x015fb0ooo

0x015fa034

0x015fa000

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

Kernel
Stack
r—— <€—current
1
L . ‘ = :
N :
N / <« sp | task_struct
|
1
| j=====thread_info
task 1
thread_info m=-=-==-=--= !
current_thread_info()

11

Execution Contexts

" Process context
* Process enters kernel space by a system call or an exception
* The kernel is executing on behalf of the process
* The current variable is valid

" |nterrupt context
* The system is executing an interrupt handler
* There is no task tied to interrupt handlers
* The current variable should not be used (except for the scheduler)

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

12

Creating a New Process

» sys fork() =2 _do _fork() (@ kernel/fork.c)
= copy_process()

Check parameters

Invoke dup _task struct() to create a new kernel stack and task struct for
the new process

Make sure the child will not exceed the resource limit
Invoke sched fork() to initialize the scheduler-related data structure

Invoke copy files(), copy fs(),copy sighand(), copy signal(),
copy_mm(), etc. to copy those data structures

Invoke copy thread tls() to initialize user registers of the child
Allocate a new PID by calling alloc_pid()

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 13

Creating a New Process (cont'd)

= copy_process() (cont'd)
* Initialize the fields for parenthood relationship and thread group
* Invoke attach _pid() to insert the child PID to the PID hash table

* wake up new_task()
* Invoke activate task() to insert the child into the runqueue

= Returns the PID of the child

4190.568 Advance d Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

14

Linux Threads

" Linux implements all threads using standard tasks
* There is no concept of a thread

* A thread is merely a task that shares certain resources with other tasks

= One-to-one model

* Linux creates a task for each application thread using clone() system call

= Sharing resources

* Resources to be shared can be specified in the f1lags argument in clone()
CLONE_VM: parent and child share address space
CLONE_FILES: parent and child share open files

CLONE_FS: parent and child share filesystem information
CLONE_SIGHAND, ... (cf) $ man 2 clone

4190.568 Advance d Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

15

POSIX Compatibility

= Basic difference in multithreading model
* POSIX:a single process that contains one or more threads

* Linux: separate tasks that may share one or more resources

= Resources

* POSIX: the following resources are specific to a thread, all other resources are
global to a process
— CPU registers, user stack, blocked signal mask
* Linux: the following resources may be shared between tasks via clone(), while all

other resources are local to each task
— Address space, signal handlers, open files, working directory, ...

» getpid(),fork(),exec(),exit(), signals, suspend/resume,...?

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr)

16

Thread Group

= A set of threads that act as a whole with regards to some system calls

* The first thread (task) in a process becomes the thread group leader

* A new thread created with CLONE_THREAD is placed in the same thread group
as the calling thread

* Handling process-based system calls:
» getpid() returns the PID of the thread group leader (t->tgid)

* On exec(), all threads other than the thread group leader are terminated, and the
new program is executed in the thread group leader

* After all of the threads in a thread group terminate, a SIGCHLD signal is sent to
the parent process

* Signals may be sent to a thread group as a whole

17

Kernel Threads

= Standard tasks that exist solely in the kernel space
* Kernel threads share the kernel's address space

* They operate only in the kernel space and do not context switch into the user
space

* Kernel threads are, however, schedulable and preemptable as normal tasks
* Used to perform certain tasks in background (e.g., kswapd)

" Creating a kernel thread

- pid_t kernel thread(int (*fn)(void *), void *arg, unsigned long flags)
* kthread APl @ include/linux/kthread.h (e.g, kthread create(),..)

4190.568 Advanced Operating Systems | Fall 2022 | Jin-Soo Kim (jinsoo.kim@snu.ac.kr) 18

